石鑫,侯明才,黄虎,胡小龙,江文剑,吴斌,缪宗利 ,郑斯赫
1.油气藏地质及开发工程国家重点实验室(成都理工大学),成都 610059
2.成都理工大学沉积地质研究院,成都 610059
3.东华理工大学地球科学学院,南昌 330013
天山造山带位于中亚造山带南缘,由塔里木克拉通向北与中天山、哈萨克斯坦—伊犁、准噶尔构造地块拼合而成[1-4](图1a)。伊犁盆地呈狭长的三角形夹于北天山和中天山之间(图1b),而位于伊犁地块中间的伊犁盆地是重要的铀矿富集区,主要的含矿层位为侏罗纪早期的水西沟群砂岩。对伊犁盆地中生代侏罗纪沉积物物源的研究,可为矿产勘查提供重要信息。然而,前人有关该方面的研究较少。同时,前人的研究普遍认为南天山洋的最终关闭标志着古亚洲洋在中亚造山带西南部的结束[3,5]。而对塔里木克拉通北部与伊犁陆块之间的碰撞时间的争论主要集中在晚泥盆世到中三叠世[1,5-9]。
本文通过对伊犁盆地南部中下侏罗统碎屑岩的碎屑锆石U-Pb年龄的研究,揭示沉积物的来源,并通过这些年龄数据与同时代南天山造山带的年龄数据对比分析,能够更好地约束伊犁—中天山地块与南天山造山带碰撞时间,明确构造演化的过程。
天山造山带是一个拼合地块,自中国西北部新疆维吾尔自治区开始,横穿中国西部邻国吉尔吉斯斯坦和哈萨克斯坦南部,延伸至塔吉克斯坦及乌兹别克斯坦(图1b),东西延伸至少2 500 km。而在中国境内,天山构造带被分为北天山地块、南天山地块以及夹持于中间的伊犁—中天山地块[10-12](图1b)。伊犁—中天山地块是由伊犁地块和中天山地块在泥盆纪之前形成的统一地块[3],其古老基底是由中—新元古代的花岗片麻岩、斜长角闪岩、混合岩、石英岩、大理石以及各种片岩组成[13-14]。在前寒武纪基底岩石上覆盖有差异明显的古生代火山过渡层和中新生代沉积盖层[15]。南天山造山带夹于伊犁—中天山地块南部与塔里木克拉通北部之间,其北部边界为阿特巴希—依尼尔切克—南那拉提断裂,南部边界为塔里木北缘断裂[4]。该造山带主要由上奥陶统—上石炭统海相火山沉积岩、二叠系陆相碎屑岩和火山岩,以及三叠系—侏罗系陆相碎屑岩组成[4]。
图1 西天山地区构造地质图[10-11]Fig.1 Tectonic geological map of West Tianshan Block
本文选取了伊犁盆地南部坎乡地区中—下侏罗统地层剖面进行研究(图1b、图2)。该剖面侏罗系地层主要发育下侏罗统八道湾组、三工河组以及中侏罗统西山窑组。其中,侏罗系底部的八道湾组发育砾岩、含砾粗砂岩、砂岩、泥岩及煤层,由下到上发育两套正旋回沉积,旋回底部砾岩中可见块状层理(图3b),与下伏三叠系小泉沟群呈平行不整合接触(图3a),中上部的砂岩中可见交错层理和冲刷面[16-17](图3c)。三工河组整合覆盖在八道湾组之上,属于三角洲平原亚相和三角洲前缘亚相[18-19],岩性以中—细砂岩、粉砂岩及泥岩为特征,平原河道砂体可见冲刷—充填构造和交错层理。西山窑组是伊犁盆地中生代煤层发育最好的地层[18],主要发育曲流河三角洲沉积,岩性由粗砂岩、中细砂岩、泥岩夹煤层组成,地层中可见发育于河道沉积的冲刷构造和交错层理。本次所取样品均来自于坎乡侏罗系剖面,地层包括下侏罗统八道湾组(J1b-2)、下侏罗统三工河组(J1s-5)以及中侏罗统西山窑组(J2x-3)。坎乡剖面中,砂岩以岩屑砂岩为主,岩屑含量约15%~65%,以硅质岩岩屑为主,流纹岩岩屑次之(图3d),另外含有一些变质岩岩屑。碎屑颗粒中,可见大量具有溶蚀现象的单晶石英(图3f)及一些长轴具有定向性的多晶石英;另外可见一些鳞片状绢云母(图3e)和具有格子双晶的微斜长石(图3g)。总体上,样品中碎屑颗粒分选和磨圆较差,具有来自中酸性火山岩、花岗岩或者低级变质岩的近源沉积特点[16]。
图2 伊犁盆地南缘侏罗系出露区及邻区构造地质图[12]Fig.2 Jurassic outcrop zone of southern margin of Yili Basin and tectonic geological map of adjacent blocks[12]
图3 伊犁盆地南缘坎乡中—下侏罗统地层综合柱状图Fig.3 Comprehensive stratigraphic columns of middle-lower Jurassic strata at Kanxiang, southern margin of Yili Basin
样品的破碎和锆石的挑选由河北省廊坊市国家重点实验室完成。锆石阴极发光图像拍摄在武汉上谱分析科技有限责任公司完成,锆石U-Pb同位素定年在武汉上谱分析科技有限责任公司利用LA-ICP-MS同时分析完成。所选仪器型号为Agilent 7700e,激光剥蚀系统配置有信号平滑装置[20]。本次分析的激光束斑为32 μm,锆石的U-Pb同位素定年采用锆石标准91500和玻璃标准物质NIST610作外标分别进行同位素和微量元素分馏校正。采用ICPMSDataCal[21-22]对锆石数据进行分析处理,通过IsoPlot软件对处理的锆石进行U-Pb直方图和频率曲线图的制作。数据处理过程中,为了获得更准确的锆石U-Pb年龄数据,减少Pb同位素分馏以及235U衰变成207Pb的影响,对于大于1 000 Ma的锆石年龄选取207Pb/206Pb年龄数据,年龄小于1 000 Ma的锆石,选择206Pb/238U年龄数据[23]。
对本次三个样品共220个锆石测点获得的220个锆石数据进行分析,排除其中谐和度小于90%的数据。对剩下的203个锆石数据进行U-Pb年龄分析,获得年龄范围为3 121~244 Ma。从阴极发光图像中可见,大多数锆石呈自形/棱柱状,暗示离物源可能较近,锆石粒径为50~200 μm,长宽为1∶1~3∶1。大多数锆石阴极发光图像具有清晰的振荡环带(图4)和较高的Th / U比值(绝大部分大于0.4),指示具有岩浆成因[23]。
下侏罗统八道湾组的砂岩样品J1b-2所获得的71个碎屑锆石进行测试分析。其中有60个年龄数据谐和度超过90%,锆石年龄点都落在锆石U-Pb年龄谐和曲线上(图5a)。最年轻的51颗锆石U-Pb年龄加权平均值为(273.1±2.2)Ma(MSWD=1.6)。谐和度大于90%的锆石,其年龄分布在367~261 Ma之间,其主要年龄组为290~260 Ma,次要年龄组为370~310 Ma,另有一颗锆石年龄为232 Ma (图6a)。
图4 伊犁盆地南缘中—下侏罗世碎屑岩锆石阴极发光图像Fig.4 Cathodoluminescence images for detrital zircons from the middle-lower Jurassic clastic rocks in the southern margin of Yili Basin
下侏罗统三工河组的砂岩样品J1s-5所获得的75个碎屑锆石中,有1个锆石颗粒的谐和度低于90%,其余锆石年龄点都落在锆石U-Pb年龄谐和曲线上(图5b)。最年轻的38颗锆石U-Pb年龄加权平均值为310.2±4.7 Ma(MSWD=6.2)。谐和锆石的年龄分布在3 121~244 Ma之间,主要年龄组为350~290 Ma和460~380 Ma,次要年龄组为1 000~900 Ma,分布较少的年龄为260~240 Ma、600 Ma、1 200 Ma、1 400 Ma、1 800 Ma、2 000 Ma和3 000 Ma(图6b)。
中侏罗统西山窑组的砂岩样品J2x-3所获得的74个碎屑锆石进行测试分析,其中有70个谐和度大于90%,只有一颗锆石年龄点落在锆石U-Pb年龄谐和曲线下方(图5c),最年轻的31颗锆石U-Pb年龄加权平均值为346.8±4.2 Ma(MSWD=2.7)。谐和锆石的年龄分布在1 729~301 Ma之间,主要年龄组为380~320 Ma和450~390 Ma,次要年龄组为310~300 Ma和480~410 Ma,另有一颗年龄为1 729 Ma(图6c)。
通过收集伊犁—中天山地块、南天山造山带和塔里木克拉通已发表的岩浆岩结晶年龄[10-11],来对比区域岩浆活动和所获样品碎屑锆石的来源。在研究中,为了显示岩浆活动的规律,把伊犁—中天山地块进一步划为伊犁—中天山地块南部和伊犁—中天山地块北部。在塔里木克拉通,岩浆活动主要发生在300~270 Ma、 430~390 Ma、460~450 Ma、1.1~0.6 Ga、1.9~1.7 Ga、2.6~2.3 Ga(图6e)。南天山造山带与塔里木克拉通具有相似的岩浆活动期次,但缺少460~450 Ma和前寒武纪的岩浆岩记录(图6e,f)。与塔里木地块和南天山造山带相比,伊犁—中天山地块在380~310 Ma的岩浆岩记录比较丰富[24],并且年龄570~470 Ma和1.7~1.1 Ga的岩浆岩只出现在伊犁—中天山地块南部(图6g,h)。此外,由于北天山洋地块俯冲的间歇,在伊犁—中天山地块的北缘没有340~320 Ma岩浆岩记录[25-26],而该年龄在伊犁—中天山地块南部有丰富的记录(图6g,h)。
从中—下侏罗统的碎屑锆石年龄谱来看,样品中锆石年龄主要集中在460~260 Ma之间,前寒武纪的年龄分布较少。年龄在400~300 Ma的锆石在同时代的塔里木北部和南天山造山带的岩浆岩基本不存在,而在伊犁—中天山地块广泛存在[10-11](图6e~h)。在相同地层时代的南天山造山带中有大量的前寒武纪和二叠纪的碎屑锆石(图6d),而在本次的研究样品中只有八道湾组有二叠纪的碎屑锆石,三工河组含有少量前寒武纪的碎屑锆石和两粒三叠纪的碎屑锆石,西山窑组没有二叠纪锆石出现 (图6a,b,c)。这些特征表明南天山造山带和塔里木克拉通可能不是研究区碎屑物的主要来源。古生代的锆石形态多呈自形或菱形,有清晰的震荡环带和较高的Th/U比值,显示了近源沉积的特点。综上所述,研究样品中的碎屑锆石U-Pb年龄特征显示主要源区为伊犁—中天山地块南部。
图6 研究区及邻区碎屑锆石年龄概率图和岩浆岩结晶年龄直方图Fig.6 Probability curve map of detrital zircon age and histograms for compiled crystallization ages of magmatic rocks in study block and its adjacent blocks
同时,研究剖面侏罗系地层底部的八道湾组最年轻碎屑锆石的主要年龄组为290~260 Ma,主峰年龄为290 Ma。而八道湾组上覆的三工河组最年轻碎屑锆石的主要年龄组为350~290 Ma,其峰值年龄为295 Ma和310 Ma,大于八道湾组主峰年龄的。更重要的是三工河组上覆的西山窑组主要年龄组为380~320 Ma的最年轻碎屑锆石,其峰值年龄为330 Ma和355 Ma,大于八道湾组和三工河组最年轻碎屑锆石的主峰年龄。可以看出,由底部的八道湾组到三工河组再到西山窑组,样品中最年轻碎屑锆石年龄逐渐增大(图6a,b,c),暗示物源区具有揭顶的特征。
在南天山造山带发现的巴雷公蛇绿岩年龄在450 Ma[27]、库勒湖蛇绿岩年龄425 Ma、418 Ma、330 Ma[28-30],这表明南天山洋在晚志留世到早石炭世一直没有关闭。然而,南天山洋的最终关闭时间以及塔里木克拉通地块和伊犁—中天山地块的碰撞时间一直存在以下几种争议:晚泥盆世—晚石炭世[31-32]、晚石炭世[33]、晚二叠世—中三叠世[6,34-35]。
有学者根据该地区的区域不整合特征,认为南天山造山带在晚泥盆世—早石炭世发生碰撞[36-37]。然而这与在北天山和南天山发现的早石炭世蛇绿岩是矛盾的[38-39]。
部分学者通过研究蛇绿混杂岩中的放射虫化石的年龄和超高压变质岩的年龄认为碰撞主要发生在晚二叠世—中三叠世[40-41]。然而,Zhangetal.[41]发现的U-Pb年龄为233~226 Ma的年轻锆石,已经被认为是由于后期流体作用或者是锆石颗粒的重结晶[42]或者是衰变作用[43]导致的。蛇绿混杂岩中记录的晚二叠世放射虫样本[34]因为保存差,也一直广受质疑[8]。同时,对南天山造山带的榴辉岩进行放射性同位素测年发现,其变质峰值年龄为320~310 Ma[44]。此次研究中,侏罗系地层碎屑锆石样品的年龄谱显示,伊犁—中天山地块南缘基本没有晚二叠世和中生代的年龄记录。暗示在晚二叠世—中三叠世缺乏由同碰撞和后碰撞造山作用引起的岩浆活动。这些证据结合二叠纪的陆相沉积特征[8],并不能证明南天山造山带在晚二叠世—中三叠世存在碰撞活动。
在南天山造山带,年龄在295~285 Ma的早二叠世火山岩不整合覆盖在发生强烈褶皱的石炭纪早期和石炭纪晚期地层之上[45]。而且榴辉岩和蓝片岩的Rb/Sr和40Ar/39Ar的测年分析显示,超高压变质岩大约在330~300 Ma(主要发生在310 Ma左右)发生了快速的构造剥蚀[44]。更重要的是,在阿特巴希地区,石炭纪末期(304~299 Ma)磨拉石沉积建造中砾岩(轻微变形但未变质)不整合覆盖在高压变质岩之上[44]。同时,在伊犁盆地南缘特克斯地区上石炭统东图津河组也发现了榴辉岩砾石[11]。而砾岩中榴辉岩的发现,表明该区高压变质岩的暴露和剥蚀大约发生在300 Ma之前[11,44]。这些地层特征和超高压变质岩的研究表明,塔里木克地块可能在晚石炭世与伊犁—中天山发生了碰撞。
在晚石炭世—早二叠世(大约320~270 Ma),南天山造山带和伊犁—中天山地块南部广泛发育大量的双峰式火山岩和S型、A型和高K花岗岩以及少量的富K正长石[33,46]。来自于南天山造山带的碎屑岩的最年轻碎屑锆石峰值年龄从299~288 Ma略有不同,但是分布特征比较单一[47]。然而,在中—晚二叠世期间,随着来自伊犁—中天山地块南部和南天山造山带隆起的老火山沉积岩及基底剥蚀物质逐渐增多,使得年龄大于300 Ma的碎屑锆石也逐渐增多[11]。这表明,随着伊犁—中天山地块南部和南天山造山带隆起被剥蚀和夷平作用的发生,基底已经逐渐暴露[11,47]。结合伊犁—中天山地块南部和南天山造山带发育的二叠纪正断层[45],表明后碰撞的伸展过程可能持续到晚二叠世。来自南天山造山带晚三叠世的年龄为260~220 Ma的碎屑锆石,与塔里木盆地阿图什喀若勒以北的辉绿岩年龄相对照,其源区可能为塔里木盆地西北缘[48],可能与塔里木盆地西北缘晚二叠世—晚三叠世岩浆活动有关[48]。在伊犁盆地南部侏罗系地层中,从下到上,最年轻锆石的峰值年龄逐渐增大。同时,在伊犁—中天山地块南部和南天山造山带的中下侏罗统地层中,广泛分布着煤和油页岩矿床[27,47]。这些地层和年龄记录反映了早—中侏罗世随着天山山脉水系扩大带来的构造沉降和夷平现象。
伊犁盆地南缘坎乡下侏罗统碎屑锆石年龄集中在370~260 Ma和450~390 Ma,缺少前寒武纪的年龄记录,表明碎屑沉积物主要来自于伊犁—中天山地块南部。样品中几乎不存在晚二叠世到中三叠世的碎屑锆石,这与南天山造山带的岩浆岩记录一致,该结果不支持塔里木克拉通与伊犁—中天山地块在晚二叠世—中三叠世发生碰撞的观点。结合该地区的地层特征,以及前人对该区高压变质岩的暴露和剥蚀年龄(约300 Ma之前)的研究,我们认为塔里木地块与伊犁—中天山地块可能在晚石炭世发生碰撞。碎屑锆石年龄特征表明,坎乡侏罗系地层由老到新,最年轻碎屑锆石峰值年龄逐渐增大,具有明显的揭顶现象,与早—中侏罗世发生的构造沉积夷平有关。
参考文献(References)
[1] 高俊,龙灵利,钱青,等. 南天山:晚古生代还是三叠纪碰撞造山带?[J]. 岩石学报,2006,22(5):1049-1061. [Gao Jun, Long Lingli, Qian Qing, et al. South Tianshan: A late Paleozoic or a triassic orogen?[J]. Acta Petrologica Sinica, 2006, 22(5): 1049-1061.]
[2] 王博,舒良树,Faure M,等. 科克苏—穹库什太古生代构造—岩浆作用及其对西南天山造山时代的约束[J]. 岩石学报,2007,23(6):1354-1368. [Wang Bo, Shu Liangshu, Faure M, et al. Paleozoic tectonism and magmatism of Kekesu-Qiongkushitai section in southwestern Chinese Tianshan and their constraints on the age of the orogeny[J]. Acta Petrologica Sinica, 2007, 23(6): 1354-1368.]
[3] Gao J, Long L L, Klemd R, et al. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: geochemical and age constraints of granitoid rocks[J]. International Journal of Earth Sciences, 2009, 98(6): 1221-1238.
[4] Han B F, He G Q, Wang X C, et al. Late carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the northern Xinjiang, western China[J]. Earth-Science Reviews, 2011, 109(3/4): 74-93.
[5] Xiao W J, Windley B F, Allen M B, et al. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwana Research, 2013, 23(4): 1316-1341.
[6] 李曰俊,孙龙德,吴浩若,等. 塔里木盆地西北缘三叠系硅岩砾石中的放射虫化石及其地质意义[J]. 地质科学,2004,39(2):153-158. [Li Yuejun, Sun Longde, Wu Haoruo, et al. Radiolarian fossils from chert gravels of Triassic conglomerate in NW margin of the Tarim Basin and their geological significance[J]. Chinese Journal of Geology, 2004, 39(2): 153-158.]
[7] 朱永峰,张立飞,古丽冰,等. 西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究[J]. 科学通报,2005,50(18):2004-2014. [Zhu Yongfeng, Zhang Lifei, Gu Libing, et al. The zircon SHRIMP chronology and trace element geochemistry of the Carboniferous volcanic rocks in western Tianshan Mountains[J]. Chinese Science Bulletin, 2005, 50(18): 2004-2014.]
[8] 舒良树,王博,朱文斌. 南天山蛇绿混杂岩中放射虫化石的时代及其构造意义[J]. 地质学报,2007,81(9):1161-1168. [Shu Liangshu, Wang Bo, Zhu Wenbin. Age of radiolarian fossils from the heiyingshan ophiolitic mélange, southern Tianshan Belt, NW China, and its tectonic significance[J]. Acta Geologica Sinica, 2007, 81(9): 1161-1168.]
[9] 徐学义,王洪亮,马国林,等. 西天山那拉提地区古生代花岗岩的年代学和锆石Hf同位素研究[J]. 岩石矿物学杂志,2010,29(6):691-706. [Xu Xueyi, Wang Hongliang, Ma Guolin, et al. Geochronology and Hf isotope characteristics of the Paleozoic granite in Nalati area, West Tianshan Mountains[J]. Acta Petrologica et Mineralogica, 2010, 29(6): 691-706.]
[10] Han Y G, Zhao G C, Sun M, et al. Late Paleozoic subduction and collision processes during the amalgamation of the Central Asian Orogenic Belt along the South Tianshan suture zone[J]. Lithos, 2016, 246-247: 1-12.
[11] Huang H, Cawood P A, Ni S J, et al. Provenance of late Paleozoic strata in the Yili Basin: Implications for tectonic evolution of the South Tianshan orogenic belt[J]. GSA Bulletin, 2017, doi: 10.1130/B31588.1.
[12] 李曰俊,杨海军,赵岩,等. 南天山区域大地构造与演化[J]. 大地构造与成矿学,2009,33(1):94-104. [Li Yuejun, Yang Haijun, Zhao Yan, et al. Tectonic framework and evolution of South Tianshan, NW China[J]. Geotectonica et Metallogenia, 2009, 33(1): 94-104.]
[13] 李继磊,苏文,张喜,等. 西天山阿吾拉勒西段麻粒岩相片麻岩锆石Cameca U-Pb年龄及其地质意义[J]. 地质通报,2009,28(12):1852-1862. [Li Jilei, Su Wen, Zhang Xi, et al. Zircon Cameca U-Pb dating and its significance for granulite-facies gneisses from the western Awulale Mountain, West Tianshan, China[J]. Geological Bulletin of China, 2009, 28(12): 1852-1862.]
[14] Wang B, Liu H S, Shu L S, et al. Early Neoproterozoic crustal evolution in northern Yili Block: Insights from migmatite, orthogneiss and leucogranite of the Wenquan metamorphic complex in the NW Chinese Tianshan[J]. Precambrian Research, 2014, 242: 58-81.
[15] Zhu Y F, Guo X, Song B, et al. Petrology, Sr-Nd-Hf isotopic geochemistry and zircon chronology of the Late Palaeozoic volcanic rocks in the southwestern Tianshan Mountains, Xinjiang, NW China[J]. Journal of the Geological Society, 2009, 166(6): 1085-1099.
[16] 侯明才,江文剑,倪师军,等. 伊犁盆地南缘中下侏罗统碎屑岩地球化学特征及对物源制约[J]. 地质学报,2016,90(12):3337-3351. [Hou Mingcai, Jiang Wenjian, Ni Shijun, et al. Geochemical characteristic of the lower and middle Jurassic clastic rocks in the southern margin of the Yili Basin, Xinjiang and its constraints on provenance[J]. Acta Geologica Sinica, 2016, 90(12): 3337-3351.]
[17] 江文剑. 新疆伊犁盆地南缘侏罗系物源分析及盆山关系研究[D]. 成都:理工大学,2017. [Jiang Wenjian. The provenance analysis of Jurassic and its relation to basin and mountain in the southern margin of Yili Basin, Xinjiang[D]. Chengdu: Chengdu University of Technology, 2017.]
[18] 刘家铎,孟万斌. 伊犁盆地南缘侏罗系地层学研究[J]. 成都理工大学学报,2002,29(6):650-655. [Liu Jiaduo, Meng Wanbin. Study of Jurassic stratigraphy in the south margin of Yili Basin[J]. Journal of Chengdu University of Technology, 2002, 29(6): 650-655.]
[20] Hu Z C, Zhang W, Liu Y S, et al. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis[J]. Analytical Chemistry, 2015, 87(2): 1152-1157.
[21] Liu Y S, Hu Z C, Gao S, et al.Insituanalysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
[22] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.
[23] 吴元保,郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报,2004,49(16):1589-1604. [Wu Yuanbao, Zheng Yongfei. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15): 1554-1569.]
[24] Han Y G, Zhao G C, Sun M, et al. Detrital zircon provenance constraints on the initial uplift and denudation of the Chinese western Tianshan after the assembly of the southwestern central Asian orogenic belt[J]. Sedimentary Geology, 2016, 339: 1-12.
[25] Tang G J, Wang Q, Wyman D A, et al. Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu-Dabate area, northwestern Tianshan (west China): evidence for a tectonic transition from arc to post-collisional setting[J]. Lithos, 2010, 119(3/4): 393-411.
[26] Tang G J, Chung S L, Wang Q, et al. Petrogenesis of a late carboniferous mafic dike-granitoid association in the western Tianshan: response to the geodynamics of oceanic subduction[J]. Lithos, 2014, 202-203: 85-99.
目前,有部分国家在延迟退休方面已经略有建树。而随着我国老龄化社会程度的加深,国民生活水平以及国民平均寿命的增加,我国政府正采用渐进式的方法将“延迟退休”政策提上日程。这项政策被称为“渐进式退休政策”。
[27] 王超,刘良,罗金海,等. 西南天山晚古生代后碰撞岩浆作用:以阔克萨彦岭地区巴雷公花岗岩为例[J]. 岩石学报,2007,23(8):1830-1840. [Wang Chao, Liu Liang, Luo Jinhai, et al. Late Paleozoic post-coilisional magmatism in the southwestern Tianshan orogenic belt, take the Baleigong pluton in the Kokshal region as an example[J]. Acta Petrologica Sinica, 2007, 23(8): 1830-1840.]
[28] 王学潮,何国琦,李茂松,等. 南天山南缘蛇绿岩岩石化学特征及同位素年龄[J]. 河北地质学院学报,1995,18(4):295-302. [Wang Xuechao, He Guoqi, Li Maosong, et al. Petrochemical characteristics and isotopic age of ophiolite in southern part of South Tianshan[J]. Journal of Hebei College of Geology, 1995, 18(4): 295-302.]
[29] 龙灵利,高俊,熊贤明,等. 南天山库勒湖蛇绿岩地球化学特征及其年龄[J]. 岩石学报,2006,22(1):65-73. [Long Lingli, Gao Jun, Xiong Xianming, et al. The geochemical characteristics and the age of the Kule Lake ophiolite in the southern Tianshan[J]. Acta Petrologica Sinica, 2006, 22(1): 65-73.]
[30] 马中平,夏林圻,徐学义,等. 南天山库勒湖蛇绿岩锆石年龄及其地质意义[J]. 西北大学学报(自然科学版),2007,37(1):107-110. [Ma Zhongping, Xia Linqi, Xu Xueyi, et al. Dating for zircons of gabbro from Kulehu ophiolite, southern Tianshan, and its geological implication[J]. Journal of Northwest University (Natural Science Edition), 2007, 37(1): 107-110.]
[31] 高长林,吉让寿,秦德余. 北大巴山地区沉积黄铁矿的硫、铅同位素及其构造学意义[J]. 中国区域地质,1995(2):158-163. [Gao Changlin, Ji Rangshou, Qin Deyu. Sand Pb isotopes of sedimentary pyrites in the northern Daba Mountains and their tectonic significance[J]. Regional Geology of China, 1995(2): 158-163.]
[32] Xu X Y, Wang H L, Li P, et al. Geochemistry and geochronology of Paleozoic intrusions in the Nalati (Narati) area in western Tianshan, Xinjiang, China: implications for Paleozoic tectonic evolution[J]. Journal of Asian Earth Sciences, 2013, 72: 33-62.
[33] Huang H, Zhang Z C, Santosh M, et al. Petrogenesis of the early Permian volcanic rocks in the Chinese south Tianshan: implications for crustal growth in the central Asian Orogenic belt[J]. Lithos, 2015, 228-229: 23-42.
[34] Li Y J, Sun L D, Wu H R, et al. Permo-Carboniferous radiolarians from the Wupata′erkan group, Western South Tianshan, Xinjiang, China[J]. Acta Geologica Sinica, 2005, 79(1): 16-23.
[35] 张立飞,艾永亮,李强,等. 新疆西南天山超高压变质带的形成与演化[J]. 岩石学报,2005,21(4):1029-1038. [Zhang Lifei, Ai Yongliang, Li Qiang, et al. The formation and tectonic evolution of UHP metamorphic belt in southwestern Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 2005, 21(4): 1029-1038.]
[36] Xia L Q, Xia Z C, Xu X Y, et al. Relative contributions of crust and mantle to the generation of the Tianshan Carboniferous rift-related basic lavas, northwestern China[J]. Journal of Asian Earth Sciences, 2008, 31(4/5/6): 357-378.
[37] Xia L Q, Xu X Y, Li X M, et al. Reassessment of petrogenesis of Carboniferous-Early Permian rift-related volcanic rocks in the Chinese Tianshan and its neighboring areas[J]. Geoscience Frontiers, 2012, 3(4): 445-471.
[38] 徐学义,夏林圻,马中平,等. 北天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究[J]. 岩石学报,2006,22(1):83-94. [Xu Xueyi, Xia Linqi, Ma Zhongping, et al. SHRIMP zircon U-Pb geochronology of the plagiogranites from Bayingou ophiolite in North Tianshan Mountains and the petrogenesis of the ophiolite[J]. Acta Petrologica Sinica, 2006, 22(1): 83-94.]
[39] Li C, Xiao W J, Han C M, et al. Late Devonian-early Permian accretionary orogenesis along the North Tianshan in the southern Central Asian Orogenic Belt[J]. International Geology Review, 2015, 57(5/6/7/8): 1023-1050.
[40] Zhang L F, Ai Y L, Li X P, et al. Triassic collision of western Tianshan orogenic belt, China: Evidence from SHRIMP U-Pb dating of zircon from HP/UHP eclogitic rocks[J]. Lithos, 2007, 96(1/2): 266-280.
[41] Xiao W J, Windley B F, Sun S, et al. A tale of amalgamation of three Permo-Triassic collage systems in central Asia: oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477-507.
[42] Su W, Gao J, Klemd R, et al. U-Pb zircon geochronology of Tianshan eclogites in NW China: Implication for the collision between the Yili and Tarim blocks of the southwestern Altaids[J]. European Journal of Mineralogy, 2010, 22(4): 473-478.
[43] Yang X, Zhang L F, Tian Z L, et al. Petrology and U-Pb zircon dating of coesite-bearing metapelite from the Kebuerte Valley, western Tianshan, China[J]. Journal of Asian Earth Sciences, 2013, 70-71: 295-307.
[44] Hegner E, Klemd R, Kröner A, et al. Mineral ages and P-T conditions of Late Paleozoic high-pressure eclogite and provenance of mélange sediments from Atbashi in the south Tianshan orogen of Kyrgyzstan[J]. American Journal of Science, 2010, 310(9): 916-950.
[45] Liu D D, Guo Z J, Jolivet M, et al. Petrology and geochemistry of early Permian volcanic rocks in South Tian Shan, NW China: implications for the tectonic evolution and Phanerozoic continental growth[J]. International Journal of Earth Sciences, 2014, 103(3): 737-756.
[46] Ma X X, Shu L S, Meert J G. Early Permian slab breakoff in the Chinese Tianshan belt inferred from the post-collisional granitoids[J]. Gondwana Research, 2015, 27(1): 228-243.
[47] Liu D D, Jolivet M, Yang Wei, et al. Latest Paleozoic-early Mesozoic basin-range interactions in South Tian Shan (northwest China) and their tectonic significance: Constraints from detrital zircon U-Pb ages[J]. Tectonophysics, 2013, 599: 197-213.
[48] 罗金海,车自成,周新源,等. 塔里木盆地西部中生代早期伸展作用的辉绿岩证据[J]. 中国地质,2006,33(3):566-571. [Luo Jinhai, Che Zicheng, Zhou Xinyuan, et al. Diabase evidence for the early Mesozoic extension in the western Tarim Basin, NW China[J]. Geology in China, 2006, 33(3): 566-571.]