赵莉娜 李嘉蔚 刘国成
[摘要] 目的 探討早发型重度子痫前期患者血清及胎盘组织中非对称二甲基精氨酸(ADMA)和二甲基精氨酸二甲胺水解酶(DDAH)的表达及其之间的相关性,揭示二者在疾病发生发展中的作用机制,从发病机制方面寻求疾病早期诊疗依据。 方法 选取2017年1月~2018年1月于广东省妇幼保健院(以下简称“我院”)住院的45例重度子痫前期孕妇作为实验组,其中早发型重度子痫前期组25例、晚发型重度子痫前期组20例。选择同期在我院待产的35名健康孕妇作为对照组。采用酶联免疫吸附实验(ELISA)检测血清中ADMA与DDAH2的表达水平及免疫组化SP法检测两组胎盘组织中ADMA与DDAH2的表达水平。采用Spearman线性相关分析进行相关性分析。 结果 外周血清中,ADMA在早发型重度子痫前期组中的表达水平显著高于晚发型组及对照组(P < 0.05);晚发型重度子痫前期组显著高于对照组(P < 0.05);早发型重度子痫前期组显著低于晚发型组及对照组(P < 0.05);晚发型重度子痫前期组显著低于对照组(P < 0.05)。在胎盘组织中,早发型重度子痫前期患者ADMA阳性染色率显著高于晚发型组(P < 0.05),晚发型重度子痫前期组显著高于对照组(P < 0.05);早发型重度子痫前期组显著低于晚发型组(P < 0.05),晚发型重度子痫前期组患者胎盘组织中DDAH2阳性表达率显著低于对照组(P < 0.05)。早发型重度子痫前期组患者DDAH2与ADMA在外周血清及胎盘中表达呈显著负相关(r = -0.77,P < 0.05)。 结论 早发型重度子痫前期患者外周血清及胎盘组织中ADMA表达水平显著升高,DDAH2显著下降,且两者呈负相关性。提示ADMA和DDAH2与早发型重度子痫前期发病密切相关。两者可能通过作用血管内皮细胞损伤,影响滋养细胞浸润,参与早发型重度子痫前期疾病的发生和发展。
[关键词] 早发型重度子痫前期;滋养细胞;ADMA;DDAH2
[中图分类号] R714.244 [文献标识码] A [文章编号] 1673-7210(2018)12(c)-0071-05
[Abstract] Objective To discuss the expression of ADMA and DDAH2 in plasma and placental and the correlation between the two factors in early onset severe preeclampsia (EPSP). To approach the possible role of DDAH2 and ADMA in the pathogenesis and progression of EPSP. And to seek the basis of early diagnosis and treatment of disease based on pathogenesis. Methods From January 2017 to January 2018, 45 cases with severe preeclampsia in Guangdong Maternal and Child Health Hospital ("our hospital" for short) were selected as the experimental group, of which 25 cases in early onset severe preeclampsia group, 20 cases in late onset severe preeclampsia group, and 35 healthy pregnant women delivery in our hospital during the same period were selected as the control group. The expression levels of ADMA and DDAH2 in sera and placenta tissues of two groups were detected with Enzyme-linked immunosorbent assay (ELISA). Spearman linear correlation analysis was used for correlation analysis. Results The expression level of ADMA in serum of early-onset severe preeclampsia was significantly higher than that of later onset severe preeclampsia and control group (P < 0.05). The expression level of ADMA of later onset severe preeclampsia in serum was significantly higher than that of control group (P < 0.05). The expression level of DDAH2 of in serum of early onset severe preeclampsia group was significantly lower than that of later onset severe preeclampsia group and control group (P < 0.05). The expression level of DDAH2 in serum of later onset severe preeclampsia group was significantly lower than that of control group (P < 0.05). The positive staining rate of ADMA in the placenta tissues of early onset severe preeclampsia was significantly higher than that of late onset severe preeclampsia (P < 0.05). The positive staining rate of ADMA in the placenta tissue of late onset severe preeclampsia was significantly higher than that of control group (P < 0.05). The positive staining rate of DDAH2 in the placenta tissues of early onset severe preeclampsia was significantly lower than that of late onset severe preeclampsia (P < 0.05). The positive staining rate of DDAH2 in the placenta tissues of late onset severe preeclampsia was significantly lower than that of control group (P < 0.05). The expression levels of DDAH2 and ADMA in serum and in the placenta tissues of earlyonset severe preeclampsia appeared in a obvious negative correlation (r = -0.77, P < 0.05). Conclusion The significantly higher expression level of ADMA and the significantly lower expression level of DDAH2 in serum and in the placenta tissue of early onset severe preeclampsia, they are negatively correlated. ADMA and DDAH2 are closely related to early onset severe preeclampsia. They may interact with each other in the process of trophoblast infiltration and participate pathogenesis of the early onset severe preeclampsia.
[Key words] Early onset severe preeclampsia; Trophoblast cells; ADMA; DDAH2
目前我国妊娠期高血压高发,已成为卫生事业急需解决的难题之一,提早干预,有效防范疾病的发生,减轻临床症候群及不良预后,保障母婴安全具有重要意义[1]。早发型重度子痫前期发病早,病情重,威胁母婴健康,发病机制更倾向于通过影响胎盘血管重塑,引发的胎盘源性疾病,以母胎界面免疫耐受异常、血管内皮细胞激活和损伤,重塑障碍为目前研究热点[2]。一氧化氮(NO)作为内源性血管舒张因子,表达异常及活性降低可导致血管内皮功能活性失调和疾病的发生息息相关[3]。
内源性抑制物非对称二甲基精氨酸(asymmetric dimethylarginine,ADMA)和二甲基精氨酸二甲胺水解酶(dimethylarginine dimethylamine hydrolase,DDAH)在通过影响酶的活性来调节NO的表达生成,在血管内皮激活与损伤的发生发展中起重要作用。晚发型发病晚,程度轻,发生过程更倾向于母体性疾病,是长期以来机体与疾病耐受平衡失调的过程。
本研究通过研究早发型重度子痫前期患者血清及胎盘组织中ADMA与DDAH2的表达异常及两者相关性,从影响NO合成及活性表达机制,与内皮损伤和/或激活等相关方面探讨ADMA与DDAH2异常分泌与疾病发展变化的关系,以及两因子在内皮损伤,免疫遗传因素方面所起的作用,以期为早发型重度子痫前期的早期诊治提供新的依据。
1 对象与方法
1.1 研究对象
选取2016年5月~2017年5月在广东省妇幼保健院(以下简称“我院”)住院并符合入组条件的孕妇80例作为研究组。三组的入组条件:①符合诊断标准[4];②单胎初产妇;③剖宫产终止妊娠。排除标准:伴有原发性高血压、心血管病、糖尿病、内分泌疾病(如甲状腺功能异常)、肝肾疾病等合并症。研究组包括25例早发型重度子痫前期组(≤34周)和20例晚发型重度子痫前期组(>34周);另外同期在我院待产的35名健康孕妇作为对照组。子痫前期的诊断标准参考第8版《妇产科学》[4],早发型组平均年龄(29.1±2.6)岁,平均孕龄(32.2±1.5)周;晚发型组平均年龄(28.8±3.3)岁,平均孕龄(36.4±1.1)周;对照组平均年龄(28.9±2.1)岁,平均孕龄(37.5±2.8)周。三组年龄、孕龄差异无统计学意义(P > 0.05),具有可比性。研究對象均知情同意并签署知情同意书。
1.2 样本的采集和检测
1.2.1 血清胎盘样本的收集 实验组住院后未经药物治疗,采集两组空腹肘静脉血约6 mL,室温下放置30 min,后置于4℃,离心机的离心半径为22.5 cm,2500 r/min离心15 min,分离血清,保存在-70℃冰箱冻存待测。胎盘标本:胎盘娩出后即刻取近脐带处避开钙化点及血管密集区,取胎盘组织约1.5 cm×1.0 cm×0.5 cm大小,生理盐水冲洗,滤纸吸干,用液氮短暂冷冻后保存在-70℃冰箱待测。
1.2.2 血清ADMA与DDAH2的检测 采用酶联免疫吸附试验(ELISA)检测试验对象血清中ADMA和DDAH2的浓度,ADMA试剂及DDAH2试剂分别购自广州一科生物有限公司(生产批号:20170806)和武汉博士德公司(生产批号:20170713)。具体步骤严格按照说明书依次进行标准品稀释、加样、温育、洗涤、加酶、温育、洗涤、显色、终止、测定。
1.2.3 胎盘组织ADMA与DDAH2的表达 采用免疫组化SP法。取各组胎盘标本,包埋、切片、脱蜡,3%过氧化氢灭活内源性酶,修复抗原,加山羊血清封闭液,第一抗体,漂洗后依次滴加生物素化二抗(IgG)和SABC试剂,DAB显色,苏木精复染。结果判定:胎盘滋养细胞、血管内皮细胞的细胞核上呈现棕黄色染色为阳性,无着色或与背景颜色一致为阴性;参照Fromowitz综合计分法[5],根据切片中棕黄色阳性细胞的数量比例及染色信号的强弱进行判断:A、按阳性细胞百分率计分:阳性细胞数<l%为0分,阳性细胞数1%~25%为1分,阳性细胞数>25%~50%为2分;阳性细胞数>50%为3分;B、按染色信号强弱计分:未染色为0分,淡黄色为1分,黄色2分,棕黄色为3分;将A、B综合统计得分相乘,结果分4组:0分为阴性(-),1~3分为弱阳性(+),4~6分为阳性(++),9分为强阳性(+++)。
1.3 统计学方法
采用SPSS 18.0统计学软件进行数据分析,计量资料用均数±标准差(x±s)表示,两组间比较采用t检验;计数资料用率表示,组间比较采用χ2检验;关性分析采用Spearman相关分析;以P < 0.05为差异有统计学意义。
2 结果
2.1 三组外周血清中ADMA和DDAH2水平比较
外周血清中ADMA在早发型重度子痫前期组表达水平均显著高于晚发型重度子痫前期组和对照组(P < 0.05);血清中ADMA水平在晚发型重度子痫前期组显著高于对照组(P < 0.05)。此外,外周血清中DDAH2表达水平在早发型重度子痫前期组表达水平显著低于晚发型重度子痫前期组及对照组(P < 0.05);而晚发型重度子痫前期组外周血清中DDAH表达水平显著低于对照组(P < 0.05)。见表1。
2.2 三组胎盘ADMA和DDAH2表达率比较
早发型重度子痫前期组胎盘组织中ADMA阳性表达率显著高于晚发型重度子痫前期组及对照组(P < 0.05),晚发型重度子痫前期组胎盘组织中ADMA阳性表达率显著高于对照组(P < 0.05)。见表2。早发型重度子痫前期组胎盘组织中DDAH2阳性染色率显著低于晚发型重度子痫前期组(P < 0.05),晚发型重度子痫前期组胎盘组织中DDAH2阳性染色率显著低于对照组(P < 0.05)。见表3。
2.3 ADMA/DDAH2在血清中表达的相关性分析
Pearson相关系数分析显示,早发型重度子痫前期患者血清中ADMA表达水平与DDAH2呈负相关(r = -0.77,P < 0.05)。
3 讨论
ADMA是一种内源性NOS抑制剂,可抑制NOS的活性,减少NO的合成,广泛分布于血浆、血管内皮细胞、肝脏、肾脏组织及体液中,是体内各种多肽L-精氨酸残基发生甲基化和水解而释放的蛋白代谢物,血浆中AMDA主要经DDAH水解代谢而失活。动物和人体试验均显示ADMA表达异常与重度子痫前期的胎盘血管收缩异常密切相关[6]。研究发现高脂喂食母鼠,其雄性子代肠系膜动脉DDAH2表达下降,DDAH2/ADMA/eNOS/NO通路异常表达[7],NO生成减少,血管舒张/收缩平衡失调,导致血压增高。高浓度ADMA作用下大鼠血管内皮功能遭到破坏,舒缩功能紊乱,引发血压升高[8]。糖脂代谢紊乱患者血浆中ADMA高表达,高糖刺激氧化应激增强,血管舒缩紊乱,导致血压升高,血浆中L-精氨酸替代ADMA可逆转内皮损伤诱发的高血压[9]。文献报道子痫前期患者血中ADMA表达水平在临床症状出现前就显著升高[8]。Seppa[10]在并发早发型重度子痫前期10周前血清ADMA浓度显著升高,认为ADMA高表达是作为高血压发病的预警。给外源性NOS抑制剂后,哺乳动物可出现类似子痫前期的临床表现[11]。
本研究结果显示血清中ADMA水平在三组间差异有统计学意义(P < 0.05),ADMA在早发型重度子痫前期组血清中明显高表达,与以上研究结果相符,推测其可能的作用机制如下:①ADMA过度表达可以通过调节L-精氨酸/eNOS/NO通路,竞争性的抑制eNOS生物活性,同时作为转运体的竞争性抑制剂干扰L-精氨酸细胞转运,使内源性NO生成减少,影响内皮依赖性血管舒张功能和内皮保护作用[12-13],造成血管内皮损伤,功能障碍,破坏机体血流动力学水平[14],诱发子痫前期发生。②ADMA还可抑制抗氧化物质分泌如SOD、GSH-Px、CAT、SVCT,促进炎症介质、氧自由基分泌,造成胎盘中滋养细胞及内皮细胞氧化损伤外,还会激活凋亡程序诱导滋养细胞凋亡[15-16],造成胎盘滋养细胞浅着床,诱发子痫前期发生。近年来缺乏对胎盘AMDA的表达水平的系统性研究,本研究结果显示,ADMA在早发型重度子痫前期患者胎盘组织中高表达,推测胎盘组织高分泌ADMA,通过胎盘匀浆,弥散到外周血管组织,通过以上血管损伤,滋养细胞凋亡等作用机制发挥作用,引起血管内皮细胞受损,打破母胎界面免疫耐受平衡,同时参与滋养细胞凋亡,胎盘血管完整性受损,绒毛发育异常,相继引发早发型重度子痫前期的各种病变,检测孕妇体内ADMA水平也许可以作为反应胎盘功能的一项指标。
DDAH2是一种胞质蛋白酶,可降解人体内90%的ADMA,主要分布于血管内皮细胞,妊娠后DDAH2主要于心血管和胎盘组织中[17],其基因的多态性与ADMA表达水平及活性相关。高血压、高血脂和糖尿病患者的血浆中DDAH2的低转录、低表达和活性减弱与ADMA表达增加密切相关。研究发现离体血管导入hDDAH2重组腺病毒,发生粥样硬化的家兔血管中DDAH2的表达水平提高,活性增强,使内皮舒张功能加强,降低全身血压[18]。
本研究通过免疫组织化学法检测各组胎盘中DDAH2表达主要位于胎盘内皮细胞核上,其染色率在早发型重度子痫前期组表达明显下降,正常妊娠胎盘组织高度表达DDAH2,可能参与清除胎盘ADMA,减少内皮损伤,维持血压稳定。早发型重度子痫前期组血清及胎盘DDAH2表达明显下调,降解ADMA能力受限,ADMA在体内聚集,推测其作用机制:通过影响ERK1/2-CREB信号通路,竞争内皮细胞eNOS,使其表达下调及降低NO生成,体内收缩因子/舒张因子平衡失调,加重胎盘血管内皮细胞损伤及提高全身微小血管的紧张性。另外,子痫前期合并高糖高脂等糖脂代谢紊乱可抑制DDAH的活性,NO合成减少,内皮依赖性血管舒张作用减弱,促使血压升高[19]。
综上所述,早发型重度子痫前期血清及胎盘组织中ADMA表达显著升高,DDAH2表达显著下降,两者影响内皮损伤和胎盘缺血学说的原因之一,故本研究着手于胎盘源性方面深入探讨早发型重度子痫前期相关病理生理改变。通过对ADMA与DDAH2在各组孕妇血清胎盘中差异表达分析,推测两者异常表达与胎盘血管内皮损伤,母胎免疫失衡,子痫前期的病理生理密切相关,可能成为早发型重度子痫前期病变的干预靶点和观测指标;深入研究ADMA与DDAH2基因多态性与早发型重度子痫前期的关系,可以从基因诊断和基因治疗角度进一步为子痫前期的早期诊断评估治疗等方面提供新的理论依据。寻找基因干预靶点,从基因水平活化或灭活ADMA与DDAH2蛋白活性,可能为疾病治疗提供新的临床思路。
[参考文献]
[1] 米杰.心血管病的发育起源及早期干预窗口期[J].中华预防医学杂志,2016(1):1-3.
[2] Raymond D,Peterson E. A critical review of early-onset and late-onset preeclampsia [J]. Obstet Gynecol Surv,2011, 66(8):497-506.
[3] 張丹,张炯,王金泉.非对称性二甲基精氨酸在慢性肾病中的研究进展[J].医学研究生学报,2018,31(01):83-87.
[4] 谢幸、苟文丽.妇产科学[M].8版.北京:人民卫生出版社,2013:64-67.
[5] Fromowitz FB,Viola MV,Chao S,et al. Ras p21 expression in the progression of breast cancer [J]. Hum Pathol,1987,18(12):1268
[6] von Leitner EC,Klinke A,Atzler D,et al. Pathogenic cycle between the endogenous nitric oxide synthase inhibitor asymmetrical dimethylarginine and the leukocyte-derived hemoprotein myeloperoxidase [J]. Circulation,2011,124(24):2735-2745.
[7] Zhang J,Liu J,Li Z,et al. Dysfunction of endothelial NO system originated from homocysteine-induced aberrant methylation pattern in promoter region of DDAH2 gene [J]. Chin Med J,2007,120(23):2132-2137.
[8] Anderssohn M,Maa?覻 LM,Diemert A,et al. Severely decreased activity of placental dimethylarginine dimethylaminohydrolase in pre-eclampsia [J]. Eur J Obstet Gynecol Reprod Biol,2012,161(2):152-156.
[9] Das UN,Repossi G,Dain A,et al. L-arginine,NO and asymmetrical dimethylarginine in hypertension and type 2 diabetes [J]. Front Biosci,2011,16(1):13-20.
[10] Seppa N. Preeclampsia progress:Blood test for predicting pregnancy problems [J]. Science News,2003,163(19):293-293.
[11] Bahtiyar MO,Buhimschi C,Ravishankar V,et al. Contrasting effects of chronic hypoxia and nitric oxide synthase inhibition on circulating angiogenic factors in a rat model of growth restriction [J]. Am J Obstet Gynecol,2007,196(1):72.el-e6.
[12] Zheng JJ,Wang HO,Huang M,et al. Assessment of ADMA,estradiol,and progesterone in severe preeclampsia [J]. Clinical and Experimental Hypertension,2016,38(4):347-351.
[13] Gumus E,Atalay MA,Cetinkaya Demir B,et al. Possible role of asymmetric dimethylarginine (ADMA) in prediction of perinatal outcome in preeclampsia and fetal growth retardation related to preeclampsia [J]. J Matern Fetal Neonatal Med,2016,29(23):3806-3811.
[14] Ghebremariam YT,Erlanson DA,Yamada K,et al. Development of a dimethylarginine dimethylaminohydrolase (DDAH) assay for high-throughput chemical screening [J]. J Biomol Screen,2012,17(5):651-661.
[15] Alacam H,Dikmen ZG,Yaman H,et al. The role of asymmetric dimethyl arginine and oxidant/antioxidant system in preeclampsia [J]. Fetal Pediatr Pathol,2011,30(6):387-393.
[16] 向蘭花,周小峰,钟敏.子痫前期患者血清中sEng,ADMA含量与胎盘缺氧损伤,细胞凋亡的相关性[J].海南医学院学报,2017,23(5):627-630.
[17] Pope AJ,Karuppiah K,Cardounel AJ. Role of the PRMT-DDAH-ADMA axis in the Regulation of Endothelial Nitric Oxide Production [J]. Pharmacol Res,2009,60(6):461-465.
[18] 冯梅.体外转染二甲基精氨酸二甲胺水解酶改善高胆固醇血症兔胸主动脉内皮功能不全[D].长沙:中南大学,2005.
[19] Tsukahara H,Ohta N,Tokuriki S,et al. Determination of asymmetric dimethylarginine,an endogenous nitric oxide synthase inhibitor,in umbilical blood [J]. Metabolism,2008,57(2):215-220.
(收稿日期:2018-04-20 本文编辑:任 念)