但孝香, 刘建超, 陆光华
(1. 河海大学浅水湖泊综合治理与资源开发教育部重点实验室,江苏 南京 210098;2. 河海大学环境学院,江苏 南京 210098)
药物活性化合物(pharmaceuticals, PhACs)作为一种新型环境污染物,主要包括抗生素、抗菌药、消炎止痛药、抗抑郁药、激素等。我国每年有超过200万t 4 000多种PhACs被用于农业、水产养殖业、畜牧业和人类健康维护等方面[1]。大部分PhACs使用后并未完全代谢,而是以母体及其代谢产物的形式排出体外,而后直接排入水环境或者进入市政污水处理厂或者农业污水处理设施[1-5]。然而传统的污水处理工艺对大部分药物并不能完全去除,随同污水处理厂尾水进入水环境。因此污水处理厂尾水被认为是PhACs进入自然水体环境的主要来源[2-3]。除此之外,养殖废水、制药废水、过期药品处理不当也是天然水体PhACs的主要来源[4]。为了准确评估环境中PhACs可能产生的生态风险,须建立准确高效的PhACs检测方法。表1对比了不同国家对PhACs的前处理和检测方法。从表1看出,目前PhACs的分析检测手段主要依赖于高效液相色谱-质谱联用(HPLC-MS)和气相色谱-质谱联用技术(GC-MS)。
表1 国内外PhACs的前处理和检测方法
注:LOQ:定量限; LOD:检测限; ASE:加速溶剂萃取; SPE:固相萃取; PLE:加压流体萃取。
对于极性强、不易挥发的物质(如双氯芬酸、大环内酯类抗生素、阿司匹林等)一般采用HPLC-MS检测。
表2 国内外不同环境介质中检测到的PhACs种类及浓度
注:ND表示未检出。
近年来,PhACs先后在污水、地表水、地下水、甚至自来水中都有检出。表2对比了国内外不同环境介质中检测到的PhACs种类及浓度。十几个国家的地表水中累计检测出80多种PhACs,浓度最高达到μg/L水平[13-14]。对我国河流、湖泊水体中158种药物及个人护理品进行的调查研究结果表明,检出频率较高的前10种污染物都是抗生素类PhACs[15]。总体而言,磺胺类检出率高,浓度达到1 390 ng/L;而氟喹诺酮类、大环内酯类、四环素类和β内酰胺类抗生素在中国地表水中最高质量浓度分别达到了6 800 ng/L[16]、3 700 ng/L[17]、1 000 ng/L[18]和4 500 ng/L[19]。目前PhACs监测方法标准没有统一,瞬时采样不能反映真实的连续情况,PhACs污染水平在各类水体中呈现出较大的空间和时间上的差异性。虽然 PhACs 的半衰期不长,但由于频繁地使用并进入水环境,导致其形成“假持续”现象。此外PhACs是针对生物疾病而设计,具有特殊的药理、生理功能,短期内并不一定会凸显其危害性,但这些污染物往往以复杂的混合物形式存在,易产生协同作用,长期暴露可能对非靶生物的新陈代谢产生明显影响,从而影响非靶生物体正常的生理生化功能,对生态系统安全和人类健康构成潜在威胁。我国对PhACs类污染物的排放没有制定相应的法规,目前欧盟也只对雌二醇、炔雌醇和双氯芬酸制定了相应的排放阈值(分别为0.4 ng/L、0.035 ng/L和100 ng/L)。
近年来,我国对水环境中PhACs的残留、环境行为和归宿进行了初步研究。但水环境中 PhACs 并不是单独存在的,它们在水体中的环境行为不仅与其他有机污染物直接相关,还受到水体纳米颗粒物、胶体、悬浮颗粒物等环境介质的影响与控制。这些不同性质和不同尺寸的颗粒物构成的水/颗粒物微界面体系是污染物进行物理、化学和生物转化的重要载体和场所,决定着污染物的环境行为与生态效应。现有研究显示,目前大部分PhACs的分析都集中在液相中,缺少沉积物、悬浮物,尤其是胶体等固相中的浓度分析。本文分别从水环境界面污染特征、影响因素、环境风险及PhACs管理方法4个方面对现有研究进行了总结,讨论了现有研究存在的问题,并对今后的研究进行了展望。
水体微界面是水环境中普遍存在的实体,如自然水体中的悬浮颗粒物(suspended particulate matter, SPM)、腐殖质、矿物微粒、细菌、病毒、无机和有机胶体,人工生态系统的滤料、吸附剂、活性污泥等。这些具有一定粒度的颗粒物对河流中碳和营养物的迁移扮演着重要的角色[26]。微界面的活性反应基团与周围水溶液可以发生几乎所有的物理、化学反应,如络合、氧化等。除此之外,天然水体中颗粒物间的聚集、絮凝、溶胶,人工设施中活性污泥的生物氧化、膜与纤维过滤、滤料层等也都涉及微界面反应过程。目前,PhACs在水体中的分布研究主要集中在水/悬浮颗粒物、水/沉积物等二维构相中,忽略了纳米颗粒物、胶体等典型环境微界面的存在,不能反映水体PhACs污染的真实风险水平[27]。
沉积物是非常复杂的体系,包括金属氧化物、黏土矿物和有机质等,对环境中的PhACs、无机阳离子和重金属都具有很强的吸附能力,因此是很多PhACs的最终归宿[28]。国内外不同地区的水体沉积物中都有不同浓度PhACs的检出,其质量比一般在几十μg/kg左右[29]。不同沉积物组分对PhACs的吸附机理不同,如铁铝硅氧化物类沉积物与水接触后形成大量的表面羟基,易与抗生素类PhACs中羧基、氨基和酮基官能团发生相互作用,从而被氧化物吸附。黏土类沉积物与PhACs相互作用的主要机制是离子交换作用和氢键作用等[30]。而类固醇类PhACs吸附特性受沉积物粒径的显著影响,低质量浓度(1 ng/L)固醇类PhACs优先吸附于黏土类沉积物中,直径介于0.87 ~1.43 μm,高质量浓度(500 μg/L)PhACs主要吸附于泥沙类沉积物,直径介于8.1 ~17.7 μm。此外,沉积物与阳离子吸附强度明显高于阴离子,且阴离子吸附大都是可逆的,而中性离子的吸附则忽略不计[31]。
SPM指颗粒直径在0.45 μm以上,以悬浮态存在于水体中的颗粒物,含有较高比例的微生物和藻类等活性有机组分[32]。SPM在国内外河流平均质量浓度范围为29.8 ~100 mg/L[33-34],其在水体中广泛存在,并对水体PhACs的吸附起着重要作用[35]。世界各大水体中都有SPM吸附PhACs的研究报告,总体结果显示SPM吸附PhACs水平低于水体溶解水平,质量比范围为6.4~149 ng/g[35-37]。SPM的微观形状不规则,各个单体可以聚集成絮状、链状、分枝状等,其表面凹凸不平且具有孔隙结构,使SPM能够充分地与PhACs接触,并且能够大量吸附PhACs,进而影响PhACs的环境归趋[38]。同时,SPM对PhACs吸附与PhACs辛醇-水分配系数Kow密切相关,随Kow值增加,PhACs疏水性增强,因而在SPM上吸附量增加[37]。
天然水体中胶体物质通常是粒径介于1 nm~1 μm 的无机和有机非均相颗粒混合物,包括氢氧化铁、铝硅酸盐、表面活性剂等;此外,工程纳米材料、微塑料等纳米颗粒物不断进入水环境,使胶体微界面表面效应更加复杂[39]。胶体的物质组成决定了其具有体积小、比表面大、表面点位密集、吸附位点多、成分复杂等特点,可通过共价键合、静电吸附、表面络合等作用对N/P循环、络合沉降及污染物的分布、转化等环境行为产生重要影响[40-41]。
胶体是水环境中多种污染物重要的“汇”,其对PhACs的贡献率可达30%~40%[3, 42],而对激素类PhACs的贡献率达到60%以上,远高于SPM对激素类PhACs 30%的吸附贡献率;而且胶体与PhACs的标准化吸附系数Kcoc比沉积物要高1~2个数量级[43]。我国不同水体胶体对PhACs的吸附结果显示,长江下游水体胶体中PhACs的总质量浓度范围为2 419~5 065 ng/L[44],珠江流域抗生素类PhACs在胶体中平均质量浓度范围分别为23.2~108 ng/L[45]。而内陆湖泊白洋淀中抗生素类PhACs在胶体中平均质量比1 381 ng/g(干重)[46],与上述自然水体相比,污水处理厂尾水胶体中PhACs质量浓度较低,为0.03~147.5 ng/L[47],占比在36%以下[42]。相较于市政污水,自然水体是多种PhACs的重要归宿[48]。
溶解有机物(dissolved organic matter, DOM)是指水中能通过0.45 μm滤膜的有机物组分,主要成分为腐殖质,是以醌和多元酚为芳香核心的多聚物,其芳香核心主要有羧基、羰基、多肽等,并通过—O—、=CH-等键相连,其在水体中普遍存在[55]。河流及湖泊自然水体中含有大量的DOM,其含量约占总有机物的25%[56],而城市污水中DOM含量更高,约占到总有机物的40%[57]。胶体态颗粒物中有机质含量达49%~71%,胶体分子量越小,有机质C/N值增加,有机质活性越高[58]。在土壤中,PhACs的吸附分配系数与DOM的浓度呈正相关关系,高浓度DOM能促进有机物的吸附,减弱其在土壤中的迁移能力[59]。而在水体胶体中,增加DOM可以减缓胶体中卡巴呋喃、雄烯二酮和睾酮的光解速率,增加它们在环境中的持久性[60-61]。此外,DOM还具有一定的光化学活性,不仅可以在吸收光子后将能量传递给PhACs[62],还可以在光的照射下产生·OH等活性中间体,然后活性中间体与PhACs发生反应,影响PhACs环境行为[63]。
表面活性剂是一大类有机化合物,具有很强的表面活性,能使液体的表面张力显著下降,作为乳化剂、洗涤剂、渗透剂、分散剂、表面改性剂等数十种功能产品而应用于日常生活和工农业生产领域。表面活性剂进入环境介质后,通过降低沉积物/水之间的界面张力,增加疏水性有机物(hydrophobic organic contaminants, HOCs)在水相中的溶解度,同时促进HOCs从沉积物上的解吸并再次吸附在表面活性剂的单体上,进而影响HOCs的生物可利用性[64]。非离子表面活性剂能够吸附在水体胶体表面,产生位阻效应;而阴离子表面活性剂可提高胶体的Zeta电位绝对值,使胶体静电效应和位阻效应同时增强[65]。对于疏水性PhACs来说,表面活性剂能降低其界面张力,增加PhACs的水溶解度和生物有效性,从而影响其在水环境中的迁移转化过程及环境行为[66-67]。
水动力作用是影响PhACs在水体微界面分配的重要因素。流速、水流紊动强度、水力停留时间(hydraulic retention time, HRT)等水动力因素会通过改变水体微界面运动状态及水体理化性质对PhACs的迁移转化过程产生影响[68]。研究发现,当HRT为45.9 h时,雌醇(E1)、雌二醇(E2)、炔雌醇(E3)的降解速率分别为46.2%、44.6%、0.0%,当水力停留时间为137.5 h时,其降解速率分别为84.3%、59.2%、40.0%。当HRT增大时,水体中胶体浓度增加,胶体对PhACs吸附量变大,从而抑制PhACs降解速率[69]。此外,流速的增大会减小边界层厚度,增大水体溶解氧含量、氧化还原电位等参数,使PhACs在水体里的扩散由分子扩散转为紊动扩散,从而增强PhACs在水/SPM界面的交换量,对PhACs在水/SPM两相间的分配产生影响[30]。
根据当前水体污染水平及实验室生态风险评估数据,虽然PhACs引起水生生物急性毒性风险概率较低,但慢性毒性风险不容忽视,将威胁生态环境及人体健康[1]。尤其是PhACs长期暴露对高等水生生物的慢性毒性风险有待深入研究[70]。PhACs长期暴露可以干扰生物体内分泌物的合成、代谢、结合等过程,影响其生长、发育等行为,还可能引起水生生物免疫功能抑制和癌症等病变的发生[71-72]。PhACs在水生生物代谢、抗氧化、神经、生殖等系统产生毒害作用已经被证实,但大多集中于实验室模拟水体PhACs暴露研究,而对天然水体中胶体等微界面存在对此类PhACs生态风险评价的研究鲜有报道[73]。
大部分PhACs具有潜在的基因毒性,这意味着它们可以直接破坏DNA或者产生活性物质(如亲电基团或自由基)破坏DNA。实验表明,黑头呆鱼(Pimephalespromelas)分别在黄体酮(P4)-粉粒颗粒物(1.36 m2/g)、P4-黏粒颗粒物(19.9 m2/g)水生体系中暴露7 d后,黄体酮(P4)-粉粒颗粒物体系显著降低了黑头呆鱼卵黄蛋白原和雄激素受体的基因表达[74]。Duong等[73]的研究同样表明而雌激素(E1、E2、BPA)-SPM体系对雄性青鳉鱼具有同样的诱导效应,可显著增加雄性青鳉鱼的卵黄蛋白原水平。从环境介质粒径来看,粒径越小,介质对激素类PhACs吸附能力越强[26],从而加强PhACs在水生生物体内的累积和内分泌干扰效应[73],且尺寸效应在高等水生生物鱼体内表现得更为明显[75]。水体中碳纳米管、富勒烯等纳米级微界面能够改变水生生物(如:摇蚊幼虫)对PhACs的吸收途径,通过体外吸附和体内解吸过程增加PhACs在生物体内的生物累积风险[76-77]。同时,胶体微界面的存在还能增强菲、芘等污染物在大型蚤体内的被动扩散过程,从而增加其细胞毒性[78]。因此,需开展和运用多种可靠的模型进行环境暴露预测,加强PhACs对人体暴露和生物累积的研究,建立基于人体健康和生态环境安全的PhACs风险评价基准[79-80]。
针对当前PhACs管理过程中存在的问题,需要加强环境管理和控制技术开发,结合我国PhACs生产和使用特点,开展生态环境中PhACs的分布和迁移转化规律研究,识别高风险PhACs母体及其降解产物,判断其引起健康风险的主要途径,进而开发新型的控制技术。对于医院的药物管理,应做到以下几点:①加强基层医院药库管理,②建立药物网络管理平台,③提升药物管理人员素质[81]。对于养殖业兽药管理,则应做到:①广泛宣传畜禽健康养殖知识和药物残留对人类健康的危害,②加强兽药生产经营管理,③加强饲料生产管理,④加强兽药残留监控[82]。另外,要积极开展科普宣传,提高全民对此类污染物的认知,减少不必要的药物使用,科学处置废弃药品和生活护理品,同时加强对过期PhACs的收集处理,降低PhACs进入环境的可能性。
a. 我国对水环境中PhACs污染特征的监测数据积累较少,并且缺乏统一的监测和检测标准,数据可比性差,有必要进一步推进PhACs相关监测和检测标准体系建设,为此类污染物的监测和控制提供基础技术和规范依据。
b. 目前大部分有关PhACs污染研究只涉及水溶液,缺乏一个整体性的环境监测分析体系。应将PhACs在水环境中沉积物、悬浮物和胶体中的含量分析纳入在内,更加准确地了解PhACs的去向和环境影响。
c. 大部分PhACs呈现低浓度下的慢性作用,多种污染物及介质共存的复合毒性作用更是不可忽视,因此基于PhACs低浓度、复合污染的特征,研究PhACs及其代谢产物的毒性效应和作用机制,是正确认识其健康风险和修订水质标准的基础。
d. PhACs在不同水环境中的污染特征和人口数量、生活水平、用药习惯、畜牧养殖密集程度等因素息息相关,并存在较大差异。这些因素一定程度上决定了PhACs区域污染水平,因此必须有针对性地加强重要流域水环境中持续性PhACs的监测研究,并通过建立信息网络实现主要污染物的动态监测和风险预警,更加直观地反应水体中PhACs的污染状况。
[1]LIU J L,WONG M H.Pharmaceuticals and personal care products (PPCPs):a review on environmental contamination in China [J].Environment International,2013,59:208-224.
[2]RIVERA U J,SANCHEZ P M,FERRO M A,et al.Pharmaceuticals as emerging contaminants and their removal from water:a review [J].Chemosphere,2013,93 (7):1268-1287.
[3]YANG Y,FU J,PENG H,et al.Occurrence and phase distribution of selected pharmaceuticals in the Yangtze Estuary and its coastal zone [J].Journal of Hazardous Materials,2011,190 (1/2/3):588-596.
[4]PENG X,OU W,WANG C,et al.Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China [J].The Science of the Total Environment,2014,490:889-898.
[5]BOGGS A S,BOWDEN J A,GALLIGAN T M,et al.Development of a multi-class steroid hormone screening method using Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS) [J].Analytical and Bioanalytical Chemistry,2016,408 (15):4179-4190.
[6]NIETO A,BORRULL F,POCURULL E,et al.Determination of natural and synthetic estrogens and their conjugates in sewage sludge by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry [J].Journal of Chromatography A,2008,1213 (2):224-230.
[7]FLORES A M,HILL E M.Methodology for profiling the steroid metabolome in animal tissues using ultraperformance liquid chromatography-electrospray-time-of-flight mass spectrometry [J].Analytical Chemistry,2008,80 (22):8771-8779.
[8]VERGEYNST L,HAECK A,DE W P,et al.Multi-residue analysis of pharmaceuticals in wastewater by liquid chromatography-magnetic sector mass spectrometry:method quality assessment and application in a Belgian case study [J].Chemosphere,2015,119:S2-S8.
[9]AGUNBIADE F O,MOODLEY B.Pharmaceuticals as emerging organic contaminants in U mgeni River water system,KwaZulu-Natal,South Africa [J].Environmental Monitoring and Assessment,2014,186 (11):7273-7291.
[10]TLILI I,CARIA G,OUDDANE B,et al.Simultaneous detection of antibiotics and other drug residues in the dissolved and particulate phases of water by an off-line SPE combined with on-line SPE-LC-MS/MS:method development and application [J].The Science of the Total Environment,2016,563/564:424-433.
[11]KIM H Y,LEE I S,OH J E.Human and veterinary pharmaceuticals in the marine environment including fish farms in Korea [J].The Science of the Total Environment,2017,579:940-949.
[12]HUERTA B,JAKIMSKA A,LORCA M,et al.Development of an extraction and purification method for the determination of multi-class pharmaceuticals and endocrine disruptors in freshwater invertebrates [J].Talanta,2015,132:373-381.
[13]DA B F,JELIC A,LOPEZ S R,et al.Occurrence and distribution of pharmaceuticals in surface water,suspended solids and sediments of the Ebro river basin,Spain [J].Chemosphere,2011,85 (8):1331-1340.
[14]LAURENSON J P,BLOOM R A,PAGE S,et al.Ethinyl estradiol and other human pharmaceutical estrogens in the aquatic environment:a review of recent risk assessment data [J].Aaps Journal,2014,16 (2):299-310.
[15]WANG D,SUI Q,ZHAO W,et al.Pharmaceutical and personal care products in the surface water of China:a review [J].Chinese Science Bulletin (Chinese Version),2014,59 (9):743-751.
[16]ZOU S,XU W,ZHANG R,et al.Occurrence and distribution of antibiotics in coastal water of the Bohai Bay,China:impacts of river discharge and aquaculture activities [J].Environmental Pollution,2011,159 (10):2913-2920.
[17]LUO Y,XU L,RYSZ M,et al.Occurrence and transport of tetracycline,sulfonamide,quinolone,and macrolide antibiotics in the Haihe River Basin,China [J].Environmental Science & Technology,2011,45 (5):1827-1833.
[18]ZHANG D D,LIN L F,LUO Z X,et al.Occurrence of selected antibiotics in Jiulongjiang River in various seasons,South China [J].Journal of Environmental Monitoring,2011,13 (7):1953-1960.
[19]CHEN H,LI X,ZHU S.Occurrence and distribution of selected pharmaceuticals and personal care products in aquatic environments:a comparative study of regions in China with different urbanization levels [J].Environmental Science and Pollution Research International,2012,19 (6):2381-2389.
[20]BU Q,WANG B,HUANG J,et al.Pharmaceuticals and personal care products in the aquatic environment in China:a review [J].Journal of Hazardous Materials,2013,262:189-211.
[21]SIMAZAKI D,KUBOTA R,SUZUKI T,et al.Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health [J].Water Research,2015,76:187-200.
[22]QIN L,TONG L,LIU H,et al.Biodegradation of sulfonamides and the pollution characteristics of sulfonamide resistance genes in the environment [J].Environmental Chemistry,2016,35 (5):875-883.
[23]JURADO A,VAZQUEZ S E,Carrera J,et al.Emerging organic contaminants in groundwater in Spain:a review of sources,recent occurrence and fate in a European context [J].Science of the Total Environment,2012,440:82-94.
[24]CHENG D,LIU X,ZHAO S,et al.Influence of the natural colloids on the multi-phase distributions of antibiotics in the surface water from the largest lake in North China [J].Science of the Total Environment,2017,578:649-659.
[25]HUBER S,REMBERGER M,KAJ L,et al.A first screening and risk assessment of pharmaceuticals and additives in personal care products in waste water,sludge,recipient water and sediment from Faroe Islands,Iceland and Greenland [J].Science of the Total Environment,2016,562:13-25.
[26]SANGSTER J L,OKE H,ZHANG Y,et al.The effect of particle size on sorption of estrogens,androgens and progestagens in aquatic sediment [J].Journal of Hazardous Materials,2015,299:112-121.
[27]LIU J C,LU G H,XIE Z X,et al.Occurrence,bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds in the downstream rivers of sewage treatment plants [J].Science of the Total Environment,2015,511:54-62.
[28]PERUCHI L M,FOSTIER A H,RATH S.Sorption of norfloxacin in soils:analytical method,kinetics and Freundlich isotherms [J].Chemosphere,2015,119:310-317.
[29]GOTTSCHALL N,TOPP E,METCALFE C,et al.Pharmaceutical and personal care products in groundwater,subsurface drainage,soil,and wheat grain,following a high single application of municipal biosolids to a field [J].Chemosphere,2012,87 (2):194-203.
[30]李娟,王沛芳,纪靓靓,等.抗生素在沉积物中的吸附机制及其影响因素 [J].四川环境,2013,32 (2):87-95.(LI Juan,WANG Peifang,JI Liangliang,et al.Mechanisms and influencing factors for sorption of antibiotics in sediments [J].Sichuan Environment,2013,32 (2):87-95.(in Chinese))
[31]MARTINEZ H V,MEFFE R,HERRERA S,et al.Sorption/desorption of non-hydrophobic and ionisable pharmaceutical and personal care products from reclaimed water onto/from a natural sediment [J].Science of the Total Environment,2014,472:273-281.
[32]郭志勇,花修艺,梁大鹏,等.自然水体生物膜、悬浮颗粒物和表层沉积物的轻、重组分对有机氯农药的吸附特征 [J].高等学校化学学报,2010,31 (5):919-926.(GUO Zhiyong,HUA Xiuyi,LIANG Dapeng,et al.Sorption characteristic of organoch lorine pesticides onto the lighter and heavier components of biofilms,suspended particles and surface sediments in natural water [J].Chemical Journal of Chinese Universities,2010,31 (5):919-926.(in Chinese))
[33]GONG J,RAN Y,CHEN D,et al.Association of endocrine-disrupting chemicals with total organic carbon in riverine water and suspended particulate matter from the Pearl River,China [J].Environmental Toxicology and Chemistry,2012,31 (11):2456-2464.
[34]PATROLECCO L,CAPRI S,ANGELIS S D,et al.Partition of nonylphenol and related compounds among different aquatic compartments in Tiber River (Central Italy) [J].Water,Air,and Soil Pollution,2006,172 (1/2/3/4):151-166.
[35]NIE M,YAN C,DONG W,et al.Occurrence,distribution and risk assessment of estrogens in surface water,suspended particulate matter,and sediments of the Yangtze Estuary [J].Chemosphere,2015,127:109-116.
[36]AHERNES L,TANIYASU S,YEUNG W Y,et al.Distribution of polyfluoroalkyl compounds in water,suspended particulate matter and sediment from Tokyo Bay,Japan [J].Chemosphere,2010,79 (3):266-272.
[37]DARWANO H,DUY S V,SAUVE S.A new protocol for the analysis of pharmaceuticals,pesticides,and hormones in sediments and suspended particulate matter from rivers and municipal wastewaters [J].Archives of Environmental Contamination and Toxicology,2014,66 (4):582-593.
[38]朱齐齐,赵鹏,张宏伟,等.天然水体中颗粒物吸附抗生素特征分析 [J].环境科学学报,2014,34 (5):1150-1156.(ZHU Qiqi,ZHAO Peng,ZHANG Hongwei,et al.Adsorption of antibiotics on the surface of aquatic particles [J].Acta Scientiae Circumstantiae,2014,34 (5):1150-1156.(in Chinese))
[39]BERGMAN A,HEINDEL J J,KASTEN T,et al.The impact of endocrine disruption:a consensus statement on the state of the science [J].Environmental Health Perspectives,2013,121 (4):A104-A106.
[40]BACKHAUS T,KARLSSON M.Screening level mixture risk assessment of pharmaceuticals in STP effluents [J].Water Research,2014,49:157-165.
[41]YAN C X,YANG Y,ZHOU J,et al.Selected emerging organic contaminants in the Yangtze Estuary,China:a comprehensive treatment of their association with aquatic colloids [J].Journal of Hazardous Materials,2015,283:14-23.
[42]DUAN Y P,MENG X Z,WEN Z H,et al.Multi-phase partitioning,ecological risk and fate of acidic pharmaceuticals in a wastewater receiving river:the role of colloids [J].The Science of the Total Environment,2013,447:267-273.
[43]LIU R X,WILDING A,HI A,et al.Partition of endocrine-disrupting chemicals between colloids and dissolved phase as determined by cross-flow ultrafiltration [J].Environmental Science & Technology,2005,39 (8):2753-2761.
[44]YAN C X,NIE M,YANG Y.Effect of colloids on the occurrence,distribution and photolysis of emerging organic contaminants in wastewaters [J].Journal of Hazardous Materials,2015,299 (15):241-248.
[45]龚剑,冉勇,黄文,等.内分泌干扰物在珠三角河水多相中的分配及风险 [J].生态毒理学报,2016,2:518-523.(GONG Jian,RAN Yong,HUANG Wen,et al.Partitioning and risk of endocrine-disrupting chemicals in multiphases of the rivers from the Pearl River Delta,China [J].Asian Journal of Ecotoxicology,2016,2:518-523.(in Chinese))
[46]CHENG D,LIU X,ZHAO S,et al.Influence of the natural colloids on the multi-phase distributions of antibiotics in the surface water from the largest lake in North China [J].Science of the Total Environment,2016,578:649-659.
[47]YAN C X,NIE M,YANG Y,et al.Effect of colloids on the occurrence,distribution and photolysis of emerging organic contaminants in wastewaters [J].Journal of Hazardous Materials,2015,299:241-248.
[48]YAN C X,NIE M,LEAD J R,et al.Application of a multi-method approach in characterization of natural aquatic colloids from different sources along Huangpu River in Shanghai,China [J].Science of the Total Environment,2016,554:228-236.
[49]张瑞昌,章海波,涂晨,等.pH,离子强度及电解质种类对纳米氧化锌聚集和溶解的影响 [J].环境化学,2014,33 (11):1821-1827.(ZHANG Ruichang,ZHANG Haibo,TU Chen, et al.Influence of pH,ionic strength,and electrolyte type on the aggregation and dissolution of zinc oxides nanoparticles [J].Environmental Chemistry,2014,33 (11):1821-1827.(in Chinese))
[50]刘为清,王慧云,李明远,等.离子强度对孤东4~#原油油滴表面ζ电位的影响 [J].西安石油大学学报(自然科学版),2006,2(16):61-64.(LIU Weiqing,WANG Huiyun,LI Mingyuan,et,al.Effect of ion strength on the ζ potential on the surface of the droplets of the crude oil from Gudong Oilfield [J].Journal of Xi’an Shiyou University(Natural Science Edition),2006,2(16):61-64.(in Chinese))
[51]王东升,张婷,晁宇.离子强度和离子类型对土霉素在草甸土中被吸附的影响 [J].生态环境学报,2014,23 (5):870-875.(WANG Dongshen,ZHANG Ting,CHAO Yu.Influence of different strength and species of cation on adsorption of oxytetracycline in meadow soils [J].Ecology and Environmental Sciences,2014,23 (5):870-875.(in Chinese))
[52]RAN Y,FU J M,SHENG G Y,et al.Fractionation and composition of colloidal and suspended particulate materials in rivers [J].Chemosphere,2000,41 (1/2):33-43.
[53]SAIERS J E,HOMBERGER G M.The influence of ionic strength on the facilitated transport of cesium by kaolinite colloids [J].Water Research,1999,35 (6):1713-1727.
[54]张劲强,董元华.阳离子强度和阳离子类型对诺氟沙星土壤吸附的影响 [J].环境科学,2007,28(10):2383-2388.(ZHANG Jinqiang,DONG Yuanhua.Influence of strength and species of cation on adsorption of norfloxacin in typical soils of China [J].Environment Science,2007,28 (10):2383-2388.(in Chinese))
[55]薛童,陈华,张依然,等.腐殖质化学的光谱研究新进展 [J].安徽农业科学,2012,40 (6):3833-3836.(XUE Tong,CHEN Hua,ZHANG Yiran,et al.Spectroscopy research progress of humus chemistry [J].Journal of Anhui Agricultural Sciences,2012,40 (6):3833-3836.(in Chinese))
[56]MANNINO A,HARVEY H R.Lipid composition in particulate and dissolved organic matter in the Delaware Estuary:sources and diagenetic patterns [J].Geochimica et Cosmochimica Acta,1999,63 (15):2219-2235.
[57]MAIE N,SCULLY N M,PISANI O,et al.Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems [J].Water Research,2007,41 (3):563-70.
[58]WILDING A,LIU R X,ZHOU J L.Dynamic behaviour of river colloidal and dissolved organic matter through cross-flow ultrafiltration system [J].Journal of Colloid and Interface Science,2005,287 (1):152-158.
[59]凌婉婷,徐建民,高彦征,等.溶解性有机质对土壤中有机污染物环境行为的影响 [J].应用生态学报,2004,15 (2):326-330.(LING Wanting,XU Jianmin,GAO Yanzheng,et al.Influence of dissolved organic matter(DOM) on environmental behaviors of organic pollutants in soils [J].Chinese Journal of Applied Ecology,2004,15 (2):326-330.(in Chinese))
[60]BACHMAN J,PATTERSON H H.Photodecomposition of the carbamate pesticide carbofuran:kinetics and the influence of dissolved organic matter [J].Environmental Science & Technology,1999,33 (6):874-881.
[61]YOUNG R B,LATCH D E,MAWHINNEY D B,et al.Direct photodegradation of androstenedione and testosterone in natural sunlight:inhibition by dissolved organic matter and reduction of endocrine disrupting potential [J].Environmental Science & Technology,2013,47 (15):8416-8424.
[62]CHIN Y P,MILLER P L,ZENG L,et al.Photosensitized degradation of bisphenol a by dissolved organic matter [J].Environmental Science & Technology,2004,38 (22):5888-5894.
[63]WANG L,XU H M,COPPER W J,et al.Photochemical fate of beta-blockers in NOM enriched waters [J].Science of the Total Environment,2012,426:289-295.
[64]MCPHEDRAN K N,SETH R,DROUILLARD K G.Investigation of hydrophobic organic carbon (HOC) partitioning to 1 kDa fractionated municipal wastewater colloids [J].Environmental Science & Technology,2013,47 (6):2548-2553.
[65]许珂敬,杨新春,许煜汾.表面活性剂在胶体制备过程中的作用 [J].中国有色金属学报,1998,8 (2):560-564.(XU Kejing,YANG Xinchun,XU Yufen.The role of surfactant in the preparation of colloid [J].The Chinese Journal of Nonferrous Metals,1998,8 (2):560-564.(in Chinese))
[66]GARON D,KRIVOBOK S,WOUESSIDJEWE D,et al.Influence of surfactants on solubilization and fungal degradation of fluorene [J].Chemosphere,2002,47 (3):303-309.
[67]杨建刚,刘翔,余刚,等.非离子表面活性剂溶液中多环芳烃的溶解特性 [J].环境科学,2003,24 (6):79-82.(YANG Jiangang,LIU Xiang,YU Gang,et al.Characterization of polycyclic aromatic hydrocarbons dissolved in nonionic surfactants [J].Environment Science,2003,24 (6):79-82.(in Chinese))
[68]肖洋,成浩科,唐洪武,等.水动力作用对污染物在河流水沙两相中分配的影响研究进展 [J].河海大学学报(自然科学版),2015,43 (5):480-488.(XIAO Yang,CHENG Haoke,TANG Hongwu,et al.Review of influence of hydrodynamic action on distribution of pollutants in water and sediment in river [J].Journal of Hohai University (Natural Sciences),2015,43 (5):480-488.(in Chinese))
[69]CHEN T C,YEH K J,KUO W C,et al.Estrogen degradation and sorption onto colloids in a constructed wetland with different hydraulic retention times [J].Journal of Hazardous Materials,2014,277:62-68.
[70]SUN W,ZHOU K.Adsorption of 17β-estradiol by multi-walled carbon nanotubes in natural waters with or without aquatic colloids [J].Chemical Engineering Journal,2014,258:185-193.
[71]ZHOU J L,LIU R,WILDING A,et al.Sorption of selected endocrine disrupting chemicals to different aquatic colloids [J].Environmental Science & Technology,2007,41 (1):206-213.
[72]BRODIN T,FICK J,JONSSON M,et al.Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations [J].Science,2013,339 (6121):814-815.
[73]DUONG C N,SCHLENK D,CHANG N I,et al.The effect of particle size on the bioavailability of estrogenic chemicals from sediments [J].Chemosphere,2009,76 (3):395-401.
[74]SANGSTER J L,ALI J M,SNOW D D,et al.Bioavailability and fate of sediment-associated progesterone in aquatic systems [J].Environmental Science & Technology,2016,50 (7):4027-4036.
[75]GERALD S.SCHUYTEMA F K,WILLIAM L.Comparative uptake of hexachlorobenzene by fathead minnows,amphipods and oligochaete worms from water and sediment [J].Environmenral Toxicology and Chemistry,1988,7 (12):1035-1045.
[76]SU Y,YAN X,PU Y,et al.Risks of single-walled carbon nanotubes acting as contaminants-carriers:potential release of phenanthrene in Japanese medaka (Oryzias latipes) [J].Environmental Science & Technology,2013,47 (9):4704-4710.
[77]ZHAI Y W,XIA X H,ZHAO X L,et al.Role of ingestion route in the perfluoroalkyl substance bioaccumulation by Chironomus plumosus larvae in sediments amended with carbonaceous materials [J].Journal of Hazardous Materials,2016,302:404-414.
[78]ZHANG X,XIA X,LI H,et al.Bioavailability of pyrene associated with suspended sediment of different grain sizes to daphnia magna as investigated by passive dosing devices [J].Environmental Science & Technology,2015,49 (16):10127-10135.
[79]胡冠九,陈素兰,穆肃,等.江苏省某市典型饮用水水源中抗生素质量浓度特征 [J].水资源保护,2016,32 (3):84-88.(HU Guanjiu,CHEN Sulan,MU Su,et al.Characteristics of concentrations of antibiotics in typical drinking water sources in a city in Jiangsu Province [J].Water Resources Protection,2016,32 (3):84-88.(in Chinese))
[80]姚晶晶,吴东海,陆光华,等.水环境中PPCPS检测技术及风险评价研究进展 [J].水资源保护,2017,33(6):76-81.(YAO Jingjing,WU Donghai,LU Guanghua,et al.Advances in aquatic PPCPs analysis technology and risk assessment [J].Water Resources Protection,2017,33(6):76-81.(in Chinese))
[81]杨勇.药物管理的现状及应对措施 [J].生物技术世界,2016,43:193-194.(YANG Yong.Present situation and countermeasures of drug management [J].A World of Biotechnology,2016,43:193-194.(in Chinese))
[82]王明明,许娜,唐云,等.食品中硝基呋喃类药物残留检测方法的研究进展 [J].中国畜牧兽医,2016,43 (8):2202-2207.(WANG Mingming,XU Na,TANG Yun,et al.Advance on detection methods for residues of nitrofurans in food [J].China Animal Husbandry and Veterinary Medicine,2016,43 (8):2202-2207.(in Chinese))