我国集约化种植业面源氮发生量估算

2018-09-28 02:11夏永秋杨旺鑫施卫明颜晓元
生态与农村环境学报 2018年9期
关键词:损失量旱地面源

夏永秋,杨旺鑫,施卫明,颜晓元

(中国科学院南京土壤研究所,江苏 南京 210008)

农田中的氮经过地表径流和淋溶进入地表、地下水体,形成农业面源污染。水体氮污染已经是一个世界性的问题,中国的水体氮污染问题尤为严重[1]。据研究,长江水体硝态氮浓度从1968年到1997年升高10倍[2]。第一次全国农业源污染调查数据显示,农业面源污染在水域富营养化和水质恶化中的贡献率呈逐年增加趋势,平均达到30%以上,铵态氮贡献率甚至达到60%以上。然而,由于面源氮发生时间的随机性、发生方式的间歇性、发生机理的复杂性、排放途径及排放量的不确定性、污染负荷的时空变异性、监测模拟与控制的困难性等特点[3],很难对面源氮的发生过程进行监测和模拟。在区域尺度上,各流域由于地形、地貌、土地利用、气候等差异,面源氮水质贡献尤为复杂。

由于存在明显的汇水区和确定的迁移路径,目前,面源氮水质负荷核算研究多集中在流域尺度,方法也比较多样化,包括经验模型(如输出系数模型[4])、统计模型(如多元回归方程、混合线性模型[5-6])、机理模型(如SWAT、HSPF、SHE、AGNPS等[7])、半经验半机理模型(如SPARROW[8])等。而在区域尺度开展面源氮水质负荷核算的研究方法比较单一,大多通过区域收支法或者只考虑氮肥用量的输出系数模型实现[9-12],存在很大的不确定性。如朱兆良[13]根据全国种植业平均径流和淋失系数,估算全国种植业面源氮径流贡献量为1.2 Tg,淋洗损失量为0.5 Tg。胡玉婷等[12]区分水田和旱地的径流和淋失系数,估算出全国氮素径流损失为1.3 Tg,淋洗损失量为2.03 Tg;而2007年第一次全国污染源普查将更多土地利用方式的径流和淋失系数区分开,得到种植业总氮发生量为0.71 Tg。因此,采用上述3种方法估算得到的全国种植业面源氮损失量差别巨大,其主要原因是这些方法只考虑氮肥用量对面源氮损失的影响,而忽略了气候、地理、作物管理和土壤等因子对种植业面源氮损失的影响。

基于此,笔者将种植业区分为水田和旱地,通过收集农田氮素径流和淋洗损失方面的文献,提取影响氮素损失的关键影响因子并进行回归分析,构建大尺度集约化种植业氮素发生量估算模型。

1 材料与方法

1.1 研究思路

由于水田和旱地氮素损失机制有显著差异,为了准确模拟两种典型土地利用方式下的氮素损失量,将种植业区分为水田和旱地,并进一步将氮素损失区分为径流和淋洗。文献分析结果表明,在区域上控制径流和淋洗的主要影响因素为施氮量、土壤全氮含量、土壤黏粒含量和降雨量,分别代表作物管理、土壤和气候因子。为充分利用现有研究成果,增强模型的可信度和应用性,建立氮素损失与上述4个影响因素的回归模型,研究思路见图1。

图1 研究方法与思路

1.2 数据收集与整理

收集的中文文献主要来源于中国知网 (http:∥www.cnki.net/)和维普网 (http:∥qikan.cqvip.com/),英文文献主要来源于Google学术(http:∥www.scholar.google.com)。对收集到的文献进行筛选,最终得到2004—2014年间的文献资料,试验地点主要包括安徽、湖南、广东、江苏、浙江、上海、江西、重庆、山东和陕西,种植作物主要有水稻、小麦、玉米、油菜和棉花,总共187组径流和淋洗数据。文献中的研究方法多为田间小区试验,在田间建设径流池,使用一定高度的水泥墙体作为田埂,用径流收集管连通监测小区和径流池,径流管由直径为5 cm的PVC管和2个三通管连接而成。在麦季,PVC管高度略低于围沟底部,以保障能充分采集到麦季径流;在稻季,PVC管口比田面高约7 cm,使灌溉或降雨导致的超出该高度的田面水经径流管导入径流池,测量径流池水深,换算后得到稻季径流总量。由于在不同深度土壤剖面测得的氮素淋溶量不同,取0~100 cm土层中总氮淋溶量平均值。对于部分缺失数据,通过换算进行补充,总氮淋溶损失量(kg·hm-2)由总氮淋溶损失浓度(mg·L-1)与渗漏水量(mm)相乘后再除以100得到。试验中施用的肥料类型不同,笔者只收集了无机氮肥的数据,并将其统一换算为化学纯氮用量。

1.3 统计分析与估算

采用Excel 2007软件对数据进行整理,建立农田氮素损失与影响因素数据库,剔除离群值之后,采用SPSS 19.0软件对数据进行统计和多元回归分析,建立氮素损失与影响因素的回归模型。逐步回归能有效避免参数多重共线性问题,其基本思想是将变量逐个引入模型,每引入一个解释变量后都进行F检验,并对已经选入的解释变量逐个进行t检验,当原来引入的解释变量由于后面解释变量的引入而变得不再显著时,则将其删除,以确保每次引入新的变量之前回归方程中只包含显著性变量。查阅《中国统计年鉴》[14]和《中国气象年鉴》[15],得到2011年我国除台湾、香港、澳门以外其他31个省、自治区、直辖市年平均降雨量,氮肥施用量,农作物播种总面积,水稻(代表水田)播种面积,小麦、玉米、棉花、油菜(代表旱地)播种面积,根据各省、自治区、直辖市氮肥施用量及播种总面积得到各省、自治区、直辖市单位面积农田施氮量。由于模型的数据基础具有较大的变异区间,而全国收集的数据(图2)处于收集数据变异区间之内,因而该逐步回归模型可应用于全国尺度,用于估算我国种植业面源氮发生量。

图2 文献中施氮量、土壤全氮含量、土壤黏粒含量和降雨量统计分布

2 结果与分析

2.1 发生量核算方法

应用逐步回归方法,可以在大尺度提取影响水田、旱地径流和淋洗的控制因子。水田总氮淋洗损失的主要影响因素为施氮量和土壤黏粒含量,常量、施氮量和土壤黏粒含量的回归系数分别为8.606、0.018和-0.216,模型相关系数为0.794;水田总氮径流损失的主要影响因素为施氮量和降雨量,常量、施氮量和降雨量的回归系数分别为-0.958、0.027和0.005,模型相关系数为0.753,都通过了回归系数显著性检验(表1)。旱地总氮淋洗和径流损失的主要影响因素都为降雨量和施氮量,其中,淋洗模型中,常量、降雨量和施氮量的回归系数分别为-12.106、0.041和0.035,模型相关系数为0.735;径流模型中,常量、降雨量和施氮量的回归系数分别为-12.650、0.041和0.073,模型相关系数为0.899,也都通过了回归系数显著性检验(表2)。由此可以获得水田总氮径流损失量(Y1)估算模型为Y1=-0.958+0.027X1+0.005X2;旱地总氮径流损失量(Y2)估算模型为Y2=-12.650+0.041X2+0.073X1,水田中总氮淋洗损失量(Y3)估算模型为Y3=8.606-0.216X3+0.018X1,旱地中总氮淋洗损失量(Y4)估算模型为Y4=-12.106+0.041X2+0.035X1,其中,X1为施氮量,X2为降雨量,X3为土壤黏粒含量。由回归方程和标准化系数可知农田总氮径流损失主要受施氮量和降雨量的影响,其中,施氮量对水田和旱地中总氮径流损失的影响最大。农田总氮淋洗损失主要受土壤黏粒含量、施氮量和降雨量的影响,其中,土壤黏粒含量对水田中总氮淋洗损失量影响最大,降雨量对旱地中总氮淋洗损失量影响最大。

表1水田氮素损失多元回归模型的回归系数

Table1MultivariateregressionmodelcoefficientsofNlossesfrompaddyfield

模型名称模型参数非标准化系数标准误差标准系数t值显著性 淋洗常量8.6061.594—5.400<0.001 土壤黏粒含量-0.2160.043-0.556-5.067<0.001 施氮量0.0180.0040.5124.663<0.001 径流常量-0.9581.168—-0.8200.416 施氮量0.0270.0040.6426.778<0.001 降雨量0.0050.0020.3203.3710.001

“—”表示无此项。

表2旱地氮素损失多元回归模型的回归系数

Table2MultivariateregressionmodelcoefficientsofNlossesfromdryland

模型名称模型参数非标准化系数标准误差标准系数t值显著性 淋洗常量-12.1064.233—-2.8600.006 降雨量0.0410.0070.5605.669<0.001 施氮量0.0350.0090.3793.835<0.001 径流常量-12.6503.047—-4.1520.001 降雨量0.0410.0070.6376.316<0.001 施氮量0.0730.0120.5885.835<0.001

“—”表示无此项。

2.2 我国种植业面源氮发生量核算

收集全国尺度水田和旱地中施氮量、黏粒含量和降雨量数据,应用上述构建的模型,估算我国种植业面源氮发生量。结果表明旱地总氮径流损失量为0.76 Tg,水田总氮径流损失量为0.20 Tg, 2011年全国总氮径流损失总量为0.96 Tg,占总氮投入量的6.0%。旱地总氮淋洗损失量为0.87 Tg,水田总氮淋洗损失量为0.14 Tg, 2011年全国总氮淋洗损失总量为1.01 Tg,占总氮投入量的6.3%。我国31个省、自治区、直辖市种植业面源氮发生量核算结果见图3。水田氮素损失量较高的省份有广东、广西、湖南、湖北、江苏和江西,而旱地损失量较高区域位于我国的山东、河南、安徽、江苏、湖北、河北、四川等地。

图3 我国31个省(自治区、直辖市)水田和旱地的径流和淋洗估算

3 讨论

我国化肥使用量一直处于上升态势,尤其是集约化农区,化肥使用强度平均达400 kg·hm-2,远超过发达国家为防止水体污染而设置的225 kg·hm-2的安全标准。目前,我国肥料平均利用率仅约为30%,大多数养分随径流、渗漏等途径损失,这不仅增加生产成本,浪费资源,更重要的是造成环境污染。据估算,2007年我国农业源总氮流失量为187.2万t,其中种植业源约为133.3万t,在高排放情景下,2030年种植业约排放99万t[16]。因此,种植业尤其是集约化种植面源污染形势不容乐观。随着种植结构的调整,集约化种植业面积仍将扩大,化肥污染将日趋严重。准确核算我国种植业面源氮发生量是实现国家“十三五”规划约束性指标的基础。

当前,在全国尺度开展种植业面源氮发生量估算的研究还不多,大多以氮肥施用量为基础,乘以一定的损失系数获得。如朱兆良经过长期的定位试验,估算种植业多年平均径流损失系数约为氮肥用量的5%,淋洗损失系数为氮肥用量的3%[13],根据全国化肥投入总量,估算全国种植业面源氮损失量为1.7 Tg。为提高估算精度,胡玉婷等[12]将种植业进一步分为稻田和旱地,根据全国的统计数据,分别确定旱地和稻田的径流和淋洗损失系数,并根据各省级氮肥投入量,估算得到全国省级尺度面源氮损失量分布,得到全国种植业面源氮总损失量为3.33 Tg。2007年开展了第一次全国污染源普查,全国共设置地下淋溶和地表径流定位监测试验点372个。其中,地下淋溶试验点140个,包括大田试验点47个,保护地菜田40个,露地菜田31个,果园22个;地表径流试验点232个,包括水田试验点46个,水旱轮作51个,旱地平原57个,坡耕地78个。通过此次普查得到我国主要种植业的径流和淋洗损失系数,并估算全国县级尺度面源氮素损失量分布,得到全国种植业面源氮总损失量为0.71 Tg。各方法的主要差别是土地利用方式区分粗细程度不同,但是都只考虑了氮肥用量。因此,在估算上不可避免地存在很大不确定性。笔者除考虑氮肥用量以外,还增加了第2个因子,如降雨量或土壤黏粒含量。如表3所示,与单变量氮肥用量相比,增加第2个因子之后,水田径流氮损失解释度由46.7%增加到56.7%,旱地径流氮损失解释度由46.4%增加到80.8%,水田淋洗氮损失解释度由37.1%增加到63.0%,旱地淋洗氮损失解释度由40.3%增加到54.1%,表明模型准确性得到提高,区域尺度面源氮发生量核算的不确定性则大大降低。

表3考虑不同影响因素的氮素损失模型结果比较

Table3ComparisonofNlossmodelswhendifferentfactorsincluded

模型因子rR2调整R2标准估计的误差 水田淋洗氮肥用量0.6090.3710.3522.538 304 氮肥用量+黏粒含量0.7940.6300.6071.977 097 旱地淋洗氮肥用量0.6350.4030.39111.565 929 氮肥用量+降雨量0.7350.5410.52210.246 515 水田径流氮肥用量0.6830.4670.4563.238 356 氮肥用量+降雨量0.7530.5670.5492.947 239 旱地径流氮肥用量0.6810.4640.4388.900 207 氮肥用量+降雨量0.8990.8080.7885.465 034

r为相关系数,R2为决定系数。

笔者研究结果显示2011年我国种植业面源氮发生量约为1.97 Tg,占氮肥投入量的12.3%。面源氮发生的主要区域位于长江中下游、西南丘陵、山东半岛和华北平原区,该结果与第一次全国污染源普查结果及其他估算结果相一致[16]。这些区域一般为农业历史开发悠久、种植业发达、化肥施用量和流失量较大的地区。其中,山东、河南、河北均为我国重要的农业区。山东省粮食产量居全国第2位,是我国重要的蔬菜、温带水果主产区和北方重要产棉基地;河北省粮、棉、油产量稳居全国前列,是全国3大小麦集中产区之一和重要的产棉基地,蔬菜种植发展迅猛;河南省为我国粮油、棉花和烤烟的主要产区之一。2011年河南、江苏、山东和河北化肥施用量居于全国前4位,这4个省农用氮肥施用折纯量分别为245.28万、173.64万、158.61万和152.42万t。西南地区化肥施用量高,如四川和云南2011年农用氮肥施用折纯量分别为128.78和103.24万t,加之降雨比较集中,坡地较多,容易造成氮肥流失。

4 结论

该研究收集了大量试验数据,根据影响氮素径流和淋洗损失的气候、地理、作物管理和土壤等因子,应用逐步回归方法,提取了氮肥用量、降雨量和土壤黏粒含量3个最重要的影响因素,建立氮素损失发生量核算方法。基于2011年统计年鉴、气象年鉴和土壤属性数据库,应用上述构建的模型,估算我国种植业面源氮发生量。 结果表明,2011年全国总氮径流损失总量为0.96 Tg,占总氮投入量的6.0%,全国总氮淋洗损失总量为1.01 Tg,占总氮投入量的6.3%。水田氮素损失量较高的地区主要位于长江流域,而旱地氮素损失量较高的区域位于我国山东半岛、华北平原和西南丘陵地区。与仅考虑氮肥用量的输出系数模型相比,该研究通过增加一个影响因子大大提高了估算的准确性,可为农业面源污染的控制和管理决策提供参考。

猜你喜欢
损失量旱地面源
基于国家粮食安全下的农业面源污染综合防治体系思考
旱地麦田夏闲期复种绿肥 保持土壤的可持续生产力
开采对矿区天然森林生态系统碳损失量的影响
农业面源污染的危害与治理
澄江市农业面源污染成因及对策
煤层瓦斯损失量计算方法探讨及其实践*
旱地冰球运动开展价值的研究
关于石嘴山矿区煤层气含量测试中损失量计算的探讨
农业面源污染防控技术体系研究
基于Pareto前沿的塔河油田高含氮天然气分离过程研究