曹 梦,唐中华,赵 龙,张衷华,2*
苏打盐碱化土壤pH与团聚体中球囊霉素相关土壤蛋白含量的关系①
曹 梦1,唐中华1,赵 龙1,张衷华1,2*
(1 东北林业大学森林植物生态学教育部重点实验室,哈尔滨 150040;2 中国科学院东北地理与农业生态研究所,长春 130102)
球囊霉素相关土壤蛋白(Glomalin-related soil protein, GRSP)在土壤团聚体形成中起重要作用,与土壤团聚体稳定性正相关。土壤盐碱化破坏土壤结构,降低土壤中GRSP含量,但影响多大尺寸团聚体GRSP含量并不清楚。本文采集45个松嫩盐碱化草地土壤样品,通过干筛法分离出直径 < 0.25、0.25 ~ 1和1 ~ 2 mm 3种不同粒级团聚体,采用 Bradford 法测定土壤中GRSP含量,并测定土壤盐碱化指标,经Pearson相关分析和前向选择变量多元线性回归分析,结果显示:土壤pH显著影响各粒级团聚体总球囊霉素相关土壤蛋白(T-GRSP)含量和难提取球囊霉素相关土壤蛋白(DE-GRSP)含量,二者存在显著负相关关系,特别是0.25 ~ 1 mm粒级团聚体DE-GRSP含量与土壤pH存在极显著负相关关系,可解释22.3% 的DE-GRSP含量变化。土壤pH、电导率、碱解氮和有效磷对各粒级团聚体易提取球囊霉素相关土壤蛋白(EE-GRSP)影响不显著。结果表明土壤苏打盐碱化影响0.25 ~ 1 mm团粒结构中较稳定的DE-GRSP含量,可能对土壤团聚体胶联和土壤碳存储产生负影响。
土壤团聚体;球囊霉素相关土壤蛋白;苏打盐碱化
球囊霉素相关土壤蛋白(glomalin-related soil protein, GRSP)被认为是存在于土壤中的一类糖蛋白,定义来源于提取方法[1-2],对其详细结构知之甚少[3-5],但已被证明在土壤团聚体形成、团聚体稳定性和土壤碳存储中存在重要作用[6-7]。土壤团聚体形成过程中,GRSP参与将细小的土壤颗粒黏结成直径<0.25 mm的微团聚体,然后进一步黏结成0.25 ~ 2 mm的大团聚体,最终形成稳定的土壤团粒结构[8]。但是土壤苏打盐碱化破坏土壤团粒结构,导致土壤粉化,透气、透水性变差,影响植物生长[9-10],已经有一些研究表明土壤苏打盐碱化显著降低GRSP储量和功能[11-12],但仍缺乏苏打盐碱化对不同粒级团聚体中GRSP含量影响的研究。
本文通过干筛法,将苏打盐碱化土壤分成直径<0.25 mm(组分Ⅰ)、0.25 ~ 1 mm(组分Ⅱ)和1 ~ 2 mm(组分Ⅲ)3种不同粒级团聚体,研究土壤盐碱化对不同粒级团聚体比例和GRSP含量的影响,以期揭示土壤盐碱化对GRSP参与土壤团粒结构形成的影响。
本研究以松嫩平原盐碱化草地土壤为研究对象,样品采集于2016年8月,共设置45个样地(图1)。每个样地设置5 m × 5 m的样方1个,在样方对角线上均匀设置3个采样点,同时避开盐碱裸地,用土壤环刀采集5 ~ 10 cm土层土壤样品,共3份,均匀混合后作为该样地土壤样品,装入土壤袋中,在自然条件下风干2个月。将风干土样中的植物根和碎石等杂物挑出,用干筛法将土样分成直径<0.25、0.25 ~ 1和1 ~ 2 mm三种粒级团聚体,分别对3种组分进行总球囊霉素相关土壤蛋白(T-GRSP)和易提取球囊霉素相关土壤蛋白(EE-GRSP)测定。同时取研磨过2 mm筛土壤样品,测定土壤理化性质和未分级T-GRSP和EE-GRSP。
土壤pH和电导率按照水土比5︰1(ml/g)配制成双蒸水溶液,采用pH计(PB-10,Sartorius,德国)和电导率仪(DDS-307,雷磁,中国)测定。土壤碱解氮用碱解扩散法测定,有效磷含量用碳酸氢钠–钼锑抗比色法测定[13]。
图1 研究样点在松嫩盐碱化草地的分布
根据Wright和Upadhyaya[14]的方法稍加修改,具体操作步骤如下:EE-GRSP提取:精确称取0.5 g土壤,加入10 ml 离心管(含有4 ml、20 mmol/L、pH 7.0 的柠檬酸钠溶液)中,充分混匀,同一批土壤样品中加入一个空白样品(10 ml离心管中只加4 ml柠檬酸钠溶液),在121℃条件下的高压灭菌锅中灭菌30 min,降压冷却后盖紧离心管并配平,放入离心机4 000 r/min离心6 min,取棕红色上清液待测。
T-GRSP提取:精确称取0.1 g土壤,加入10 ml 离心管(含有4 ml、50 mmol/L、pH 8.0 的柠檬酸钠溶液)中,充分混匀,同批次加入空白对照(10 ml离心管中只加4 ml柠檬酸钠溶液),在121℃条件下的高压灭菌锅中灭菌60 min,冷却后放入离心机4 000 r/min离心6 min,吸取上清液,收集在50 ml离心管中;继续向收集完上清液的离心管中加入4 ml同上的柠檬酸钠溶液,充分混匀,在121℃条件下的高压灭菌锅中灭菌30 min,冷却后放入离心机4 000 r/min离心6 min,吸取上清液,继续收集在50 ml离心管中。至少重复上述步骤两次,直至上清液中不再呈现红棕色为止,最后将所有50 ml离心管中的上清液摇匀待测。
采用考马斯亮蓝显色法[15]测定蛋白质含量,以1 kg土壤中蛋白质的质量(g)表示GRSP的含量,绘制标准曲线。分别吸取上述提取方法中得到的T-GRSP和EE-GRSP待测液0.5 ml,以相同批次空白样品作为对照,依次加入5 ml配好的考马斯亮蓝G-250染色剂,充分摇匀后显色10 min左右,将721紫外分光光度计波长调至595 nm,依次在该波长下测定蛋白质吸光值。最后,根据标准曲线计算出溶液中蛋白质浓度、GRSP的含量[16]。
难提取球囊霉素相关土壤蛋白(DE-GRSP)的计算参考文献[17-18,12]的方法,具体为DE-GRSP = T-GRSP–EE-GRSP。
采用SPSS 19.0进行数据分析,首先运用双变量相关分析方法对不同组分DE-GRSP、EE-GRSP、T-GRSP含量与土壤理化性质进行Pearson相关分析,并进行检验;然后运用前向选择变量多元线性回归模型对影响GRSP含量的主要土壤因子进行解析。
对松嫩平原苏打盐碱土进行筛分,并测定不同粒级团聚体质量占比及其中GRSP含量(表1),结果显示各组分团聚体质量占比存在极显著差异,直径<0.25 mm团聚体(组分Ⅰ)质量占比最大,平均为54.59%,其次是0.25 ~ 1 mm团聚体(组分Ⅱ)质量占比为27.93%,占比最低的为1 ~ 2 mm团聚体(组分Ⅲ),平均仅为17.79%。各团聚体组分T-GRSP、EE-GRSP和DE-GRSP含量没有显著差异。松嫩草地不同盐碱程度土壤T-GRSP、EE-GRSP和DE-GRSP存在较大变异,变异系数分布在35.04% ~ 81.25%,属于中等程度变异。组分Ⅰ和组分Ⅱ质量占比变异系数为41.45% 和45.18%,而组分Ⅲ质量占比变异系数为70.77%,明显高于组分Ⅰ和组分Ⅱ,暗示土壤不同程度盐碱化对土壤中1 ~ 2 mm粒级团聚体影响较大。
不同粒级团聚体和未分级土壤GRSP含量与土壤电导率、pH、土壤碱解氮和土壤有效磷的相关性见表2。除组分Ⅱ质量占比与土壤电导率存在显著的正相关(<0.05)外,其他组分质量占比与土壤电导率、pH、碱解氮和有效磷含量不存在显著线性相关关系;组分Ⅰ和组分Ⅱ的T-GRSP、DE-GRSP与土壤pH显著负相关(<0.05),且组分Ⅱ的 DE-GRSP含量与土壤电导率和pH均呈极显著负相关(<0.01);未分级土壤pH与T-GRSP和DE-GRSP呈显著负相关,土壤电导率与EE-GRSP呈显著正相关。
表1 苏打盐碱土各粒级团聚体中GRSP含量
注:表中均值后不同小写字母表示各组分间差异在<0.01水平显著。
表2 土壤理化性质与各组分团聚体中GRSP含量的Pearson相关分析
注:*表示在<0.05水平显著相关,**表示在<0.01水平极显著相关。
利用前向选择变量多元线性回归模型对土壤电导率、pH、碱解氮和有效磷对不同粒级团聚体中GRSP含量的影响进行分析,回归方程满足检验(<0.05)和回归系数通过检验(<0.05)的方程结果如表3所示。根据上述变量选择结果,土壤pH是影响GRSP变化的最主要因素,其中土壤pH可分别解释组分Ⅰ中T-GRSP和DE-GRSP 含量变化的12.3% 和13.1%;可分别解释组分Ⅱ中T-GRSP和DE-GRSP含量变化的11.8% 和22.3%;可分别解释组分Ⅲ中T-GRSP和DE-GRSP含量变化的9.0% 和9.9%。此外土壤pH还能解释组分Ⅲ 的EE-GRSP含量变化的10.2%。土壤电导率和pH可共同解释组分Ⅱ质量占比17.4% 的变化。
表3 前向选择变量多元线性回归模型展示土壤理化性质对各组分GRSP含量影响水平
注:前向选择变量多元线性回归模型分析中共进入土壤pH、电导率、碱解氮和有效磷4个参数项,“–”表示通过前向选择变量多元线性回归模型去掉的参数项,碱解氮和有效磷也被模型自动去掉,表中未展示。
土壤团聚体是土壤的重要组成部分,影响土壤有机质水平、土壤生物活性以及土壤功能(如水分入渗、持水量、通气性与养分有效性)等[19-20]。土壤团聚体的形成非常复杂,涉及土壤物理、化学和生物过程[21]。Bearden和Petersen[22]认为真菌菌丝、植物细根以及二者分泌物是土壤团聚体形成的重要机制。微生物和植物代谢产物,如多糖、脂质和蛋白等对土壤团聚体形成主要起胶结物质的作用。Chatterjee和Jain[23]在研究胶结物质对团粒构成影响时发现微生物黏胶是大团聚体(粒径0.2 ~ 2.0 mm)构成的最重要因素,微生物分泌的多糖可使>250 µm的土壤团聚体更加稳定。Wright和Anderson[24]揭露真菌分泌的多糖即为GRSP,是一种糖蛋白。一般认为GRSP参与250 ~ 2 mm土壤大团聚体的形成。土壤盐碱化显著影响土壤团聚体的结构,以前研究已经表明钠离子在土壤中能起到分散剂的作用[25-26],土壤团聚体稳定性与土壤钠离子浓度显著负相关[27-28];也有研究表明在粒级<2 mm的中性盐土中,土壤电导率和GRSP浓度显著负相关[27],但关于苏打盐化对各粒级团聚体胶结物质的影响却少见报道[21]。
GRSP在土壤团聚体形成、碳存储和植物胁迫忍耐等方面都存在重要作用[29-30],也被认为是团聚体稳定物质之一[21],但很多研究发现环境因子变化,例如气候变化、植被类型、土壤理化性质、土地管理等,显著影响土壤中GRSP含量和组成[31-33]。土壤盐碱化也显著影响GRSP浓度[34,11-12],这可能是盐碱化土壤结构较差的原因之一[35]。已有研究表明土壤pH(4.5 ~ 8.5和6.9 ~ 10.1)与土壤GRSP含量存在显著的负相关关系[36,12],土壤电导率和容重也被发现显著影响GRSP含量[37,34]。进一步研究表明土壤盐碱化主要影响土壤中DE-GRSP的含量[12],本研究表明土壤pH对各级土壤组分T-GRSP和DE-GRSP存在显著影响,其中DE-GRSP与土壤pH相关性更显著,DE-GRSP是土壤GRSP中最稳定的组成成分,在土壤GRSP功能实现中作用明显[12,17-18]。Kemper和Rosenau[38]认为1 ~ 2 mm粒级的土壤团聚体最容易受短期干扰的影响,这表明土壤团聚体粒级越大可能越易被破坏,本文研究结果虽然也发现1 ~ 2 mm粒级团聚体GRSP含量与土壤盐碱化存在一定负相关关系,但0.25 ~ 1 mm粒级土壤团聚体DE-GRSP含量与土壤pH存在极显著负相关关系,可解释土壤中DE-GRSP含量变化的22.3%,这暗示在苏打盐碱土中0.25 ~ 1 mm粒级团粒结构可能更易被盐破坏,主要原因可能是苏打盐碱化土壤中1 ~ 2 mm粒级土壤团粒占比较低(17.79%)。John等[39]和毛霞丽等[40]研究也揭示,只有在未干扰或低度干扰的草地和森林生态系统>1 mm的团粒结构才较丰富。本研究并没有发现EE-GRSP与土壤盐碱化之间存在显著负相关关系,这也进一步证实土壤盐碱化主要破坏土壤中较稳定的DE-GRSP含量,可能对于土壤结构和土壤长期碳存储不利。
松嫩平原盐碱化草地土壤pH显著影响各粒级团聚体T-GRSP含量和DE-GRSP含量,特别是土壤苏打盐碱化影响0.25 ~ 1 mm团粒结构中较稳定的DE-GRSP含量,表明土壤盐碱化破坏土壤团粒结构,导致土壤紧实,透气透水性差,影响微生物和植物的生长。
[1] Wright S F, Frankesnyder M , Morton J B , et al. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots[J]. Plant and Soil, 1996, 181(2): 193–203
[2] Rosier C L, Hoye A T, Rillig M C. Glomalin-related soil protein: Assessment of current detection and quantification tools[J]. Soil Biology & Biochemistry, 2006, 38: 2205–2211
[3] Schindler F V, Mercer E J, Rice J A. Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content[J]. Soil Biology & Biochemistry, 2007, 39: 320–329
[4] 黄艺, 王东伟, 蔡佳亮, 等. 球囊霉素相关土壤蛋白根际环境功能研究进展[J]. 植物生态学报, 2011, 35(2): 232–236
[5] Singh P K, Singh M, Tripathi B N. Glomalin: an arbuscular mycorrhizal fungal soil protein[J]. Protoplasma, 2013, 250: 663–669
[6] Bedini S, Pellegrino E, Avio L, et al. Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices[J]. Soil Biology & Biochemistry, 2009, 41: 1491–1496
[7] Spohn M, Giani L. Impacts of land use change on soil aggregation and aggregate stabilizing compounds as dependent on time[J]. Soil Biology & Biochemistry, 2011, 43: 101–1088
[8] Rillig M C, Wright S F, Eviner V T. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species[J]. Plant and Soil, 2002, 238: 325–333
[9] Chi C M, Zhao C W, Sun X J, et al. Estimating exchangeable sodium percentage from sodium adsorption ratio of salt-affected soil in the Songnen plain of northeast China[J]. Pedosphere, 2011, 21: 271–276
[10] 张衷华, 王化, 唐中华, 等. 松嫩草地不同降水区土壤盐碱化程度与羊草生产关系的比较研究[J]. 草地学报, 2016, 24(3): 590–597
[11] Wang Q, Wu Y, Wang W, et al. Spatial variations in concentration, compositions of glomalin related soil protein in poplar plantations in Northeastern China, and possible relations with soil physicochemical properties[J]. The Scientific World Journal, 2014, 2014(1): 160403
[12] Zhang Z H, Wang Q, Wang H, et al. Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP)[J]. Science of the Total Environment, 2017, 581/582: 657–665
[13] 魏晨辉, 沈光, 裴忠雪, 等. 不同植物种植对松嫩平原盐碱地土壤理化性质与细根生长的影响[J]. 植物研究, 2015(5): 759–764
[14] Wright S F, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil, 1998, 198(1): 97–107
[15] 王孝平, 邢树礼. 考马斯亮蓝法测定蛋白含量的研究[J]. 天津化工, 2009(3): 40–42
[16] 王琼. 东北地区球囊霉素相关土壤蛋白含量和组成空间差异及其维持土壤功能的初步研究[D]. 哈尔滨: 东北林业大学, 2015
[17] Wu Q S, Cao M Q, Zou Y N, et al. Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange[J]. Scientific Reports, 2014, 4: 5823
[18] Wu Q S, Li Y, Zou Y N, et al. Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels[J]. Mycorrhiza, 2015, 25: 121–130
[19] 窦森, 李凯, 关松. 土壤团聚体中有机质研究进展[J]. 土壤学报, 2011, 48(2): 412–418
[20] 陈文超, 朱安宁, 张佳宝, 等. 保护性耕作对潮土团聚体组成及其有机碳含量的影响[J]. 土壤, 2014, 51(1): 35–40
[21] 李娜, 韩晓增, 尤孟阳, 等. 土壤团聚体与微生物相互作用研究[J]. 生态环境学报, 2013, 22(9): 1625–1632
[22] Bearden B N, Petersen L. Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of vertisols[J]. Plant and Soil, 2000, 218: 173–183
[23] Chatterjee R K, Jain J K. Studies on aggregate formation with reference of cementing substances[J]. Soil Science and Plant Nutrition, 1970, 16: 231–233
[24] Wright S F, Anderson R L. Aggregate stability and glomalin in alternative crop rotations for the central great plains[J]. Biology and Fertility of Soils, 2000, 31: 249–253
[25] Bronick C J, Lai R. Soil structure and management: A review[J]. Geoderma, 2005, 124: 3–22
[26] 张晓光, 黄标, 梁正伟, 等. 松嫩平原西部土壤盐碱化特征研究[J]. 土壤, 2013, 45(2): 332–338
[27] Kohler J, Caravaca F, Roldán A. An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of[J]. Soil Biology & Biochemistry, 2010, 42: 429–434
[28] 王合云, 李红丽, 董智, 等. 滨海盐碱地不同造林树种林地土壤盐碱化特征[J]. 土壤学报, 2015, 52(3): 706–712
[29] Rillig M C. Arbuscular mycorrhizae, glomalin and soil quality[J]. Canadian Journal of Soil Science, 2004, 84: 355–363
[30] Hammer E C, Rillig M C. The influence of different stresses on glomalin levels in an arbuscular mycorrhizal fungus-salinity increases glomalin content[J]. PLoS One, 2011, 6(12): e28426
[31] Violi H A, Treseder K K, Menge J A, et al. Density dependence and interspecific interactions between arbuscular mycorrhizal fungi mediated plant growth, glomalin production, and sporulation[J]. Canadian Journal of Botany, 2007, 85: 63–75
[32] Wang P, Liu J H, Xia R X, et al. Arbuscular mycorrhizal development, glomalin-related soil protein (GRSP) content, and rhizospheric phosphatase activity in citrus orchards under different types of soil management[J]. Journal of Plant Nutrition and Soil Science, 2011, 174: 65–72
[33] Wu Q S, He X H, Cao M Q, et al. Relationships between glomalin-related soil protein in water-stable aggregate fractions and aggregate stability in cirus rhizosphere[J]. International Journal of Agriculture and Biology, 2013, 15: 603–606
[34] Krishnamoorthy R, Kim K, Kim C, et al. Changes of arbuscular mycorrhizal traits and community structure with respect to soil salinity in a coastal reclamation land[J]. Soil Biology and Biochemistry, 2014, 72: 1–10
[35] López-Merino L, Serrano O, Adame M F, et al. Glomalin accumulated in seagrass sediments reveals past alterations in soil quality due to land-use change[J]. Global and Planetary Change, 2015, 133: 87–95
[36] Wang Q, Wang W J, He X Y, et al. Role and variation of the amount and composition of glomalin in soil properties in farmland and adjacent plantations with reference to a primary forest in northeastern China[J]. PLoS One, 2015, 10(10): e0139623
[37] Vasconcellos R F L, Bonfim J A, Baretta D, et al. Arbuscular mycorrhizal fungi and glomalin-related soil protein as potential indicators of soil quality in a recuperation gradient of the Atlantic forest in Brazil[J]. Land Degradation & development, 2016, 27 (2): 325–334
[38] Kemper W D, Rosenau R C. Aggregate stability and size distribution[M]// Klute A. Methods of soil analysis (Part Ⅰ). Madison: American Society of Agronomy, 1986: 425–442
[39] John B, Yamashita T, Ludwig B, et al. Storage of organic carbon in aggregate and density fractions of silty soil under different types of land use[J]. Geoderma, 2005, 128: 63–79
[40] 毛霞丽, 陆扣萍, 何丽芝, 等. 长期施肥对浙江稻田土壤团聚体及其有机碳分布的影响[J]. 土壤学报, 2015, 52(4): 828–838
Soil pH Effect on Glomalin-related Soil Protein in Aggregates in Sodic-saline Soil
CAO Meng1, TANG Zhonghua1, ZHAO Long1, ZHANG Zhonghua1,2*
(1 Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; 2 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)
Glomalin-related soil protein (GRSP) is regarded as an important binding agent in soil aggregation, and a positive relationship between GRSP concentration and aggregate stability has been demonstrated. Soil salinization and alkalinization destroys soil structure, induces decreasing of GRSP concentration, but it was still unclear in decreasing GRSP in which size of aggregates. In this paper, 45 soda-saline soil samples were collected from Songnen grassland and dry-sieved into the following size classes: <0.25 mm, 0.25–1 mm and 1–2 mm. Bradford reagent was used to determine GRSP contents of each aggregate size fractions, at the same time, soil physico-chemical properties about salt were also determined. Pearson correlation and multiple linear regressions with forward selection were performed in order to test the significance of influence. The results showed that significant negative relationships were existed between soil pH and total-GRSP (T-GRSP), and difficultly-extractable GRSP (DE-GRSP). Especially, highly significant negative correlation was found between soil pH and DE-GRSP from 0.25–1 mm size, which could be explained 22.3% variation of DE-GRSP. No relationship was found between soil pH value, electrical conductivity, available nitrogen, available phosphorus and easily-extractable GRSP (EE-GRSP) contents. The results showed that sodic salt induced decreased in DE-GRSP of 0.25–1 mm aggregates, it is possible to have a negative impact on aggregate binding and soil carbon storage.
Soil aggregates; Glomalin-related soil protein; Soda salinization
10.13758/j.cnki.tr.2018.02.014
国家科技基础性工作专项(2015FY110500)和中央高校基本科研业务费专项(2572015CA05)资助。
(en_cn@nefu.edu.cn)
曹梦(1994—),女,山东莱西人,硕士研究生,主要从事植物次生代谢产物调控研究。E-mail:847550860@qq.com
S152.4+81
A