李书坛 黄纯兰
[摘要] 目的 研究BMP-2联合人骨髓间充质干细胞(MSC)造血干细胞(HSC)体外增殖的影响。 方法 培养MSC至第三代,磁珠分选仪分选HSC,并用流式细胞术鉴定MSC与HSC。将获得的MSC与HSC利用Transwell非接触共培养,100 ng/mL的骨形态发生蛋白(BMP-2)干预,即实验分四组:HSC组、HSC+BMP2组、HSC+MSC组、HSC+MSC+BMP2组。培养3 d后比较不同培养条件下HSC计数、RNA浓度的不同,并通过实时荧光定量PCR法及免疫荧光方法检测HSC的Ki67的mRNA及蛋白的表达。 结果 HSC的计数、总RNA含量、Ki67的表达在HSC+BMP2组高于HSC组、HSC+MSC组高于HSC组、HSC+MSC+BMP2组高于HSC+MSC组(P < 0.05)。 结论 MSC协同BMP-2蛋白可促进HSC的增殖。
[关键词] 造血干细胞;间充质干细胞;BMP-2;增殖
[中图分类号] R331.2 [文献标识码] A [文章编号] 1673-7210(2018)04(c)-0004-05
The effect of bone marrow mesenchymal stem cell synergistic BMP-2 in the proliferation of hematopoietic stem cell
LI Shutan HUANG Chunlan
Department of Hematology, the Affiliated Hospital of Southwestern Medical University, Sichuan Province, Luzhou 646000, China
[Abstract] Objective To explore the proliferation effect of bone morphogenetic protein (BMP)-2 on hematopoietic stem cell (HSC) cocultured with mesenchymal stem cell (MSC). Methods MSCs were expanded to the third passage (P3) in the plastic dish; CD34+ cells were sorted by MACS Miltenyi Biotec. MSCs(P3) and HSCs were identified by FCM separately, and then MSC (P3) and HSC were co-cultured in the Transwell interfered with BMP-2 protein, four groups in the study: HSC group, HSC+BMP2 group, HSC+MSC group, HSC+MSC+BMP2 group. Cells were collected after 3 d to test HSC proliferation using the following methods:counting of the number, detecting of the total RNA, the mRNA and protein expression of Ki67 were detected by fluorescence qRT-PCR and immunofluorescence methods. Results The number of HSC, totel RNA, Ki67 expression of the HSC+BMP2 group was higher than HSC group, HSC+MSC group was higher than HSC group, HSC+MSC+BMP2 group was higher than HSC+MSC group (P < 0.05). Conclusion MSCs synergistic with BMP-2 can enhance MSC proliferation effect on HSC.
[Key words] Hematopoietic stem cell; Mesenchymal stem cell; BMP-2; Proliferation
造血干细胞(hematopoietie stem cells,HSC)自我更新及多向分化等生理过程都离不开其生存的微环境增殖。骨髓基质细胞及其前体间充质干细胞(mesenchymal stem cell,MSC)以及它分泌的黏附分子、細胞因子和细胞外基质形成复杂的信号网络,它们共同构成的微环境即微龛“niche”调控着HSC的增殖等。从微环境的角度研究MSC对HSC的增殖作用及其机制是当前的研究热点[1-3]。BMP-2蛋白是多功能蛋白,可直接参与造血的调控,对造血表现出抑制、促进[4-5]等作用,此外BMP-2能促进新骨的形成,同时新生出血管。已有大量研究证实MSC对HSC具有增殖作用[6],其依赖于细胞直接接触间的相互作用、分泌的细胞外基质和细胞因子[7-8],且接触比非接触共培养具有更强的扩增作用[9]。本研究利用Transwel的上室底部网板微孔直径仅0.4 μm,使得上室的HSC不能进入下室,排除了细胞间直接接触对HSC增殖的影响,但细胞分泌的细胞因子可以通过该微孔,利于探讨这种作用可能是通过MSC分泌的细胞因子促进了HSC的增殖。
1 材料与方法
1.1 主要试剂与仪器
LG-DMEM培养基、胎牛血清、0.25%胰蛋白酶(美国Gibco公司);鼠抗人ECD-CD34、PEcy7-CD45、FITC-CD105、IgG抗体(美国Pharminge公司);鼠抗人FITC-Ki67抗体(上海雷浩信息科技有限公司);干细胞因子(stem cell factor,SCF)、白介素-3(interleukin-3,IL-3)(美国Peprotech公司);重组人骨形态发生蛋白-2(recombinant human bone morphogenetic protein-2,rhBMP-2)(RD公司);流式细胞仪(美国BECKMAN公司),Mini MACS免疫磁性吸附柱分离装置和CD34+细胞选择试剂盒(德国Mitenyi Biotec公司);反转录试剂盒(日本TOYOBO公司),PCR试剂盒(德国QIAGEN公司);Trizol试剂盒(美国Invitrogen公司);引物:β-actin上游AGAGATGGCCACGGCTGCTT,下游ATTTGCGGTGGACGTGGAG,Ki67上游CAAGCCACA?鄄GTCCAAGAGAA,下游GTGTCCATAGCTTTCCCTAC?鄄TG(上海生工生物工程股份有限公司);Transwell小室(美国Costar公司);PCR仪(罗氏公司);荧光显微镜(罗氏公司)等。
1.2 方法
1.2.1 间充质干细胞的培养和鉴定
取年龄20~45岁健康正常人髂骨骨髓液(经医院伦理委员会批准及取得供者知情同意),与完全培养基按体积比为1∶4混合后于37℃、5%CO2孵箱中培养(完全培养基成分为89%LD-DMEM+10%胎牛血清+1%青-链霉素)。3 d换液1次,细胞融合达80%用0.25%胰蛋白酶消化1∶2传代,传至第三代(P3)备用,流式检测MSC表面抗原CD105、CD34-ECD及CD45。
1.2.2 CD34+细胞的分选及纯度鉴定
用Ficoll分选骨髓液中单个核细胞,根据miniMACS免疫磁性吸附柱分离装置,用CD34+细胞选择试剂盒按照其说明进行CD34+细胞的分离。流式检测所分选细胞的纯度。
1.2.3 共培养
实验分四组,HSC组:HSC单独培养,HSC+BMP2组:HSC添加BMP-2蛋白,HSC+MSC组:HSC种于Transwell上室、MSC种于下室,HSC+MSC+BMP2组:共培养并添加BMP-2,每组4复孔。CD34+细胞1.0×105个/孔,MSC 3.0×106个/孔,rhBMP-2浓度为100 ng/mL,每孔总体积700 μL(89%IMDM+10%胎牛血清+1%青-链霉素,IL-3浓度10 ng/mL、SCF50 ng/mL)。重复3次。
1.2.4 检测HSC的增殖情况
培养72 h后收集HSC,流式细胞仪检测HSC的表面抗原CD34的表达情况;计数板计数造血干细胞的数目,Trizol法提取HSC的RNA并用紫外线分光光度仪测其浓度,实时荧光定量PCR法检测其Ki67 mRNA的表达;细胞经多聚甲醛固定,破膜,封闭,FITC标记的Ki67抗体孵育,洗涤等处理后,荧光显微镜观察Ki67在细胞核内的表达。重复3次。
1.3 统计学方法
采用SPSS 17.0统计学软件进行数据分析,计量资料用均数±标准差(x±s)表示,多组间比较采用单因素方差分析,组间两两比较采用LSD检验;以P < 0.05为差异有统计学意义。
2 结果
2.1 分选出的细胞的生物学鉴定
2.1.1 间充质干细胞
2.1.1.1 原代培養72 h可见散在的梭形贴壁细胞,第14天细胞融合度可达80%~90%,排列成放射状、漩涡转。P3代细胞在24 h内大多能贴壁。见图1。
2.1.1.2 流式鉴定第三代MSC的CDl05、CD34、CD45表达,MSC表达非造血相关免疫标记CDl05,不表达造血相关免疫标记CD34、CD45。见图2。
2.1.2 造血干细胞
经磁珠分选后的CD34+细胞呈大小均一的小圆形,经胎盘兰染色后98%细胞拒染。流式细胞仪检测经磁珠分选后的CD34+细胞的纯度为86.3%。
2.2 共培养第3天各组HSC的免疫表型
共培养3 d收集各组HSC,流式检测其表面抗原CD34的表达,各组HSC仍高表达CD34,均高于80%。见图3。
2.3 共培养第3天各组HSC的增殖比较
2.3.1 细胞计数及荧光定量PCR
HSC的细胞计数、总RNA及增殖活性基因Ki67的表达在HSC+MSC+BMP2组高于HSC+MSC组,HSC+MSC组高于HSC组,HSC+BMP2组高于HSC组,差异有统计学意义(P < 0.05)。见表1。
2.3.2 Ki67免疫荧光
FITC标记的Ki-67在各组HSC上表现为片状翠绿色荧光,显示Ki-67蛋白的分布基本覆盖整个细胞核。且可以看出Ki67荧光强度在HSC+MSC+BMP2组高于HSC+MSC组,HSC+MSC组及HSC+BMP2组高于HSC组。见图4(封三)。
3 讨论
全骨髓贴壁法是目前培养间充质干细胞的重要方法之一,有操作简便、所培养出的细胞活性高等优点。我们采用该方法培养出的MSC具有贴壁生长的特性,其生长特点与文献报道的相符合[10-11],表达非造血相关免疫标记CD105,而不表达造血相关免疫标记CD34和CD45,且在前期的实验中本课题组已对其成骨、成脂能力进行鉴定[12]。CD34仍然是目前公认的分选造血干细胞的主要免疫标记,本研究应用免疫磁珠法分选出的CD34+造血干细胞的纯度及活性高。
Ki67基因与细胞增殖相关,其表达的核蛋白,与核糖体RNA转录相关,在增殖期细胞表达,静止期细胞不表达。Ki67的阳性率越高,细胞增殖越活跃。本研究应用PCR法及免疫荧光两种方法检测Ki67在不同组中的表达,以比较HSC的增殖能力。此外,细胞数目的增加及增殖能力的增强可伴有总RNA增加。故本研究选用细胞计数、总RNA、Ki67来评估不同干预条件下HSC的增殖能力,并且发现BMP-2和/或MSC可以促进HSC增殖,且增殖后的HSC经流式细胞学鉴定仍高表达CD34。
本实验应用Transwell将MSC与HSC进行非接触共培养,根据结果发现MSC可以促进HSC增殖,这可能是MSC分泌了相关的活性物质经Transwell的下室穿过Transwell的网膜进入上室,促进HSC增殖。BMP/TGF-β家族对HSC的调控作用很复杂,且与特定环境的精细调控相关[13-15]。BMP-2对HSC增殖的影响与HSC培养的时间及模式、BMP-2的浓度以及所联合的细胞因子种类等具体的环境相关[13-16]。本研究发现培养3 d浓度为100 ng/mL的BMP-2有促进HSC增殖的作用。rhBMP-2在体外和体内均能促进MSC的增殖[17],并能促进MSC分泌造血生长因子,如IL-6、IL-11、G-CSF和SCF等。根据本研究,BMP-2协同MSC较MSC单独对HSC的增殖作用更强,说明BMP-2协同MSC对HSC有增殖作用,由此推测这种增殖作用可能是BMP-2促进MSC分泌了促HSC增殖的相关因子。
研究表明[18]BMP信号通路可通过成骨niche,也可能通过血管niche调控造血[19]。与前者相比,血管niche能促进HSC增殖、分化[20]。本研究发现的BMP-2协同MSC对HSC的增殖作用是否是通过促进血管形成相关物质的表达相关,在下一步实验中我们将继续探讨。
[参考文献]
[1] Raynaud CM,Butler JM,Halabi NM,et al. Endothelial cells provide a niche for placental hematopoietic stem/progenitor cell expansion through broad transcriptomic modification [J]. Stem Cell Res,2013,11(3):1074-1090.
[2] Paraguassú-Braga FH,Alves AP,Santos IM,et al. An ectopic stromal implant model for hematopoietic reconstitution and in vivo evaluation of bone marrow niches [J]. Cell Transplant,2012,21(12):2677-2688.
[3] Tashiro K,Nonaka A,Hirata N,et al. Plasma Elevation of Vascular Endothelial Growth Factor Leads to the Reduction of Mouse Hematopoietic and Mesenchymal Stem/Progenitor Cells in the Bone Marrow [J]. Stem Cells,2014,23(18):2202-2210.
[4] Bai H,Xie YL,Gao YX,et al. The balance of positive and negative effects of TGF-β signaling regulates the development of hematopoietic and endothelial progenitors in human pluripotent stem cells [J]. Stem Cells Dev,2013,22(20):2765-2776.
[5] Robin C,Durand C. The roles of BMP and IL-3 signaling pathways in the control of hematopoietic stem cells in the mouse embryo [J]. Int J Dev Biol,2010,54(6-7):1189-2000.
[6] Walenda T,Bork S,Horn P,et al. Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells [J]. Cell Mol Med,2010(14):337-350.
[7] Rodríguez-Pardo VM,Vernot JP. Mesenchymal stem cells promote a primitive phenotype CD34+ c-kit+ in human cord blood-derived hematopoietic stem cells during ex vivo expansion [J]. CellMol Biol Lett,2013,18(1):11-33.
[8] Andrade PZ,Santos F,Almeida-Porada G,et al. Systematic delineation of optimal cytokine concentrations to expand hematopoietic stem/progenitor cells in co-culture with mesenchymal stem cells [J]. Mol Biosyst,2010,6(7):1207-1215.
[9] da Silva CL,Gon?觭alves R,dos Santos F,et al. Dynamic cell-cell interactions between cord blood haematopoietic progenitors and the cellular niche are essential for the expansion of CD34+,CD34+CD38- and early lymphoid CD7+ cells [J]. Tissue Eng Regen Med,2010,4(2):149-158.
[10] 康少平,劉淑艳,李永升,等.低氧增强骨髓间充质干细胞增殖维持分化潜能[J].中国比较医学杂志,2017,27(7):70-74.
[11] 赵科研,王辉山,侯明晓,等.不同数目骨髓间充质干细胞移植对大鼠肺损伤的抑制作用[J].中国比较医学杂志,2012,22(1):34-38.
[12] Wang Q,Huang CL,Zeng FJ,et al. Activation of the Hh Pathway in Periosteum-Derived Mesenchymal Stem Cells Induces Bone formation in Vivo [J]. Stem Cells,Tissue Engineering and Hematopoietic Elements,2010,12(6):3100-3111.
[13] Nakamura Y,Arai F,Iwasaki H,et al. Isolation and chara?鄄cterization of endosteal niche cell populations that regulate hematopoietic stem cells [J]. Blood,2010,116(9):1422-1432.
[14] Kiel MJ,Morrison SJ.Uncertainty in the niches that maintain haematopoietic stem cells [J]. Nat Rev Immunol,2008, 8(4):290-301.
[15] S?derberg SS,Karlsson G,Karlsson S. Complex and Context Dependent Regulation of Hematopoiesis by TGF-βSuperfamily Signaling [J]. Ann N Y Acad Sci,2009, 1176:55-69.
[16] Bhatia M,Bonnet D,Wu D,et al. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells [J]. J Exp Med,1999,189(7):1139-1148.
[17] Detmer K,Walker AN. Bone morphogenetic proteins act synergistically with haematopoietic cytokines in the differentiation of hematopoietic progenitors [J]. Cytokine,2002,17(1):36-42.
[18] Grassinger J,Simon M,Mueller G,et al. Bone morphogenetic protein (BMP)-7 but not BMP-2 and BMP-4 impro?鄄ves maintenance of primitive peripheral blood-derived hematopoietic progenitor cells (HPC) cultured in serum-free medium supplemented with early actin cytokines [J]. Cytokine,2007,40(3):165-171.
[1] Liu SB,Hu PZ,Hou Y,et al. Recombinant human bone morphogenetic protein-2 promotes the proliferation of mesenchymal stem cells in vivo and in vitro [J]. Chin Med J (Engl),2009,122(7):839-843.
[2] Morrison SJ,Scadden DT. The bone marrow niche for haematopoietic stem cells [J]. Nature,2014,505(7483):327-334.
(收稿日期:2018-00-00 本文編辑:任 念)