朱文岐,邓晓怡,魏江存,朱文润
4’-三氟甲基-3,2’-吡咯烷基双螺环氧化吲哚化合物的合成与表征
朱文岐1,邓晓怡2,魏江存3,*朱文润3
(1.深圳市美普达环保设备有限公司,广东,深圳 518122; 2.广东药科大学药学院,广东,广州 510006; 3.广西中医药大学药学院,广西,南宁 530200)
对具有高生物活性的4’-三氟甲基-3,2’-吡咯烷基双螺环氧化吲哚及其衍生物进行了探索合成。在有机小分子碱三乙胺催化作用下,由3-异硫氰基氧化吲哚与3-三氟亚乙基羟吲哚在二氯甲烷(DCM)溶剂中于室温下发生3+2环合加成反应,高产率(85%~96%)获得4’-三氟甲基-3,2’-吡咯烷基双螺环氧化吲哚。通过核磁共振氢谱和碳谱、高分辨质谱等手段对已合成的产物进行表征。这一合成方法具有简单,高效,环保的特点。
3,2’-吡咯烷基双螺环氧化吲哚;3+2环合加成;生物活性;氟化学
螺环氧吲哚骨架广泛存在于天然产物和生物活性相关化合物中[1-8]。在各种螺环核心中,吡咯烷基螺环氧吲哚由于其具有许多重要的生物学性质而成为最具吸引力的合成靶标[9-13,16-20]。
Scheme 1 具有生物活性的3,2'-吡咯烷基双螺环吲哚类化合物
此外,3,2'-吡咯烷基-双螺环吲哚类化合物已被证明具有很好的生物活性,如抗肿瘤、抗菌和抗结核活性(Scheme1)[21]。然而,与构建3,3'-吡咯烷基螺环氧吲哚对映选择性合成的大量报道相比,吡咯烷基螺环氧吲哚的研究相对较少,特别是3,2'-吡咯烷基双螺环吲哚的合成相当少[22-23]。因此,如何直接制备3,2'-吡咯烷基双螺环吲哚的新的合成方法,仍然是一个迫切的且重要的目标。
鉴于 CF3的引入和吡咯烷基双螺氧基吲哚骨架的意义,在这里我们开发了一种新的、高效率的CF3基团引入到3,2'-吡咯烷基双螺代吲哚结构。迈克尔/环化级联反应已经成为快速构建光学活性吡咯烷基化合物的有力工具。据我们所知,迄今为止还没有关于在吡咯烷的C3位置中合成这种CF3的报道。此外,3-异硫氰基氧化吲哚已经被证明是高度稳定且多用途的迈克尔供体[22,24-30]。同时,迄今为止,仅有两例3-三氟亚乙基羟吲哚被用作Friedel-Crafts 烷基化/内酯化反应[14-15]和Diels-Alder环加成反应[31]。最近,我们开发了一种新型的靛红衍生的含CF3的偶氮甲碱叶立德与亚甲基吲哚啉酮之间的1,3-偶极环加成反应,从而得到3,3'-吡咯烷基-二吡咯并吲 哚[12]。我们设想通过3-异硫氰基羟吲哚1与靛红衍生的3-三氟亚乙基羟吲哚2之间的Michael/环化级联反应可以构建含CF3的二螺氧吲哚骨架3。
本研究尝试利用 3-异硫氰基氧化吲哚和靛红衍生的3-三氟亚乙基羟吲哚进行3+2环合加成合成具有高生物活性的3,2'-吡咯烷基-双螺环吲哚及其衍生物同时将CF3基团引入其中。采用环保的有机小分子碱三乙胺作为催化剂,温和的反应条件,快速的反应时间(5 min)收获了高达85%~96%的产率(Scheme2)。同时合成了未见报道的化合物5个。
Scheme 2 反应路线设计
二氯甲烷(无水处理)、甲苯、四氢呋喃(无水处理)、三乙胺、靛红、碘甲烷、盐酸羟胺、对甲苯磺酸一水合物、氰化钠、吲哚啉-2-酮、-BuOK、DMAP等为商业购买,均为分析纯。
EYELA N-1001DW 旋转蒸发仪、2X2S-4真空泵、Bruker AVANCE III 400 MHz 型核磁共振仪、ThermoMAT 95XP 高分辨质谱仪、EYELA PSL-1400 磁力搅拌低温恒温槽。核磁共振测试溶剂CDCl3,内标TMS。
1.2.1 化合物3a-3e的合成
分别称取3-异硫氰基氧化吲哚(1a)(1 mmol,0.204 g)和3-三氟亚乙基羟吲哚(1.1 mmol,0.250 g)于25 mL圆底烧瓶中,加入二氯甲烷(无水处理)5 mL 溶解后滴加10 mol%(0.1 mmol,0.010 g)的三乙胺。室温下反应5 min结束,薄层色谱监测反应进程,展开剂为石油醚(沸点60~90 ℃):乙酸乙酯= 2:1。反应结束后直接在反应液中加入适量柱色谱硅胶,旋干,干法上柱,梯度洗脱,以石油醚:乙酸乙酯= 5:1和3:1为洗脱剂,得产物3a。
同上述反应步骤,得产物3b-3e。
3a:产率90%,白色固体,mp = 167.6~168.9 ℃。1H NMR (400 MHz, CDCl3) δ 8.35 (d,= 7.7 Hz, 1H), 8.31 (s, 1H), 7.93 (d,= 8.2 Hz, 1H), 7.64 (d,= 7.4 Hz, 1H), 7.42 (q,= 7.8 Hz, 2H), 7.29-7.23 (m, 1H), 7.19 (t,= 7.6 Hz, 1H), 6.90 (d,= 7.8 Hz, 1H), 4.48 (q,= 9.1 Hz, 1H), 3.26 (s, 3H), 1.65 (s, 9H);13C NMR (100 MHz, CDCl3) δ 200.9, 173.3, 171.9, 148.6, 143.3, 140.8, 131.9, 130.3, 127.9, 126.0, 125.4, 124.8, 124.5, 124.4, 123.2 (q,J= 279.8 Hz), 115.2, 109.3, 85.4, 69.1, 68.0, 58.5 (q,J= 28.8 Hz), 28.2, 27.3;19F NMR (376 MHz, CDCl3) δ -62.84.HRMS (ESI):[M+Na]+calcd. for [C25H22F3N3NaO4S]+:540.1175, found:540.1172.
3b:产率96%,白色固体,Mp.176.5~177.9℃。1H NMR (400 MHz, CDCl3) δ 8.34 (d,= 7.7 Hz, 1H), 8.29 (s, 1H), 7.93 (d,= 8.2 Hz, 1H), 7.45 (s, 1H), 7.41 (t,= 7.9 Hz, 1H), 7.25 – 7.18 (m, 2H), 6.78 (d,= 7.9 Hz, 1H), 4.47 (q,= 9.1 Hz, 1H), 3.24 (s, 3H), 2.34 (s, 3H), 1.66 (s, 9H);13C NMR (100 MHz, CDCl3) δ 200.9, 173.4, 171.9, 148.6, 140.9, 140.8, 134.5, 132.1, 130.2, 128.0, 126.0, 125.3, 125.1, 124.8, 123.2 (q,J= 279.2 Hz), 115.2, 109.1, 85.4, 69.24, 68.0, 58.5 (q,J= 28.6 Hz), 28.2, 27.3, 21.1;19F NMR (376 MHz, CDCl3) δ -62.80. HRMS (ESI):[M+Na]+calcd. for [C26H24F3N3NaO4S]+: 554.1332, found: 554.1330.
3c:产率85%,白色固体,Mp.178.6~180.2℃。1H NMR (400 MHz, CDCl3) δ 8.49 (s, 1H), 8.32 (d,= 7.7 Hz, 1H), 7.93 (d,= 8.2 Hz, 1H), 7.42 (dd,= 11.6, 4.5 Hz, 2H), 7.26 (t,= 7.6 Hz, 1H), 7.14 (td,= 8.6, 2.3 Hz, 1H), 6.83 (dd,= 8.5, 3.8 Hz, 1H), 4.42 (q,= 9.1 Hz, 1H), 3.24 (s, 3H), 1.65 (s, 9H);13C NMR (100 MHz, CDCl3) δ 201.0, 173.2, 171.7, 161.2, 158.7, 148.5, 140.8, 139.3, 130.4, 127.9, 127.4 (d,J= 7.7 Hz), 125.4, 124.6, 123.1 (q,J= 279.7 Hz), 118.4 (d,J= 23.5 Hz), 112.7 (d,J= 25.5 Hz), 110.2 (d,J= 7.9 Hz), 85.5, 69.1, 67.9, 58.5 (q,J= 28.9 Hz), 28.2, 27.4;19F NMR (376 MHz, CDCl3) δ -62.76, -116.83.HRMS (ESI):[M+Na]+calcd. for [C25H21F4N3NaO4S]+: 558.1081, found: 558.1074.
3d:产率90%,白色固体,Mp.176.2~178.1℃。1H NMR (400 MHz, CDCl3) δ 8.43 (s, 1H), 8.17 (s, 1H), 7.79 (d,= 8.3 Hz, 1H), 7.64 (d,= 7.4 Hz, 1H), 7.42 (t,= 7.5 Hz, 1H), 7.23-7.15 (m, 2H), 6.88 (d,= 7.8 Hz, 1H), 4.47 (q,= 9.2 Hz, 1H), 3.26 (s, 3H), 2.41 (s, 3H), 1.64 (s, 9H);13C NMR (100 MHz, CDCl3) δ 201.0, 173.5, 171.7, 148.6, 143.3, 138.3, 135.0, 131.8, 130.8, 128.4, 126.0, 124.6, 124.4, 124.4, 123.2 (q,J= 279.3 Hz), 114.9, 109.3, 85.2, 69.1, 68.1, 58.5 (q,J= 28.8 Hz), 28.2, 27.2, 21.5;19F NMR (376 MHz, CDCl3) δ -62.76.HRMS (ESI):[M+Na]+calcd. for [C26H24F3N3NaO4S]+: 554.1332, found: 554.1321.
3e:产率93%,白色固体,Mp.173.6~174.8℃。1H NMR (400 MHz, CDCl3) δ 8.30 (s, 1H), 8.22 (d,= 8.4 Hz, 1H), 7.92 (dd,= 9.0, 4.6 Hz, 1H), 7.62 (d,= 7.5 Hz, 1H), 7.44 (t,= 7.8 Hz, 1H), 7.19 (t,= 7.6 Hz, 1H), 7.11 (td,= 8.8, 2.6 Hz, 1H), 6.91 (d,= 7.8 Hz, 1H), 4.47 (q,= 9.1 Hz, 1H), 3.28 (s, 3H), 1.64 (s, 9H);13C NMR (100 MHz, CDCl3) δ 200.1, 172.9, 171.9, 161.4, 159.0, 148.5, 143.4, 136.9, 132.0, 126.4 (d,J= 9.7 Hz), 125.5, 124.4 (d,J= 6.3 Hz), 123.1 (q,= 276.2 Hz), 117.1 (d,J= 23.2 Hz), 116.5 (d,J= 7.9 Hz), 115.6 (d,J= 26.3 Hz), 109.4, 85.6, 69.1, 67.9, 58.2 (q,J= 29.2 Hz), 28.2, 27.3;19F NMR (376 MHz, CDCl3) δ -62.78, -115.84. HRMS (ESI):[M+Na]+calcd. for [C25H21F4N3NaO4S]+: 558.1081, found: 558.1069.
利用最近报道出的新型三氟甲基砌块3-三氟亚乙基羟吲哚和3-异硫氰基氧化吲哚类化合物在温和的条件下高效、快速的合成了化合物3a-3e,并收获了高达85%~96%的产率,且3-三氟亚乙基羟吲哚和3-异硫氰基氧化吲哚两个底物芳环上5位吸电子取代基(5-F)或供电子取代基(5-Me)对反应结果影响较小。这一反应中催化剂三乙胺的当量可以低至 5 mol %的当量,反应溶剂二氯甲烷必须进行重蒸除水。
产物的后处理只需要简单的旋干即可,其反应体系比较干净,两个反应底物基本发应完全,在UV灯下通过薄层色谱监测反应体系中只剩下产物一个显色点其Rf值在0.6左右。
化合物3a-3e通过核磁共振氢谱、氟谱、碳谱以及高分辨质谱证实了其结构的正确性。其中核磁共振氟谱均出现了单峰,说明三氟甲基基团已经成功引入了目标化合物中,成功构建了4’-三氟甲基-3,2’-吡咯烷基双螺环氧化吲哚及其衍生物。
(1) 提出了一种合成4’-三氟甲基-3,2’-吡咯烷基双螺环氧化吲哚及其衍生物的新方法,即利用新报道的三氟甲基砌块3-三氟亚乙基羟吲哚和3-异硫氰基氧化吲哚类化合物在有机小分子碱三乙胺催化下于室温发生3+2环合加成反应获得。该反应过程操作简单安全,反应条件温和,反应产率高,反应时间极短,反应的原子经济性高,低反应催化剂当量。
(2) 本研究拓展合成了五个新型的含三氟甲基双螺环吲哚衍生物化合物,证明该反应具有较好的底物适应性,为4’-三氟甲基-3,2’-吡咯烷基双螺环氧化吲哚骨架的衍生物进一步的手性方法学研究奠定基础,同时为不对称研究该类骨架衍生物提供了消旋体合成的方法学基础。
(3) 成功地在药物分子中具有特殊用处的三氟甲基基团方便、快捷、高效地引入到3,2’-吡咯烷基双螺环氧化吲哚骨架中。为更好地发现新药提供更多的先导化合物,同时为医药、农药领域增添新的元素。
然而,尽管收获了预期目标产物,但依然有许多值得进一步研究的方面。例如对于3,2’-吡咯烷基双螺环氧化吲哚的方法学研究以及不对称方法学研究,进一步拓展该类骨架衍生物的合成以及不对称合成。这些都将更加完善对于螺环氧化吲哚骨架衍生物的研究。
[1] Klaus M,Christoph F,François D. Fluorine in pharmaceuticals: Looking beyond intuition[J]. Science, 2007, 317(5846): 1881-1886.
[2] Badillo J J, Hanhan N V, Franz A K. Enantioselective synthesis of substituted oxindoles and spirooxindoles with applications in drug discovery[J]. Curr. Opin. Drug. Disc., 2010, 13(21): 758-776.
[3] Yu B, Yu D Q, Liu H M. Spirooxindoles: Promising scaffolds for anticancer agents[J]. Eur. J. Med. Chem., 2015, 97(1): 673-698.
[4] Rottmann M. Spiroindolones, a potent compound class for the treatment of malaria[J]. Science., 2010, 329(5996): 1175-1180.
[5] 朱文润,邓晓怡,魏江存,等. 3-二氢吡咯烷基螺环氧化吲哚及其衍生物的合成与表征[J].井冈山大学学报:自然科学版,2018,39(1):32-36..
[6] 李术艳,沈淑君. 2-烯-1,4-二酮及其衍物的合成及晶体结构[J]. 井冈山大学学报:自然科学版, 2017, 38(2): 35-39.
[7] Shangary S, Qin D, McEachern D, et al. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition[J]. Proc. Natl. Acad. Sci. USA., 2008,105 (10): 3933-3938.
[8] Zhao Y, Liu L, Sun W, et al. Diastereomeric spirooxindoles as highly potent and efficacious MDM2 inhibitors[J]. J. Am. Chem. Soc., 2013, 135(19): 7223-7234.
[9] Sun Q T,Li X Y,Su J H,et al. The squaramide-catalyzed 1,3-Dipolar cycloaddition of nitroalkenes with N-2,2,2-Trifluoroethylisatin ketimines : An approach for the Synthesis of 5’-Trifluoromethyl-spiro[pyrrolidin-3,2’-oxindoles][J]. Advanced Synthesis & Catalysis, 2015, 357(14): 3187-3196.
[10] Ma M X, Zhu Y Y, Sun Q T, et al. The asymmetric synthesis of CF3-containing spiro[pyrrolidin-3,2’- oxindole] through the organo- catalytic 1,3-dipolar cycloaddition reaction[J]. Chem. Commun., 2015, 51(42): 8789-8792.
[11] 龙先文,黄伟杰,朱文润,等. 有机小分子催化构建氧化吲哚C(3)位螺环化合物的研究进展[J]. 化学试剂, 2017, (02): 148-156+174.
[12] Huang W J, Chen C, Lin N, et al. Asymmetric synthesis of trifluoromethyl-substituted 3,3’- pyrrolidinyl-dispirooxindoles through organocatalytic 1,3-dipolar cycloaddition reactions[J]. Org. Chem. Front., 2017, 4(3): 472-482.
[13] Zhao J Q, Wu Z J, Zhou M Q, et al. Zn-catalyzed diastereo- and enantioselective cascade reaction of 3-Isothiocyanato oxindoles and 3-Nitroindoles: stereocontrolled syntheses of polycyclic Spiroo- xindoles[J]. Org. Lett., 2015, 17(20): 5020-5023.
[14] Zhao Y L, Lou Q X, Wang L S, et al. organocatalytic friedel-crafts alkylation/ lactonization reaction of naphthols with 3-Trifluoroethylidene oxindoles: The asymmetric Synthesis of Dihydrocoumarins[J]. Angew. Chem. Int. Ed., 2017, 56(1): 338-342.
[15] Xiao M J, Xu D F, Liang W H, et al. Organocatalytic enantioselective friedel-crafts alkylation/ lactonization reaction of hydroxyindoles with methylene oxindoles[J]. Adv. Synth. Catal., 2018, 360(5), 917-924.
[16] Atsuko A,Takayoshi A. Catalytic asymmetric exo’- selective [3+2] cycloaddition for constructing stereochemically diversified spiro[pyrrolidin-3,3’- oxindole]s [J]. Chem. Eur. J. 2012, 18(27): 8278-8282.
[17] Wang L,Shi X M,Dong W P,et al. Efficient construction of highly function alized spiro [γ-butyrolactone-pyrrolidin-3,3’-oxindole] tricyclic skeletons via an organocatalytic 1,3-dipolar cycloaddition[J]. Chem. Commun., 2013, 49(33): 3458-3460.
[18] Yang W L, Liu Y Z, Luo S,et al. The copper-catalyzed asymmetric construction of a dispiropyrrolidine skeleton via 1,3-dipolar cycloaddition of azomethine ylides to a-alkylidene succinimides[J]. Chem. Commun., 2015, 51(44): 9212-9215.
[19] Wang Y M,Zhang H H,Li C,et al. Catalytic asymmetric chemoselective 1,3-dipolar cycloadditions of an azomethine ylide with isatin-derived imines: diastereo- and enantioselective construction of a spiro[imidazolidine-2,3’-oxindole] framework[J]. Chem. Commun., 2016, 52(9): 1804-1807.
[20] Takayoshi A, Hiroki O, Atsuko A, et al. Py bidine- Cu(OTf)2-Catalyzed asymmetric [3+2] cycloaddition with imino esters : Harmony of Cu–Lewis acid and imidazolidine-nh hydrogen bonding in concerto catalysis[J]. Angew. Chem. Int. Ed. 2015, 54(5): 1595 -1599.
[21] Arun Y, Bhaskar G, Balachandran C, et al. Facile one-pot synthesis of novel dispirooxindole-pyrrolidine derivatives and their antimicrobial and anticancer activity against A549 human lung adenocarcinoma cancer cell line[J]. Bioorganic & Medicinal Chemistry Letters., 2013, 23(6):1839-1845.
[22] Satavisha K, Santanu M. Catalytic enantioselective cascade Michael/cyclization reaction of 3-isothiocyanato oxindoles with exocyclic α,β-unsaturated ketones en route to 3,2′-pyrrolidinyl bispirooxindoles[J]. Org. Biomol. Chem., 2016, 14(43): 10175-10179.
[23] Wu C L,Jing L H,Qin D B,et al. Organocatalytic asymmetric synthesis of trans-configured trispirooxindoles through a cascade Michael- cyclization reaction[J]. Tetrahedron Lett., 2016, 57(26): 2857-2860.
[24] Jiang X X, Cao Y M, Wang Y Q, et al. A unique approach to the concise synthesis of highly optically active spirooxazolines and the discovery of a more potent oxindole-type phytoalexin analogue [J]. J. Am. Chem. Soc. 2010, 132(43): 15328-15333.
[25] Chen W B, Wu Z J, Hu J, et al. Organocatalytic direct asymmetric aldol reactions of 3-isothiocyanato oxindoles to ketones: stereocontrolled synthesis of spirooxindoles bearing highly congested contiguous tetrasubstituted stereocenters [J].Org.Lett.,2011,13(9): 2472-2475.
[26] Han Y Y, Chen W B, Han W Y, et al. Highly efficient and stereoselective construction of dispiro- [oxazolidine-2-thione] bisoxindoles and dispiro [imidazolidine-2-thione]bisoxindoles[J]. Org. Lett., 2012, 14(2):490-493.
[27] Satavisha K, Santanu M. Catalytic aldol-cyclization cascade of 3-isothiocyanato oxindoles with α- ketophosphonates for the enantioselective synthesis of β-Amino-α-hydroxyphosphonates [J]. Org. Lett. 2015, 17(21): 5508-5511.
[28] Chen W B, Han W Y, Han Y Y, et al. Highly efficient synthesis of spiro[oxazolidine-2-thione-oxindoles] with 3-isothiocyanato oxindoles and aldehydes via an organocatalytic cascade aldol-cyclization reaction [J]. Tetrahedron., 2013, 69(26):5281-5286.
[29] Shota K, Motomu K, Shigeki M. Catalytic asymmetric synthesis of spirooxindoles via addition of isothiocyanato oxindoles to aldehydes under dinuclear nickel schiff base catalysis [J]. Chem. Asian J., 2013, 8(8): 1768-1771.
[30] Shota K, Tatsuhiko Y, Masakatsu S, et al. Catalytic asymmetric synthesis of spirooxindoles by a mannich-type reaction of isothiocyanato oxindoles [J]. Angew. Chem. Int. Ed., 2012, 51(28): 7007 -7010.
[31] Yuan X,Zhag S J, Du W, et al. Asymmetric diels–alder cycloadditions of trifluoromethylated dienophiles under trienamine catalysis[J]. Chem.-Eur. J., 2016, 22(31): 11048-11052.
Synthesis and Characterization of 4'-trifluoromethyl- substituted 3,3'-pyrrolidinyl-dispirooxindoles and Its Derivatives
ZHU Wen-qi1, DENG Xiao-yi2, WEI Jiang-cun3,*ZHU Wen-run3
(1. Shenzhen Mepod Environmental Protection Equipment Co. Ltd, Shenzhen, Guangdong 518122,China; 2. College of Pharmacy, Guangdong Pharmaceutical University,Guangzhou, Guangdong 510006,China; 3. College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200,China)
The synthesis of 4'-trifluoromethyl-substituted 3,3'-pyrrolidinyl-dispirooxindoles and its derivatives with high biological activity was explored. Under the catalysis of organic triethylamine, 3-isothiocyanato oxindoles reacted with 3-trifluoroethylidene oxindoles in dichloromethane (DCM) at room temperature, A 3+2 cyclization addition reaction was carried out to obtain a high yield (85%~96%) of 4'-trifluoromethyl-substituted 3,3'-pyrrolidinyl-dispirooxindoles. The synthesized products were characterized by1H-NMR,19F-NMR,13C-NMR and high-resolution mass spectrometry. This synthetic method is simple, efficient and environmentally friendly.
3,3'-pyrrolidinyl-dispirooxindoles; 3+2 cyclization addition; biological activity; fluorochemistry
1674-8085(2018)03-0019-05
R914.4
A
10.3969/j.issn.1674-8085.2018.03.005
2018-01-09;
2018-03-07
国家自然科学基金项目(81260673);广西中医药大学科研创新项目(YJS201625)
朱文岐(1994-),男,江西瑞金人,技术员,主要从事药学信息技术研究(E-mail:1844029636@qq.com);
邓晓怡(1995-),女,广东广州人,广东药科大学药剂学专业2014级本科生(E-mail:1500718043@qq.com);
魏江存(1989-),男,广西贺州人,药师,硕士,主要从事分析化学方面研究(E-mail:960837714@qq.com);
*朱文润(1993-),男,江西瑞金人,药师,硕士,主要从事药物分子设计与手性药物的合成研究(E-mail:2278662336@qq.com).