Banach空间的β算子

2018-06-01 10:59樊丽颖张佳宁曹丽萍宋婧婧
哈尔滨理工大学学报 2018年2期
关键词:算子

樊丽颖 张佳宁 曹丽萍 宋婧婧

摘 要:为了研究Banach空间算子的一些几何性质,给出了β算子和弱β算子的定义;讨论了β算子和弱β算子的性质,进一步得到了算子具有β性质的充分必要条件、β算子与具有β性质的空间之间的关系,研究了β算子空间的定义及此空间的性质,得到了β算子是紧算子的判别条件,给出了自反空间一个新的特征。

关键词:β算子;自反空间;弱β算子;β算子空间

DOI:10.15938/j.jhust.2018.02.025

中图分类号: O177.7

文献标志码: A

文章编号: 1007-2683(2018)02-0140-04

Abstract:To study some geometric properties of Banach space operator, the definitions of the β-operator and weak β-operator were given, and the properties of the β-operator and weak β-operator were discussed. Sufficient and necessary conditions for the operator with β-property were obtained. The relationship between properties of β-operator and the space which has β-property were discussed. The definition of β-operator space and the property of this space were studied. The conclusion was obtained that β-operator is a compact operator, and a new feature of reflexive space was given.

Keywords:β-operator; reflexive space; weak β-operator; β-operator space

0 引 言

众所周知,对定义在Banach空间而取值于另一Banach空间的有界线性算子[1-7],其变域的结构在算子结构的研究中起主要作用,文[1]引入了NUC算子以及UKK算子,并对它的性质进行了讨论,得到了NUC算子是UKK的、算子是NUC的充要条件、算子T是NUC算子,则算子T*是NUS算子等结论,作者将定义β算子和弱β算子,这类算子与具有β性质的空间以及弱β性质的空间有密切的关系,证明自反空间β算子为弱β算子等结论。

参 考 文 献:

[1]PRUS, Stanislaw. Banach Spaces and Operators Which are Nearly Uniformly Convex[J]. Dissertationes Mathematicae, 1997, 363.

[2]郑少薇. 关于一致凸算子[J]. 华南师范大学学报(自然科学版), 1991(1):95-103.

[3]马尔迈. 一致凸算子及其性质[J]. 宁夏大学学报:自然科学版, 1993(2):30-33.

[4]黎永锦. Banach空间的凸性算子[J]. 中山大学学报(自然科学版), 1996(4): 18-21.

[5]GOHBERG I, GOLDBERG S, KAASHOEK M A. Classes of Linear Operators[M]. Birkh Auser Verlag, 1990:20-28.

[6]HUFF R. Banach Spaces Which are Nearly Uniformly Convex[J]. Rocky Mountain Journal of Mathematics, 1980, 10(10):743-750.

[7]CLARKSON J A. Uniformly Convex Spaces[J]. Transactions of the American Mathematical Society, 1936, 40(3):396-414.

[8]崔云安. Banach空间几何理论及应用[M]. 北京:科学出版社, 2010:80-83.

[9]俞鑫来. Banach空间几何理论[M]. 上海: 华东师范大学出版社, 1986:112-134.

[10]DIESTEL J. Sequences and Series in Banach Spaces[M]. World Publishing Corp,1984:76-87.

[11]LINDENSTRAUSS J, TZAFRIRI L. Classical Banach Spaces I [M]. Springer-Verlag, 1977: 98-105.

[12]ISTRATESCU V I. Strict Convexity and Complex Strict Convexity[M]. M. Dekker, 1984:114-128.

[13]BANAS' J. Compactness Conditions in the Geometric Theory of Banach Spaces[J]. Nonlinear Analysis, 1991:669-682.

[14]JAMES RC. Weak Compactness and Reflexivity, [J].Israel Journal of Mathematics, 1964: 542-550.

[15]LIN L Q, ZHONG H J. On Weak Compact Operators and Reflexivity of Banach Spaces[J]. Journal of Putian University, 2006:99-116.

[16]JOHNSON W B, DAVIS W J, FIGIEL T, et al. Factoring Weakly Compact Operators[J]. Israel Journal of Mathematics, 1971:337-345.

[17]张恭庆, 林源渠. 泛函分析讲义[M]. 北京: 北京大学出版社, 1987:77-78.

[18]郑维行, 王聲望. 实变函数与泛函分析概要[M]. 北京:人民教育出版社, 1980:89-112.

[19]RAMSEY F P. On a Problem of Formal Logic[J]. Proceedings of the London Mathematical Society, 1930:1-24.

[20]LEONARD I E. Banach Sequence Spaces[J]. Journal of Mathematical Analysis & Applications, 1976:245-265.

(编辑:温泽宇)

猜你喜欢
算子
HilbertC*-模上可共轭算子的极分解的一个注记(英文)
Domestication or Foreignization:A Cultural Choice
Hardy算子与加权BMO函数生成交换子的加权估计
下有界线性算子与其伴随算子的关系
左拟中插式Gamma算子在orlicz空间中的逼近性质
QK空间上的叠加算子
关于Kadison算子型不等式的推广及其经济应用
逼近论中的收敛性估计
泛函演算
基于模糊数直觉模糊PG算子的多属性决策方法