梁晋刚,焦 悦,刘鹏程,张秀杰
(农业农村部科技发展中心,北京 100176)
从1994年到2016年,全世界40个国家共有26种转基因作物的392个转化体被批准可用作粮食和/或饲料,以及释放到环境中,主要集中在玉米、棉花、马铃薯、油菜和大豆等作物上[1]。转基因作物在给人类带来巨大经济效益和社会效益的同时,也可能会对生态环境造成潜在的风险。因此,转基因作物商业化种植之前都必须通过系统深入的环境安全性评价[2]。其中,转基因作物种植对土壤微生物带来的潜在生态风险是国内外研究的热点[3-4]。
评价转基因作物对土壤生态系统的影响时,可选取一些具有重要指示及生态功能的土壤微生物来开展研究[5-7]。丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)是一类广泛分布在土壤中、与寄主植物根系共生的真菌,可为寄主提供氮、磷、硫源和水分,并保护寄主免受病原体的侵害,作为回馈,寄主植物则将光合作用的产物以脂肪酸的形式传递给AMF[8]。AMF对于寄主植物的生理变化比独立生存的土壤真菌更加敏感,其侵染状况、孢子活性及菌丝量随着作物类型、农田管理措施和天气条件等因素的变化而变化,其中,寄主植物类型是最主要的决定因素[9-10]。有猜测认为,抗虫或耐除草剂转基因作物不能形成有效的菌根共生体,转基因作物与AMF间的共生关系已成为土壤生态学关注的问题之一[11-13]。有研究表明,转基因作物会延缓AMF的侵染、减少共生菌丝生长、影响附着胞的形成[14-15]。
从2001年起,分类学上已将AMF归属到球囊菌门(Glomeromycota),下设1纲4目7科9属[16]。2013年,Redecker等[17]对AMF的分类系统做了统一的划分,形成了1纲4目11科25属的最新分类系统。
转基因作物对AMF 影响的研究主要集中在大豆、玉米和棉花等作物上,主要评价转基因作物对AMF侵染率、孢子数量和群落结构与多样性等方面的影响。目前,国内外已有转基因作物对AMF影响的研究报道,本文基于这些报道综述了主要转基因作物对AMF的影响和作用机制,并认为可将丛枝菌根真菌作为评价转基因作物对土壤生态系统影响的指示生物。
Liang等[18]研究了转基因高蛋氨酸大豆ZD91对AMF群落结构的影响,发现AMF群落结构在转基因高蛋氨酸大豆和非转基因大豆间无显著性差异,且在已知范围内,影响AMF群落结构的主要因素是不同种植年限和作物生育期,而非转基因。
Powell等[19]通过温室试验发现,转cp4-epsps基因耐除草剂大豆在始荚期和始熟期对AMF侵染率无显著性影响。Vilvert等[20]在盛花期,收集了连续8 a免耕种植过转基因大豆的土壤,通过体视显微镜观察发现,抗咪唑啉酮除草剂的转基因大豆BRS245对AMF孢子浓度无显著性影响。
Colombo等[21]分别在30%和100%田间持水量的情况下研究发现,转Hahb-4基因抗旱玉米对AMF侵染率无影响,且在干旱的条件下,菌根共生率更高。
Cheeke等[22-26]通过盆栽试验发现,转基因抗虫玉米根系AMF的侵染率显著低于常规玉米,但田间试验进一步表明,Bt基因的导入并未影响玉米根系的AMF侵染率。Castaldini等[27]对转Cry1Ab基因玉米的研究发现,转基因品系Bt11、Bt176和非转基因玉米的根际真细菌群落间存在显著差异,而且转基因玉米品系Bt176根部定殖的Glomusmosseae显著减少。任禛等[10]研究了接种Glomusmosseae对Bt玉米与常规玉米生长的影响,发现接种处理对Bt玉米的生长促进作用强于常规玉米。钟旺等[28]分析了Bt玉米与常规玉米对接种AMF响应的异同,发现Bt基因的导入促进了AMF对玉米的侵染,但对玉米中磷转运基因的表达和磷的吸收利用没有影响。Verbruggen等[29]同时运用454焦磷酸测序技术和末端限制性片段长度多样性(T-RFLP)技术分析了转Cry1Ab基因抗虫玉米对AMF群落结构的影响,发现转基因抗虫玉米对AMF群落结构无显著性影响,且发现不同地点和时间点是造成AMF群落结构变化的主要因素。Zeng等[30]在温室大棚中连续5次种植转Bt基因抗虫玉米,发现Cry1Ab蛋白对AMF群落无显著性影响。
Knox等[31]通过田间试验发现,转Cry1Ac/Cry2Ab基因棉花、转EPSPS基因棉花,以及转Cry1Ac/Cry2Ab/EPSPS基因棉花均对AMF侵染率无影响,且AMF侵染率在播种后3周迅速增加,其侵染根系长度比率最终达到70%~80%。刘红梅等[32]研究了接种苏格兰球囊霉(Glomuscaledonium)对转双价(Bt+CpTI)基因抗虫棉和常规棉品种石远321侵染率的影响,结果表明,转双价棉与同源常规棉之间根系AMF侵染率无显著差异。尹念辅等[33]采用盆栽试验的方法,研究了转Bt基因棉和接种Glomusmosseae对植物根际土壤中营养物质含量,以及土壤酶活性的影响,发现Bt棉会降低AMF对植物根际环境的影响。
Meyer等[34]通过3 a田间试验发现,抗白粉病转pm3b基因小麦对AMF侵染率无显著性影响。Kahlon等[35]通过田间试验发现,抗真菌病害的转基因豌豆对AMF侵染率无影响。几丁质酶和β-1,3-葡聚糖酶等病程相关蛋白的表达可增强植物对病原真菌的抗病性。种植于砂土和黏土混合灭菌土中的产几丁质酶转基因烟草品系不影响Glomusmosseae定殖的时间进程和最终水平,而产β-1,3-葡聚糖酶转基因烟草品系却延缓了Glomusmosseae的定殖[36-37]。小麦叶锈病是由叶锈菌(Pucciniatriticina)侵染所引起的真菌性气传病害,是小麦锈病中分布最广、发生最普遍的一种病害。Kaur等[38]发现转MtDef4.2基因抗叶锈病小麦对Rhizophagusirregularis的侵染无影响。
刘平等[39]发现,将百脉根的固氮共生相关基因POLLUX和NFR1-NFR5转入野生型日本晴水稻中,对AMF的前期侵染起到了不同程度的促进作用。Shrawat等[40]在水稻的根中特异性表达大麦来源的丙氨酸转氨酶,转基因水稻的氮代谢能力显著增强。营养效率增加的转基因作物可减少对AMF的依赖,因而可能会改变AMF群落结构,并进而影响它们在土壤中的作用。
转基因作物对土壤生态系统的影响主要有4种方式:1)直接影响,如外源基因表达蛋白对非靶标生物的影响;2)间接影响,如通过营养相互作用的影响;3)作物的代谢活动和根系分泌物非预期变化带来的影响;4)由种植转基因作物所带来的农事操作变化引发的影响[41]。目前,评价转基因作物对土壤微生物及其生化过程的影响仍是一件耗时耗力的工作,因此评价时有必要选取一些具有代表性和敏感性的特定土壤微生物进行分析[5,42]。AMF从孢子萌发,到侵染根系和共生发育,以及产孢等主要过程都可能受到来自根外或者根内表达的外源蛋白的影响[43]。转基因作物和AMF间的相互作用应被密切监控,特别是那些主要依赖健康土壤微生物来维持植物健康和营养的低投入农田系统更应被关注[13]。
作物生长阶段、试验地点、土壤类型、季节和不同作物品种等因素已被用来研究转基因作物对AMF的影响,且被证实这些因素是影响AMF变化的主要因素而非转基因[18]。另外,Liu[5]也证实修饰基因在根部的表达水平、根系分泌物组成、外源蛋白在土壤中的存留时间、转基因作物非预期效应等因素,是转基因作物影响AMF的潜在决定因素。目前,关于转基因作物对AMF影响的研究还相对较少,且针对某一具体转基因作物对环境的影响,应当采取个案分析的原则,具体问题具体分析[9,44]。目前,关于转基因作物对AMF侵染率、丰富度和群落结构影响的研究中,有55%的研究为中性结果,36%的研究表明有消极影响,9%的研究表明有积极影响[45-58]。
土壤生态系统中的许多因素彼此间相互作用和相互依赖,因此需要对生物多样性及其生化过程开展多维度研究,以综合考评转基因作物对土壤生态系统的影响。现有的转基因作物对土壤生态系统影响的研究大多数仅考虑了在一个地点、一个生长季节的影响,多地点且长期种植的影响仍须进一步监控[13]。另外,运用PCR技术扩增真菌基因组中的18S rDNA或ITS序列已经普遍应用于探讨微生物的多样性、鉴定微生物的种类,以及系统发育关系等领域,LSU rRNA基因和SSU rRNA基因已被用来研究抗虫转基因玉米对AMF群落结构的影响[29]。作者团队前期也利用扩增SSU rRNA基因的方法分析了转基因高蛋氨酸大豆ZD91在2 a时间内不同作物生育期对AMF的影响。该方法克服了现有技术检测通量低、规模小、对不可培养微生物的覆盖度低等不足,为不同基因型作物,包括转基因作物及其受体品种对AMF影响的准确评估提供了一种新方法。