陈雅维
河南科技大学 化工与制药学院,河南 洛阳 471023
S-腺苷蛋氨酸 (S-adenosylmethionine, 简称SAM) 存在于所有生物细胞中,是维持细胞正常生理功能的一种活性小分子物质[1]。SAM在临床上应用广泛,对治疗急慢性肝病[2-3]、骨关节炎[4]、神经综合征[5]和抑郁症[6-7]等多种疾病都有一定的疗效。此外,SAM也常用于保健品和化妆品中。
SAM 工业化生产的方法主要有化学法、酶法、全细胞催化法和微生物发酵法。其中微生物发酵法生产 SAM具有工艺流程简单、产量高、底物廉价易得等优势而被广泛应用。酿酒酵母是美国 FDA认定的安全模式生物 (Generally recognized as safe,GRAS),常用于代谢工程改造生产药品及食品添加剂。此外,酿酒酵母中的S-腺苷蛋氨酸合成酶 (Methionine adenosyltransferase,MAT)活性高,而且还具备独特的液泡贮存 SAM 的机制,因此酿酒酵母作为主要的 SAM 天然发酵菌株被广泛使用。酿酒酵母发酵生产SAM的研究主要集中在发酵条件优化控制方面[8-10],少有基因工程[11-12]方面的研究,而且忽视了辅因子对于 SAM合成的重要影响。
辅因子是一类可以和蛋白结合并对蛋白行使正常催化功能所必需的非蛋白质类化合物。与传统的代谢工程针对酶分子的改造不同,辅因子工程通过直接调控细胞内关键酶的辅因子浓度和形式来实现代谢流的最大化,快速将碳物质流导向目标代谢产物[13]。作为胞内重要微环境的辅因子 ATP/ADP、NADH/NAD+、NADPH/NADP+等参与了微生物细胞内大量的代谢反应过程,将物质代谢途径串联或并联成复杂的网络体系,最终使得物质代谢流的分配受到辅因子形式和浓度的牵制。因此辅因子工程策略在微生物菌株改造方面将成为有利的工具,用于提高目标代谢物的浓度、产率、生产能力[14-15]以及增强微生物对于环境的耐受[16]等等。
SAM在微生物体内合成过程中受到底物L-蛋氨酸和ATP含量的限制。目前的做法通常是在培养基中加入 L-蛋氨酸以及调控发酵工艺来满足SAM 合成过程中对于限制性底物的需求。事实上,辅因子NADPH对于L-蛋氨酸的合成具有重要作用。如果能通过辅因子工程策略提高菌株自身的L-蛋氨酸合成能力,对于SAM高产菌株的构建具有重要意义。
本文通过代谢工程手段在酿酒酵母线粒体及细胞质中引入NADH激酶Pos5p,分别扰动细胞质及线粒体中的 NADPH水平,研究 NADPH变化对于 SAM合成的影响,并分析细胞氧化还原平衡扰动对于物质代谢及产物合成的影响。
实验中所用的菌株和质粒见表1。
实验中所用的引物列于表2。
表1 本研究所用菌株及质粒Table 1 Strains and plasmids in this study
表2 用于基因扩增的引物Table 2 Primers used for PCR
Phusion High-Fidelity DNA聚合酶和各种限制性内切酶均购自NEB公司。T4 DNA连接酶为TaKaRa (大连) 公司产品。2×TaqMix购自博迈德生物技术公司。SAM标准品及辅因子测定相关酶及试剂购自Sigma公司。酵母提取物、胰蛋白胨为Oxoid公司产品。其余试剂等均为国产。引物由华大科技 (北京) 公司合成。
以 pRSFD-POS5Δ17 为模板,SacⅠ-POS5Δ17-F/SalⅠ-POS5Δ17-R为引物,PCR扩增得到不带信号肽的POS5Δ17基因。以酿酒酵母基因组为模板,SacⅠ-POS5-F/SalⅠ-POS5-R为引物,PCR扩增得到POS5基因。分别将质粒pUC19-PTEF1-TPGI和目的基因POS5Δ17/POS5用SacⅠ/SalⅠ酶切,琼脂糖凝胶电泳,回收酶切片段,T4 DNA连接酶过夜连接,转化,菌落PCR,将筛得的阳性克隆接入LB培养基中,过夜培养,提取质粒送测。测序正确获得pUC19-PTEF1-POS5Δ17-TPGI和pUC19-PTEF1-POS5-TPGI。
分别以测序正确的重组质粒 pUC19-PTEF1-POS5Δ17-TPGI和 pUC19-PTEF1-POS5-TPGI为模板[17],以SpeⅠ-PTEF1-F/XmaⅠ-TPGI-R 为引物扩增获得带有NADPH再生基因表达盒的片段,并将基因片段和表达载体pRS425用SpeⅠ和XmaⅠ酶切,电泳,胶回收,过夜连接,转化E.coliTrans 10。将菌落PCR验证得到的阳性克隆单菌落接种至试管LB培养基中过夜培养,提质粒,送测,得到重组质粒 pRS425-PTEF1-POS5Δ17-TPGI和pRS425-PTEF1-POS5-TPGI。
培养50 mL酿酒酵母BY4741-MH,制备感受态并用醋酸锂法转化导入重组质粒,将菌液涂布在 SC选择性固体培养基平板上,30 ℃培养2–4 d。将长出的单克隆菌落接种至4 mL选择性SC液体培养基中,30 ℃摇床培养24–48 h。进行菌落PCR验证是否转入重组质粒。将含有重组质粒的菌液于选择性SC平板上划线,取单菌落再验证一次是否为目的菌株,将带有重组质粒的菌株保存至甘油管,用于后续的发酵实验。带有pRS425-PTEF1-POS5Δ17-TPGI的菌株命名为NBYSM-1,带有pRS425-PTEF1-POS5-TPGI的菌株命名为NBYSM-2,带有空质粒pRS425的菌株作为对照PBYSM-0。
以 pRSFD-POS5Δ17 为模板,SacⅠ-POS5Δ17-F/POS5Δ17(gfp)-R为引物,PCR扩增得到带有gfp重叠序列的POS5Δ17基因。以酿酒酵母基因组为模板,SacⅠ-POS5-F/POS5(gfp)-R为引物,PCR扩增得到带有gfp重叠序列的POS5基因。以pET28a-gfp为模板,以gfp(POS5)-F/SalⅠ-gfp(POS5)-R为引物,扩增得到带有POS5重叠序列的gfp片段。通过overlap PCR分别将POS5和gfp以及POS5Δ17和gfp融合在一起。分别将质粒 pUC19-PTEF1-TPGI和目的基因POS5-gfp和POS5Δ17-gfp用SacⅠ/SalⅠ酶切,按照 1.2.1所述的方法即可获得测序正确的重组质粒pUC19-PTEF1-POS5Δ17-gfp-TPGI和 pUC19-PTEF1-POS5-gfp-TPGI。同理,构建重组质粒pRS425-PTEF1-POS5Δ17-gfp-TPGI和 pRS425-PTEF1-POS5-gfp-TPGI,并进行酿酒酵母转化,获得阳性克隆菌株。
挑取划线纯化后的酿酒酵母单菌落接种于 YPD(10 g/L酵母粉,20 g/L 蛋白胨,20 g/L葡萄糖) 或者SC液体培养基中 (6.7 g/L YNB,20 g/L葡萄糖,1.4 g/L复合氨基酸,不含亮氨酸和尿嘧啶),30 ℃培养24 h。取300 μL 50%无菌甘油与700 μL种子发酵液均匀混合,置于–80 ℃超低温冰箱备用。
将斜面或者平板上的菌落接入 50 mL YPD或者 SC液体培养基中 (加入相应的氨基酸母液),30 ℃培养24 h获得种子液。
本实验所用的摇瓶发酵培养基为SC培养基和YPD培养基。按照初始OD600为0.1加入相应体积的种子液至摇瓶中,30 ℃培养。
取1 mL发酵液稀释一定倍数,使用分光光度计测定样品在600 nm波长下的吸光度作为菌体生物量。
发酵液离心后用10% (W/V) 高氯酸在30 ℃下振荡萃取2 h。13 000 r/min离心10 min,通过0.22 μm滤膜后,置于–20 ℃待测。
SAM的浓度测定采用HPLC (岛津,日本) 方法。色谱条件:C18色谱柱 (北京艾杰尔科技有限公司,中国);紫外检测器:260 nm;流动相:0.01 mol/L甲酸铵,用乙酸调节pH至3.5;流速:1.0 mL/min[18]。
乙醇和甘油等副产物使用HPLC方法 (赛默飞,美国) 测定。色谱条件为:色谱柱:HPX-87H(伯乐,美国);检测器:示差折光检测器和紫外检测器 (254 nm);柱温:50 ℃;流动相:5 mmol/L硫酸;流速:0.6 mL/min[19]。
胞内的 NADPH、NADP+、NADH和 NAD+的浓度采用循环酶催化法测定[20]。
已有文献报道NADH激酶Pos5p定位于酿酒酵母线粒体基质中[21]。为确保强启动子 PTEF1对于NADH激酶在细胞质及线粒体中的表达,分别将POS5和POS5Δ17基因[22]与gfp基因进行融合表达,利用激光共聚焦显微镜确定NADH激酶在细胞中的位置。从图1A可看出,未融合GFP的菌株没有产生荧光。图 1B表明不带信号肽的NADH激酶Pos5p定位于酿酒酵母细胞质中,使得整个细胞充满荧光。图 1C可明显看出有线状的荧光结构,这说明带信号肽的 NADH激酶Pos5p定位于酿酒酵母线粒体中,与文献报道的线粒体结构一致[21]。
图1 NADH激酶在酿酒酵母细胞中的定位 (A:对照菌BY4741;B:Pos5p (POS5Δ17编码) 在细胞质中的定位;C:Pos5p (POS5编码) 在线粒体中的定位)Fig.1 Localization of NADH kinase in the S.cerevisiae.(A) Control strain BY4741.(B) Pos5p(POS5Δ17 encoded) localized in the cytoplasm.(C)Pos5p (POS5 encoded) localized in the mitochondrion matrix.
分别研究了NADPH再生菌株在SC培养基中发酵15 h和24 h的胞内吡啶核苷酸水平,结果见图 2。重组菌 NBYSM-1和 NBYSM-2在不同发酵时间下,胞内的 NADPH水平和NADPH/NADP+均高于对照菌PBYSM-0。其中,发酵 15 h,菌株 NBYSM-2胞内的NADH/NAD+下降了36.83%,NADPH/NADP+提高了28.63%。菌株NBYSM-1胞内的NADH/NAD+下降了15.62%,NADPH/NADP+提高了11.96%。与发酵15 h的情况相似,发酵 24 h重组酿酒酵母 NBYSM-1胞内的NADPH/NADP+比率要远远高于 NBYSM-2,但是NADH/NAD+比率略低于NBYSM-2。
图2 NADPH调控策略改造菌株发酵不同时间胞内吡啶核苷酸的浓度变化 (A:发酵15 h胞内NAD+/NADH浓度以及NADH/NAD+比率;B:发酵15 h胞内NADP+/NADPH浓度以及NADPH/NADP+比率;C:发酵24 h胞内NAD+/NADH浓度以及NADH/NAD+比率;D:发酵24 h胞内NADP+/NADPH浓度以及NADPH/NADP+比率)Fig.2 Effects of the NADPH regulation strategy on the concentration of intracellular pyridine nucleotide in the control and recombinant strains under different cultivating time.Intracellular concentrations of NAD+/NADH and NADH/NAD+ratio at 15 h (A), concentrations of NADP+/NADPH and NADPH/NADP+ ratio at 15 h (B), concentrations of NAD+/NADH and NADH/NAD+ ratio at 24 h (C) and concentrations of NADP+/NADPH and NADPH/NADP+ ratio at 24 h (D) were evaluated.S0: PBYSM-0; S1: NBYSM-1; S2: NBYSM-2.
图3 NADPH调控策略对于不同菌株发酵的生物量 (A) 及SAM浓度 (B) 的影响Fig.3 Effects of the NADPH regulation strategy on the biomass (A) and SAM titer (B) in the control and recombinant strains.
从图3可以看出,对照菌株的生物量略高于重组菌株。可能是由于重组菌中的NADPH再生系统消耗NADH生成NADPH,而减少了NADH氧化磷酸化合成ATP的水平,从而使得菌体生长略低于对照菌。不同菌株胞内 SAM含量相差较大,其中NADPH再生的两株菌中胞内SAM含量均远远高于对照菌。与对照菌PBYSM-0相比,菌株 NBYSM-1发酵 24 h胞内 SAM浓度提高3.28倍,菌株NBYSM-2胞内SAM浓度提高1.79倍。而在NADPH再生的两株菌中,线粒体内NADPH再生的菌株 NBYSM-2胞内的 SAM 含量要低于NBYSM-1。其中发酵24 h,菌株NBYSM-1胞内SAM浓度比菌株NBYSM-2高1.8倍。
酿酒酵母中NADPH的产生来源主要是磷酸戊糖途径 (PPP) 的氧化部分以及异柠檬酸脱氢酶、乙醛脱氢酶和苹果酸酶的催化反应。但是操作 PPP氧化部分的葡萄糖-6-磷酸脱氢酶和 6-磷酸葡萄糖酸脱氢酶[23]以及异柠檬酸脱氢酶来调控酿酒酵母胞内NADPH水平,会消耗1个碳产生CO2,降低产物得率。此外,通过中心代谢途径的关键酶来调控胞内氧化还原平衡会对整体的代谢流产生较大影响。而通过引入单独靶向辅因子相关反应的酶能更有效直接地调控胞内辅因子水平,同时在尽量不影响其他物质代谢途径的前提下解析辅因子对产物合成的影响。
细菌来源的转氢酶可以将 NADH直接转化为NADPH。然而在酿酒酵母中表达转氢酶,却起到相反的催化效果,NADPH被转化为NADH[24]。另外一种方法则是引入ATP介导的NADH激酶将NADH转化为NADPH。尽管Pos5p被认为是酿酒酵母线粒体内NADPH的主要来源,关于它的机理研究还是不甚清晰[21]。从图2和图3中可知,菌株NBYSM-1胞内NADPH、NADPH/NADP+比率以及SAM浓度均高于对照菌PBYSM-0和重组菌NBYSM-2。这说明NADH激酶在酿酒酵母细胞质中的表达对 SAM 合成起到一定的促进作用。
图4 NADPH调控策略对菌株发酵中乙醇 (A) 和甘油 (B) 浓度的影响Fig.4 Effects of the NADPH regulation strategy on the ethanol titer (A) and glycerol titer (B) in the control and recombinant strains.
乙醇和甘油的生成都需要消耗NADH,但实际在好氧发酵条件下,乙醇和甘油的生成途径不同。甘油主要是由于发酵过程糖酵解中产生的过剩NADH被氧化而产生,而乙醇则是由有氧呼吸途径产生。理论上,NADH的减少均会影响甘油和乙醇这些 NADH依赖的副产物的生成。从图 4可看出,对照菌PBYSM-0和 NBYSM-1菌株生成的乙醇浓度相近,而线粒体中NADPH提高的菌株NBYSM-2乙醇浓度有所上升。由 图4 B可知,3株菌的甘油生成能力差异较为明显,重组菌株合成甘油的能力均有不同程度降低,其中NBYSM-2菌株的甘油浓度降低最多。有文献报道分别在细胞质中表达了形成水的 NADH氧化酶 (来源于肺炎链球菌的nox基因) 以及交替氧化酶 (来源于荚膜组织胞浆菌的aox基因),发现表达了aox基因的菌株中乙醇生成量大幅度下降,而表达nox基因的菌株的甘油生产量大大降低[25]。有报道表明通过敲除GDH1 (编码细胞质中NADPH依赖的谷氨酸脱氢酶) 改变细胞氧化还原平衡,会减少甘油的生成[26]。虽然 NADH激酶介导的NADPH再生系统是以消耗1分子NADH来产生1分子NADPH,但是胞内的NAD (H) 和NADP(H) 涉及到数个代谢网络的代谢反应,不能简单地用等比例换算来分析结果。
综上所述,甘油的减少和乙醇的增多是由于打乱了细胞复杂的氧化还原平衡所致。而NADH的减少和NADPH的增多,最终使得重组菌的细胞质和线粒体均处于略高的氧化态。从 SAM浓度的提高和副产物甘油、乙醇的变化可以看出,NADPH再生系统起到了一定的物质重新分配作用,消耗了NADH,提高了NADPH的胞内水平,从而促进了酿酒酵母中SAM的合成。
然而辅因子NADPH调控SAM合成的能力有限,最终没有获得 SAM产量的大幅度提升。这可能是由于辅因子牵涉胞内众多反应,难以实现产物定向调控。此外,SAM的合成过程不仅仅受到 NADPH的限制,ATP的不足同样会影响SAM的合成。因此,后续的研究可以考虑同时调控胞内ATP以及NADPH水平和比例,以进一步提高 SAM产量,为构建高产 SAM的菌株奠定基础。
[1]Lu SC.S-adenosylmethionine.Int J Biochem Cell Biol, 2000, 32(4): 391–395.
[2]Lieber CS, Packer L.S-adenosylmethionine:molecular, biological, and clinical aspects—an introduction.Am J Clin Nutr, 2002, 76(5):1148S–1150S.
[3]Anstee QM, Day CP.S-adenosylmethionine (SAMe)therapy in liver disease: a review of current evidence and clinical utility.J Hepatol, 2012, 57(5):1097–1109.
[4]Blewett HJH.Exploring the mechanisms behindS-adenosylmethionine (SAMe) in the treatment of osteoarthritis.Crit Rev Food Sci Nutr, 2008, 48(5):458–463.
[5]Bottiglieri T.S-adenosyl-L-methionine (SAMe):from the bench to the bedside—molecular basis of a pleiotrophic molecule.Am J Clin Nutr, 2002, 76(5):1151S–1157S.
[6]van der Watt G, Laugharne J, Janca A.Complementary and alternative medicine in the treatment of anxiety and depression.Curr Opin Psychiatry, 2008, 21(1): 37–42.
[7]Williams AL, Girard C, Jui D, et al.S-adenosylmethionine (SAMe) as treatment for depression: a systematic review.Clin Invest Med,2005, 28(3): 132–139.
[8]Han GQ, Hu XQ, Wang XY.Co-production ofS-adenosyl-L-methionine and L-isoleucine inCorynebacterium glutamicum.Enzyme Microb Technol, 2015, 78: 27–33.
[9]Wei XN, Cao MJ, Li J, et al.Synthesis of S-adenosyl-L-methionine inEscherichiacoli.Biotechnol Bioproc Eng, 2014, 19(6): 958–964.
[10]Kant HR, Balamurali M, Meenakshisundaram S.Enhancing precursors availability inPichia pastorisfor the overproduction ofS-adenosyl-L-methionine employing molecular strategies with process tuning.J Biotechnol, 2014, 188: 112–121.
[11]Dippe M, Brandt W, Rost H, et al.Rationally engineered variants ofS-adenosylmethionine (SAM)synthase: reduced product inhibition and synthesis of artificial cofactor homologues.Chem Commun,2015, 51(17): 3637–3640.
[12]Kanai M, Masuda M, Takaoka Y, et al.Adenosine kinase-deficient mutant ofSaccharomyces cerevisiaeaccumulatesS-adenosylmethionine because of an enhanced methionine biosynthesis pathway.Appl Microbiol Biotechnol, 2013, 97(3): 1183–1190.
[13]Kim S, Hahn JS.Efficient production of 2,3-butanediol inSaccharomyces cerevisiaeby eliminating ethanol and glycerol production and redox rebalancing.Metab Eng, 2015, 31: 94–101.
[14]Semkiv MV, Dmytruk KV, Abbas CA, et al.Increased ethanol accumulation from glucose via reduction of ATP level in a recombinant strain ofSaccharomyces cerevisiaeoverexpressing alkaline phosphatase.BMC Biotechnol, 2014, 14(42): 1–9.
[15]Siedler S, Lindner SN, Bringer S, et al.Reductive whole-cell biotransformation withCorynebacterium glutamicum: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway usingpfkA andgapA deletion mutants.Appl Microbiol Biotechnol, 2013, 97(1): 143–152.
[16]Shima J, Ando A, Takagi H.Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening ofSaccharomyces cerevisiaedeletion strains.Yeast, 2008, 25(3): 179–190.
[17]Chen YW, Xu DB, Fan LH, et al.Manipulating multi-system of NADPH regulation inEscherichia colifor enhancedS-adenosylmethionine production.RSC Adv, 2015, 5(51): 41103–41111.
[18]Chen YW, Lou SY, Fan LH, et al.Control of ATP concentration inEscherichia coliusing synthetic small regulatory RNAs for enhancedS-adenosylmethionine production.FEMS Microbiol Lett, 2015, 362(15): fnv115.
[19]Wang MM, Fan LH, Tan TW.1-Butanol production from glycerol by engineeredKlebsiella pneumoniae.RSC Adv, 2014, 4(101): 57791–57798.
[20]Bernofsky C, Swan M.An improved cycling assay for nicotinamide adenine dinucleotide.Anal Biochem, 1973, 53(2): 452–458.
[21]Outten CE, Culotta VC.A novel NADH kinase is the mitochondrial source of NADPH inSaccharomyces cerevisiae.EMBO J, 2003, 22(9): 2015–2024.
[22]Strand MK, Stuart GR, Longley MJ, et al.POS5 gene ofSaccharomyces cerevisiaeencodes a mitochondrial NADH kinase required for stability of mitochondrial DNA.Eukaryot Cell, 2003, 2(4):809–820.
[23]Bruinenberg PM.The NADP(H) redox couple in yeast metabolism.Antonie van Leeuwenhoek, 1986,52(5): 411–429.
[24]Nissen TL, Anderlund M, Nielsen J, et al.Expression of a cytoplasmic transhydrogenase inSaccharomyces cerevisiaeresults in formation of 2-oxoglutarate due to depletion of the NADPH pool.Yeast, 2001, 18(1): 19–32.
[25]Vemuri GN, Eiteman MA, McEwen JE, et al.Increasing NADH oxidation reduces overflow metabolism inSaccharomyces cerevisiae.Proc Natl Acad Sci USA, 2007, 104(7): 2402–2407.
[26]dos Santos MM, Thygesen G, Kötter P, et al.Aerobic physiology of redox-engineeredSaccharomyces cerevisiaestrains modified in the ammonium assimilation for increased NADPH availability.FEMS Yeast Res, 2003, 4(1): 59–68.