孟庆军 张玲 贾索尔·肖克热提 王雪生 周贤惠 汤宝鹏
[摘要] 目的 探討低强度迷走神经刺激(LL-VNS)干预阻塞性睡眠呼吸暂停(OSA)诱发犬心房颤动的机制。 方法 18只成年健康雄性比格犬随机分为3组:对照组(n=6)、OSA组(n=6)和OSA+LL-VNS组(n=6)。将各组犬在全身麻醉状态下进行气管插管,OSA组和OSA+LL-VNS组模拟OSA过程,即憋气2 min,通气8 min,每10分钟为1个循环,持续6 h;OSA+LL-VNS组从第3 h至实验结束给予LL-VNS;对照组不憋气。分别检测3组动物建模0、1、3、6 h的血气指标以及建模0、3、6 h的炎症指标肿瘤坏死因子-α(TNF-α)、白细胞介素-2(IL-2)和白细胞介素-6(IL-6)的变化。全程记录犬的动脉血压。实验结束后取心房肌组织用于做苏木精-伊红(HE)染色。 结果 成功建立了OSA模型。憋气前后OSA组和OSA+LL-VNS组收缩压均有显著变化(P < 0.05),两组间收缩压比较差异无统计学意义(P > 0.05)。OSA组炎症指标TNF-α、IL-2在6 h处较对照组明显升高,OSA+LL-VNS组较OSA组明显降低,差异均有统计学意义(P < 0.05)。各个时间段,IL-6未表现出明显差异(P > 0.05),OSA组的心房有效不应期(ERP)逐渐缩短,心房颤动(AF)持续时间逐渐延长(P < 0.05)。在OSA+LL-VNS组建模0~3 h,心房ERP是逐渐缩短的,AF持续时间是逐渐延长的(P < 0.05);在3~6 h给予LL-VNS后与前3 h相比,心房ERP又会逐渐延长,AF持续时间逐渐缩短(P < 0.05)。OSA组与对照组相比心房肌组织的HE染色切片显示心房肌细胞排列紊乱,细胞裂隙增宽,经LL-VNS干预以后上述改变在一定程度上得到了逆转。 结论 炎性因子与AF的发生和发展存一定的正相关,同时LL-VNS能够降低OSA对AF的诱发率。因此,降低机体炎性反应可能是LL-VNS减少AF诱发率的机制之一。
[关键词] 低强度迷走神经刺激;心房颤动;阻塞性睡眠呼吸暂停;炎性因子
[中图分类号] R766.43 [文献标识码] A [文章编号] 1673-7210(2018)02(b)-0004-05
[Abstract] Objective To investigate the mechanism of low-level vagus nerve stimulation (LL-VNS) in the treatment of atrial fibrillation (AF) induced by obstructive sleep apnea (OSA) in dogs. Methods Eighteen adult male healthy beagle dogs were randomly divided into three groups:control group (n = 6),OSA group (n = 6) and OSA + LL-VNS group (n = 6). All animals were intubated under general anesthesia. Both the OSA group and the LL-VNS group performed the same OSA process,which was suffocated for 2 min, ventilated for 8 min, and 10 min was a cycle lasting 6 h. The OSA + LL-VNS group was given LL-VNS from the third hour to the end of the experiment and the control group was not suffocated. The changes of blood gas indexes at 0, 1, 3 h, and 6 h, and inflammatory markers including tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2) and interleukin-6 (IL-6) at 0, 3 h and 6 h after modeling were detected. The canine arterial blood pressure was recorded throughout the whole experiment. At the end of the experiment, the atrial muscle tissue was taken for hematoxylin-eosin (HE) staining. Results OSA model was successfully established (P < 0.05). The systolic blood pressure of OSA group and OSA + LL-VNS group had significantly changed before and after OSA (P < 0.05), but there was no significant difference between the two groups (P > 0.05). Inflammation indicators-TNF-α, IL-2 at 6 hours in OSA group were significantly higher than the control group, but in OSA + LL-VNS group, it was significantly lower than the control group, the differences were statistically significant (P < 0.05). IL-6 showed no significant change in each time period (P > 0.05). In OSA group the atrial relative refractory period (ERP) was gradually shortened, and AF duration was gradually prolonged (P < 0.05). In OSA + LL-VNS group, from 0 h to 3 h the atrial ERP was gradually shortened and the duration of AF was gradually prolonged (P < 0.05); from 3 h to 6 h after given LL-VNS, the atrial ERP was gradually extended and AF duration reduced compared with 0 h to 3 h (P < 0.05). Compared with the control group, the HE slices of the atrial muscle in the OSA group showed that the atrial myocytes were disordered and the cell gap widened and After LL-VNS intervention, the above changes were reversed to some extent. Conclusion Inflammatory factors are positively correlated with the genesis and development of AF, and LL-VNS can reduce the incidence of AF. Therefore, reducing the body's inflammatory response may be one of the mechanisms by which LL-VNS reduces AF inducibility.
[Key words] Low-level vagus nerve stimulation; Atrial fibrillation; Obstructive sleep apnea; Inflammatory factors
心房颤动(atrial fibrillation,AF)是最常见的心律失常之一,有很高的发病率和致残率[1]。近期研究显示AF患者中阻塞性睡眠呼吸暂停(obstructive sleep apnea,OSA)的发病率约占AF患者的1/3,这表明OSA可能参与了AF的发生和维持[2-3]。在临床研究中,低强度迷走神经刺激(low-level vagus nerve stimulation,LL-VNS)不仅能够抑制AF的发生,还可以抑制炎性反应[4]。但对于因OSA诱发的AF,LL-VNS的作用机制并不清楚,本研究主要探讨LL-VNS对OSA诱发AF的影响。
1 对象与方法
1.1 对象
18条成年健康雄性比格犬,体重18~22 kg,随机分为对照组(n=6)、OSA组(n=6)和OSA+LL-VNS组(n=6),所有实验动物均购于江苏亚东实验动物有限公司,动物合格证编号:201717718。該实验已通过新疆医科大学第一附属医院(以下简称“我院”)动物伦理委员会审批,审批号:IACUC-20170706-09。实验在取得国际实验动物评估和认可委员会(Association for Assessment and Accreditation of Laboratory Animal Care,AAALAC)认证的我院实验动物科学研究部显微手术室进行。
1.2 实验方法
1.2.1 OSA模型的构建 所有实验动物初始麻醉采用舒泰50(维克制药公司,法国)与速眠新Ⅱ注射液的混合液(吉林省敦化市圣达动物药品有限公司)(0.05 mL/kg,1︰1),分别给予7.5号气管插管。后期每隔1 h给予3%的戊巴比妥钠(西格玛公司,美国)溶液1 mL补充麻醉。同时监测标准体表六导联心电图。在呼气末夹闭气管插管人为模拟OSA过程2 min,然后松开气管插管自由呼吸8 min,10 min为1个循环,整个实验过程持续6 h[5]。
1.2.2 电生理检测 经右侧颈静脉插入10极电极至高位右心房以测量心房有效不应期(effective refractory period,ERP)。分离出OSA组和OSA+LL-VNS组犬左侧颈部迷走神经,其中OSA组不做处理,OSA+LLVS组从第3小时起给予LL-VNS至实验结束。刺激仪选用Grass88(20 Hz,脉宽0.1 ms,刺激5 s,间歇5 s)(四川锦江电子科技有限公司),刺激电压恰能引起窦性心率或房室传导减慢时电压的20%为刺激电压,持续3 h。每次进行模拟OSA过程中都进行心房ERP以及AF诱发率、AF持续时间的测量。各项电生理指标使用LEAD-7000系列多道生理记录仪(四川锦江电子科技有限公司)进行记录。程序刺激包括8个连续刺激(S1S1=330 ms)后跟随一个早搏刺,S1S2间期从180 ms逐渐递减,每次递减幅度为10 ms。AF的定义为心律绝对不齐持续时间≥5 s[6]。
1.2.3 血气分析、炎症指标检测以及HE染色 使用LEAD-7000系列多道生理记录仪(四川锦江电子科技有限公司)自带血压监测装置监测左侧股动脉血压。抽取建模0、1、3、6 h股动脉血,使用型号为i-STAT1(300型)手掌血气分析仪(雅培公司,美国)用于血气分析。使用(Enzyme linked immunosorbent assay,ELISA)试剂盒(北京绿源伯德生物科技有限公司)分别检测建模0、3、6 h的炎症指标IL-6(货号:CSB-E11260c)、IL-2(货号:CSB-E11258c)和TNF-α(货号:CSB-E11737c)的变化。血气分析与ELISA的实验流程图如图1所示。实验结束后取心房肌组织用于做HE染色,观察心房肌的结构变化。
1.3 统计学方法
采用SPSS 17.0统计学软件进行数据分析,计量资料用均数±标准差(x±s)表示,两组间比较采用t检验,多组间比较采用单因素方差分析,重复测量资料,采用重复测量的方差分析,组间两两比较采用LSD检验;计数资料用率表示,组间比较采用χ2检验,以P < 0.05为差异有统计学意义。
2 结果
2.1 OSA模型制作结果
血气分析结果显示,在各个时间段模拟OSA后PH值和PO2是显著降低的(P < 0.05),PCO2是显著升高的(P < 0.05),提示成功建立了犬急性OSA模型。见表1。
2.2 OSA前后OSA组与OSA+LL-VNS组血压变化情况
OSA组和OSA+LL-VNS组憋气前后血压变化差异有统计学意义(P < 0.05),但OSA组与OSA+LL-VNS组两组之间血压变化差异无统计学意义(P > 0.05)。提示LL-VNS对血压的影响不大。见图2。
2.3 LL-VNS对AF持续时间和心房ERP的影响
在整个实验过程中,OSA组的AF持续时间是逐渐延长的,心房ERP是逐渐缩短的,差异均有统计学意义(P < 0.05)。在OSA+LL-VNS组中,给予LL-VNS之前AF持续时间是逐渐延长的,心房ERP是逐渐缩短的。从第3 h给予LL-VNS以后,AF持续时间又开始逐渐缩短,心房ERP也在逐渐延长,差异均有统计学意义(P < 0.05)。见图3。
2.4 LL-VNS对炎症指标的影响
TNF-α和IL-2两个指标在OSA组建模6 h时是显著升高的,而在OSA+LLVS组建模6 h时与OSA组比较是显著降低的,差异均有统计学意义(P < 0.05),但在建模0 h和3 h差异无统计学意义(P > 0.05)。IL-6在建模3个时间段均未表现出明显差异(P > 0.05)。见图4。
2.5 HE染色的變化
对照组心房肌细胞排列紧密,无细胞裂隙。OSA组心房肌细胞排列紊乱,细胞间隙增宽。OSA+LL-VNS组经LL-VNS干预以后又逐渐恢复了最初的有序状态。见图5。
3 讨论
大量证据表明,LL-VNS对多种因素诱发的AF具有很好的抑制作用[7-8]。其抗心律失常作用的主要表现是延长心房ERP[9],缩短AF持续时间以及降低AF的诱发率。动物研究表明,LL-VNS能够逆转因快速心房起搏诱发的AF[8]。LL-VNS不仅逆转电重构,而且逆转神经重构[10]。自主神经在AF的发生和发展过程起到十分关键的作用。动物研究发现OSA能够诱发AF,而给予右肺静脉消融和自主神经阻断可以抑制AF的诱发。Li等[11]发现LL-VNS不仅能够通过抑制内源性心脏自主神经系统(cardiac autonomic nervous system,CANS)神经节丛(ganglion plexus,GP)和星状神经节[9]以及交感副交感神经的活性抑制AF触发[12-13],还可以通过调节外源性自主神经系统脑和脊髓与内源性自主神经系统的相互作用来抑制房性心律失常的发生[14]。在本研究中,OSA缩短了心房ERP,增加了AF的诱发率并且延长了AF的持续时间。给予LL-VNS干预以后心房ERP又开始逐渐延长,AF的诱发率和持续时间是明显降低的(P < 0.05)。
本研究发现LL-VNS 能够抑制因OSA诱发的炎性反应,另外有诸多证据支持本研究的结果[15-16]。在临床研究中,Stavrakis等[4]发现低强度耳屏迷走神经刺激具有抗炎作用。对排除了其他心血管危险因素的人群进行随访发现血液中C-反应蛋白的水平能够预测AF的发生和发展,并且C-反应蛋白的升高水平与AF的发生呈正相关[17]。在AF患者中的TNF-α水平也比普通人群高并且与心血管事件的发生率也呈正相关,能够用于预测心血管事件的复发[18]。在动物实验中,研究发现LL-VNS 既能够减弱犬心衰模型的炎性反应也能够抑制内毒素血症小鼠炎性因子的产生[19]。LL-VNS主要是通过干预中枢神经系统对机体炎性反应起调节作用的[19]。在本实验中,我们发现OSA组TNF-α和IL-2在建模6 h是明显升高,在OSA+LL-VNS组经LL-VNS干预以后炎性因子水平是明显降低的(P < 0.05)。IL-6在整个实验过程未表现出明显差异(P > 0.05),由于实验时间仅有6 h,需延长实验时间做进一步探索,本次研究结果与既往研究基本保持一致。另外,LL-VNS还可以通过其他的途径来降低AF的诱发率。Chen等[20]发现LL-VNS可以通过保护心房缝隙连接蛋白起到降低AF的诱发率的作用。
综上所述,炎性因子与AF的发生和发展存一定的相关性,同时LL-VNS能够降低OSA对AF的诱发率。因此,本研究得出降低机体炎性反应可能是LL-VNS减少AF诱发率的机制之一。
[参考文献]
[1] Delgado V,Di BL,Leung M,et al. Structure and Function of the Left Atrium and Left Atrial Appendage [J]. J Am Coll Cardiol,2017,70(25):3157-3172.
[2] Sun L,Yan S,Wang X,et al. Metoprolol prevents chronic obstructive sleep apnea-induced atrial fibrillation by inhibiting structural,sympathetic nervous and metabolic remodeling of the atria [J]. Sci Rep,2017,7(1):14 941.
[3] Anter E,Di BL,Contreras-valdes FM,et al. Atrial Substrate and Triggers of Paroxysmal Atrial Fibrillation in Patients With Obstructive Sleep Apnea [J]. Circ Arrhythm Electrophysiol,2017,10(11):e005407.
[4] Stavrakis S,Humphrey M,Scherlag B,et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation [J]. J Am Coll Cardiol,2015,65(9):867-875.
[5] Zhao J,Xu W,Yun F,et al. Chronic obstructive sleep apnea causes atrial remodeling in canines:mechanisms and implications [J]. Basic Res Cardiol,2014,109(5):427.
[6] Yu L,Li X,Huang B,et al. Atrial Fibrillation in Acute Obstructive Sleep Apnea:Autonomic Nervous Mechanism and Modulation [J]. J Am Heart Assoc,2017,6(9):e006264.
[7] Linz D. Electrical baroreflex stimulation to treat atrial fibrillation:More complex than expected [J]. Heart Rhythm,2016,13(11):2213-2214.
[8] Yu L,Scherlag B,Li S,et al. Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve:a noninvasive approach to treat the initial phase of atrial fibrillation [J]. Heart Rhythm,2013,10(3):428-435.
[9] Yu L,Scherlag B,Li S,et al. Low-level vagosympathetic nerve stimulation inhibits atrial fibrillation inducibility:direct evidence by neural recordings from intrinsic cardiac ganglia [J]. J Cardiovasc Electrophysiol,2011,22(4):455-463.
[10] Yu L,Scherlag B,Sha Y,et al. Interactions between atrial electrical remodeling and autonomic remodeling:how to break the vicious cycle [J]. Heart Rhythm,2012,9(5):804-809.
[11] Li S,Scherlag BJ,Yu L,et al. Low-Level Vagosympathetic Stimulation:A Paradox and Potential New Modality for the Treatment of Focal Atrial Fibrillation [J]. Circ Arrhythm Electrophysiol,2009,2(6):645-651.
[12] Sha Y,Scherlag BJ,Yu L,et al. Low-Level Right Vagal Stimulation:Anticholinergic and Antiadrenergic Effects [J]. J Cardiovasc Electrophysiol,2011,22(10):1147-1153.
[13] Yu L,Scherlag BJ,Li S,et al. Low-Level Vagosympathetic Nerve Stimulation Inhibits Atrial Fibrillation Inducibility:Direct Evidence by Neural Recordings from Intrinsic Cardiac Ganglia [J]. J Cardiovasc Electrophysiol,2011, 22(4):455-463.
[14] Yu L,Scherlag BJ,Li S,et al. Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve:A noninvasive approach to treat the initial phase of atrial fibrillation [J]. Heart Rhythm,2013,10(3):428-435.
[15] Friedrichs K,Klinke A,Baldus S. Inflammatory pathways underlying atrial fibrillation [J]. Trends Mol Med,2011, 17(10):556-563.
[16] Lim H,Willoughby S,Schultz C,et al. Effect of atrial fibrillation on atrial thrombogenesis in humans:impact of rate and rhythm [J]. J Am Coll Cardiol,2013,61(8):852-860.
[17] Chang SN,Tsai CT,Wu CK,et al. A functional variant in the promoter region regulates the C-reactive protein gene and is a potential candidate for increased risk of atrial fibrillation [J]. J Intern Med,2017,282(5):465.
[18] Zuo S,Li L,Ruan Y,et al. Acute administration of tumour necrosis factor-α induces spontaneous calcium release via the reactive oxygen species pathway in atrial myocytes [J]. Europace,2017. doi:10.1093/europace/eux271.
[19] Huston J,Gallowitsch-puerta M,Ochani M,et al. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis [J]. Crit Care Med,2007,35(12):2762-2768.
[20] Chen M,Zhou X,Liu Q,et al. Left-sided Noninvasive Vagus Nerve Stimulation Suppresses Atrial Fibrillation by Upregulating Atrial Gap Junctions in Canines [J]. J Cardiovasc Pharmacol,2015,66(6):593-599.