招树涛 徐永健 陈浩云
[摘要] 目的 克隆与人血脑屏障通透性相关基因Caveolin-1,并在大肠埃希菌中表达,最后进行蛋白纯化、鉴定。方法 根据基因库中收录的Caveolin-1基因序列,设计其上下游引物,经过PCR反应合成Caveolin-1双链,然后与pET28a(+)载体重组,筛选阳性克隆并对DNA序列分析鉴定。将已构建好的重组质粒pET28a-Caveolin-1转入化大肠埃希菌BL21(DE3),异丙基硫代半乳糖苷诱导融合蛋白表达,表达产物经镍离子亲和层析(Ni2+-NTA)纯化,SDS-PAGE检测和Western blot鉴定。 结果 PCR扩增的Caveolin-1 DNA片段经鉴定确认为人Caveolin-1基因。经异丙基硫代半乳糖苷诱导的含有pET28a-Caveolin-1重组质粒的DE3菌表达出重组人Caveolin-1融合蛋白。重组蛋白经Ni2+-NTA亲和层析纯化,获得了较高纯度的融合蛋白。 结论 本研究成功克隆了人血脑屏障通透性相关基因Caveolin-1,并对其进行蛋白表达、纯化,获得了较高纯度融合蛋白,为进一步的相关临床研究奠定了基础。
[关键词] 血脑屏障;通透性相关基因;Caveolin-1;克隆;表达;纯化
[中图分类号] R543.5 [文献标识码] A [文章编号] 1673-7210(2018)11(b)-0013-04
[Abstract] Objective To clone Caveolin-1, a gene related to human blood-brain barrier permeability, and express it in Escherichia coli. and to purify and identify the protein finally. Methods According to the sequence of Caveolin-1 gene contained in the gene bank, the upstream and downstream primers were designed. The Caveolin-1 double strand was synthesized by PCR and then recombined with pET28a (+) vector. Positive clones were screened and identified by DNA sequence analysis. The constructed recombinant plasmid pET28a-Caveolin-1 was transfected into E. coli BL21 (DE3), and the expression of the fusion protein was induced by IPTG. The expressed product was purified by Ni2+-NTA affinity chromatography, identified by SDS-PAGE and Western blot. Results The Caveolin-1 DNA fragment amplified by PCR was identified as human Caveolin-1 gene. The recombinant human Caveolin-1 fusion protein was expressed by IPTG-induced DE3 strain containing the recombinant plasmid pET28a-Caveolin-1. The recombinant protein was purified by Ni2+-NTA affinity chromatography to obtain a fusion protein of higher purity. Conclusion This study successfully cloned the blood-brain barrier permeability-related gene Caveolin-1, and expressed and purified the protein to obtain a higher purity fusion protein, which laid a foundation for further relevant clinical research.
[Key words] Blood-brain barrier; Permeability related gene; Caveolin-1; Cloning; Expressing; Purifying
腦梗死患者多死于脑水肿及出血性转化,这与脑缺血组织中血脑屏障的受损密切相关[1]。Caveolins蛋白是小窝的主要结构成份,与小窝的形态构成及相关功能相关,其家族中包括Caveolin-1、Caveolin-2、Caveolin-3,其中Caveolin-1分布最为广泛,且在不同的组织中表达水平不同[2]。Caveolins蛋白家族是血管通透性的重要调控因子[3-4]。Choi等[5]在《Stroke》杂志中发表的关于对鼠缺血性脑损伤模型研究表明,Caveolins家族中,尤其是Caveolin-1蛋白对缺血性损伤时血脑屏障通透性的调控作用更明显,与血脑屏障的完整程度存在密切关系,Caveolin-1蛋白是血脑屏障通透性的重要调控因子,其可通过调节缺血损伤脑组织血脑屏障的通透性,降低水肿及出血性转化的发生,这为临床脑梗死的治疗提供了新思路。理论上,体外操作可实现对脑梗患者受损脑组织中Caveolin-1蛋白的调控,降低脑水肿及出血性转化的发生,从而提高脑梗死患者的治愈率并改善其愈后状况。本研究拟参照叶棋浓[6]在《现代分子生物学技术与实验技巧》中所述的研究方法,对人Caveolin-1基因进行克隆,并对其进行蛋白表达,以期获得高纯度的Caveolin-1蛋白,为Caveolin-1治疗脑梗死的临床前研究奠定基础。
1 材料与方法
1.1 材料
菌株和质粒pET28a载体、DH5α菌株、大肠埃希菌(E.coli)BL21(DE3)、Taq酶、XhoⅠ、EcoRⅠ内切酶以及T4连接酶、蛋白Marker均购自TaKaKa公司,质粒提取及琼脂糖凝胶回收试剂盒、镍离子亲和层析(Ni2+-NTA)预装柱、化学发光显色试剂均购自OMEGA公司,鼠抗人Anti-6×His抗体、辣根过氧化物酶(HRP)标记的山羊抗小鼠IgG均购自浩天生化科技有限公司。
1.2 方法
1.2.1 Caveolin-1基因扩增 根据Caveolin-1基因序列设计其上下游引物,并进行PCR反应,取PCR产物5 μL进行琼脂糖凝胶电泳。上下游序列如下:上游引入EcoRⅠ酶切位点,下游引入XhoⅠ酶切位点。正向引物(P1):5′-ACATAAATTTTTTTCTCCAAATTAC-CTGAGTGTCAAGGTGTACGGACCCCTCCGAAGTGT-TAGTACCTCC-3′;反向引物(P2):5′-TATTTTCGAT-GTCTCACTCTGCATGGGGCACTGGGCAGCCACAGA-AGTGAGGGTGCCATTGCTCTGCTTG-3′。PCR反应体系:10×PCR buffer 5 μL,dNTP 4 μL,引物P1 1 μL,引物P2 1 μL,Taq酶0.25 μL,模板2 μL,加水至50 μL。反应条件:94℃ 30 s,45℃ 30 s,72℃ 30 s 2个循环,72℃延伸2 h。
1.2.2 重组质粒pET28a-Caveolin-1的构建 将Caveolin-1的PCR产物与pET28a载体DNA分别进行双酶切,回收纯化后进行连接,取连接产物10 μL转化大肠埃希菌DH5α感受态细胞,涂布于Kan抗性的LB平板上,37℃倒置过夜,次日随机挑取菌落,接种于Kan抗性的LB液体培养基,37℃震荡培养12 h,提取质粒,进一步测序鉴定。
1.2.3 重组人Caveolin-1融合蛋白的诱导表达 用接种环沾取少量含有重组质粒pET28a-Caveolin-1的保存菌,于LB(Kan+)平板上划线,37℃倒置培养过夜。次日挑取单菌落,接种于5 mL LB (Kan+)液体培养基,37℃振摇培养过夜。次日取培养过夜菌液500 μL 再接种于50 mL选择性LB液体培养基中,振荡培养至OD600值达0.6。吸取1 mL后加入异丙基硫代半乳糖苷(IPTG),终浓度为1 mmol/L,37℃继续诱导培养4 h。取加IPTG前后的菌液各1 mL,12 000 r/min离心5 min,收集菌体沉淀,并于沉淀中加50 μL蒸馏水,混匀后再加2×十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)上样缓冲液50 μL,混匀,沸水浴5 min,12 000 r/min离心10 min,每个样品取20 μL上样于15%的SDS-PAGE胶上电泳鉴定。
1.2.4 重组人Caveolin-1融合蛋白的纯化及Western blot检测 将含有重组质粒pET28a-Caveolin-1的LB液体培养基扩大诱导培养,提纯包涵体,并裂解复性。将复性产物缓慢加于已用磷酸盐缓冲液(PBS)平衡的Ni2+-NTA亲和层析预装柱中,加样所用的流速控制在1 mL/min内;PBS洗涤除去未结合蛋白,冲洗流速应控制在5 mL/min内;分别用含100、150 mmol/L咪唑PBS缓冲液洗脱融合蛋白,流速5 mL/min。取纯化后的融合蛋白20 μL于15%的SDS-PAGE胶上上样,并电泳;然后,电转移至硝酸纤维素膜上膜上,进行Western blot印迹分析。
2 结果
2.1 PCR扩增
通过Caveolin-1基因上下游引物进行PCR,结果扩增出一个约700 bp的DNA片段。见图1。
2.2 重组质粒pET28a-Caveolin-1序列分析
Caveolin-1基因与pET28a(+)载体连接后转入表达菌株DH5α,随机挑取单克隆菌落,提取质粒测序,结果与Genebank中Caveolin-1序列一致。
2.3 诱导重组人Caveolin-1融合蛋白的表达
Caveolin-1的分子量约20.47 KD,pET28a-Caveolin-1表达的Caveolin-1结果详见图2
2.4 重组融合蛋白的纯化、鉴定
分别采用100、150 mmol/L咪唑PBS缓冲液洗脱,并对各洗脱液进行10%的SDS-PAGE电泳鉴定,重組融合蛋白在含150 mmol/L咪唑PBS缓冲液可以被完全洗脱。见图3。经Western blot印迹分析,可见一清晰条带,即Caveolin-1蛋白得到有效纯化。见图4。
3讨论
脑卒中在世界范围内都是引起死亡及致残的主要原因之一。该领域的研究主要集中于缺血性损伤的细胞,并认为大脑血供不足很容易导致神经细胞受损及神经功能障碍,多种信号分子参与了这一过程[8-9]。细胞死亡并不是导致疾病的急性期患者死亡的直接原因,大部分脑梗死患者死于脑水肿及在缺血性脑组织中出现的出血性转化。脑水肿可引起缺血性梗阻面积的扩大,并可通过一系列反应引发临床症状的恶化。出血性转化是公认的脑梗死伴发症,其生理的特殊性限制了溶栓疗法的临床应用,进而导致脑梗死死亡的发生。脑梗死患者出现脑水肿及出血性转化的严重后果是由血脑屏障的破坏而引起的[10]。维持血管完整性是脑缺血治疗的靶标。然而,在临床中维持血脑屏障完整性的治疗是有限的。因此,了解血脑屏障破坏的潜在机制对脑卒中的治疗及预后有重要意义。
Caveolins-1在中枢神经系统内参与调控血脑屏障渗出、氧化应激反应、神经炎性反应过程,还参与了髓鞘修复和神经元突触再生等过程[11-12]。在脑缺血急性期,Caveolins-1过表达能够降低血脑屏障渗透性、减轻脑水肿,进而减小脑梗死体积,发挥脑保护作用[13-14]。钟义良等[15]的研究表明,血清Caveolins-1水平可作为急性脑梗死发生早期神经功能恶化的独立预测因子。膜蛋白Caveolins是调控血管通透性的关键因子[4,16]。Caveolin-1是小窝蛋白的一种,这个家族是细胞膜的重要组成成份,是细胞膜表面小窝的标记蛋白[17],其作为支架蛋白可结合信号分子调控细胞膜的稳定性,参与信号转导、物质转运、细胞增殖等活动[18-20]。Choi等[13]研究表明,Caveolins家族中的Caveolins-1可通过阻止紧密连接蛋白的降解,抑制基质金属蛋白酶的活性来保护细胞膜的完整。降低脑缺血损伤时Caveolins-1的表达,对血脑屏障的通透性是有害的;增加脑缺血损伤时Caveolins-1的表达可保护血脑屏障的通透性,减少脑水肿及出血性转化的发生。Caveolins-1是可维持血脑屏障通透性稳定的蛋白,可以作为治疗脑梗死的靶标。未来有望通过体外调控缺血脑组织中Caveolins-1基因及其蛋白的表达,降低脑水肿及出血性转化的发生,进而提高脑梗死患者的治愈率、改善其愈后状况。
本研究依據基因库中公布的Caveolins-1序列,自行设计了Caveolins-1基因的上游及下游引物片段,并对该基因进行了PCR,得到了Caveolins-1的PCR产物。产物经纯化后与pET28a(+)载体连接,构建重组质粒pET28a-Caveolins-1,转化宿主菌DH5α,培养后挑取的单克隆菌落经序列分析后确定重组片段为人血脑屏障通透性相关的Caveolin-1基因全长cDNA。经IPTG诱导的含有pET28a-Caveolin-1重组质粒的DE3菌,表达出重组人Caveolin-1融合蛋白。重组蛋白经Ni2+-NTA亲和层析进行纯化后,得到了较高纯度的融合Caveolins-1蛋白。这为今后Caveolins-1治疗脑梗死的研究奠定了基础。
[参考文献]
[1] Jian LK,Rosenberg GA. Matrix metalloproteinases and free radicals in cerebral ischemia [J]. Free Radic Biol Med,2005,39(4):71-80.
[2] Parton RG,Simons K. The multiple faces of caveolae [J]. Nat Rev Mol Cell Biol,2007,8(6):185-194.
[3] Song L,Ge S,Pachter JS. Caveolin-1 regulates expression of junctionassociatedproteins in brain microvascular endothelial cells [J]. Blood,2007,109(8):1515-1523.
[4] élizabeth Beauchesne,Desjardins P,Butterworth RF,et al. Up-regulation of caveolin-1 and blood-brain barrier breakdown are attenuated by N-acetylcysteine in thiamine deficiency [J]. Neurochem Int,2010,57(7):830-837.
[5] Choi KH,Kim HS,Park MS,et al. Regulation of Caveolin-1 expression determines early brain edema after experimental focal cerebral ischemia [J]. Stroke,2016,5(3):1336-1343.
[6] 叶棋浓.现代分子生物学技术与实验技巧[M].北京:化学工业出版社,2015.
[7] Janyou A,Wicha P,Jittiwat J,et al. Dihydrocapsaicin attenuates attenuates blood brain barrier and cerebral damage in focal cerebral ischemia/reperfusion via oxidative stress and inflammatory [J]. Sci Rep,2017,7(1):10 556.
[8] Frieler RA,Chung Y,Ahlers CG,et al. Genetic neutrophil deficiency ameliorates cerebral ischemia-reperfusion injury [J]. Exp Neurol,2017,S0014-4886(17):30 222-30 224.
[9] Su J,Liu J,Yan XY,et al. Cytoprotective effect of the UCP2-SIRT3 signaling pathway by decreasing mitochondrial oxidative stress on cerebral ischemia-reperfusion injury [J]. Int J Mol Sci,2017,18(7):E1599.
[10] Jian LK,Rosenberg GA. Matrix metalloproteinases and free radicals in cerebral ischemia [J]. Free Radic Biol Med,2005,39(11):71-80.
[11] Zhao YL,Song JN,Zhang M. Role of caveolin-1 in the biology of the blood-brain barrier [J]. Rev Neurosci,2014, 25(2):247-254.
[12] Mandyam CD,Schilling JM,Cui W,et al. Neuron-targeted caveolin-1 improves molecular signaling, plasticity, and behavior dependent on the hippocampus in adult and aged mice [J]. Biol Psychiatry,2017, 81(2):101-110.
[13] Choi KH,Kim HS,Park MS,et al. Overexpression of caveolin-1 attenuates brain edema by inhibiting tight junction degradation [J]. Oncotarget,2016,7(42):67 857-67 867.
[14] Nag S,Manias JL,Kapadia A,et al. Molecular changes associated with the protective effects of angiopoietin-1 during blood-brain barrier breakdown postinjury [J]. Mol Neurobiol,2017,54(6):4232-4242.
[15] 钟义良,张融融,黄思源,等.急性脑梗死患者血清陷窝蛋白1水平与早期神经功能恶化的关系[J].上海交通大学学报:医学版,2017,37(12):1678-1681.
[16] Han F,Zhu HG. Caveolin-1 regulating the invasion and expression of matrix metalloproteinase (MMPs) in pancreatic carcinoma cells [J]. J Surg Res,2010,159(1):443-450.
[17] Gu X,Reagan AM,McClellan ME,et al. Caveolins and caveolae in ocular physiology and pathophysiology [J]. Prog Retin Eye Res,2017(56):84-106.
[18] Kovtun O,Tillu VA,Jung W,et al. Structural insights into the organization of the cavin membrane coat complex [J]. DevCell,2014,31(4):405-419.
[19] Busija AR,Patel HH,Insel PA,et al. Caveolins and cavins in the trafficking,maturation,and degradation of caveolae:implications for cell physiology [J]. Am J Physiol Cell Physiol,2017,312(4):C459-C477.
[20] Grzegorz S. Caveolae,caveolins,cavins,and endothelial cell function:new insights [J]. Frontiers in Physiology,2011, 2(2):120.
(收稿日期:2017-12-08 本文編辑:任 念)