徐 进 李 红,2,3 雷 怡,2,3
情境信息对模糊表情识别的影响及其作用机制*
徐 进1李 红1,2,3雷 怡1,2,3
(1深圳大学心理与社会学院;2深圳市情绪与社会认知科学重点实验室;3深圳市神经科学研究院, 深圳 518000)
识别模糊表情对人类社会交往具有重要意义。研究者们发现, 情境信息影响模糊表情识别。基于此, 文章探究了影响模糊表情识别的五种情境信息, 包括文字描述、情绪表情、颜色背景、嗅觉信号和人格因素, 旨在揭示情境信息影响人类识别模糊表情的作用机制。未来研究可以从突出模糊表情的主体研究地位、清晰界定情境信息、探索新的研究范式以及明确影响效价转移的脑区四个方面入手, 进一步拓宽模糊表情识别研究领域。
情境信息; 模糊表情; 效价转移
人类识别面部表情的能力在人际互动中十分必要, 它是人类适应环境的重要手段之一。试想一下, 生活中的我们无时无刻不在解读他人的表情, 其中既有熟人的表情, 也有陌生人的表情。识别他人的面部表情有助于个体快速地判断环境和周围人的信息, 从而作出恰当的行为反应, 如在特定的情形下是该趋近还是该远离他人。然而, 我们遇到的面部表情常常处于大量的情境信息之中, 这些信息又会影响人们加工面部表情(Aviezer, Hassin & Bentin, 2013), 因此对面部表情的识别受到表情自身情绪和情境信息的双重影响(Herring, Taylor, White & Crites, 2011; Neta, Davis & Wahlen, 2011; Righart & de Gelder, 2008a, 2008b)。研究者已经考察了多种情境信息对那些效价明确(积极或消极)且情绪强度较高的面部表情(如:高兴、愤怒、悲伤)识别的影响, 一致地发现了这类表情识别具有情境效应, 即当情境信息与表情效价一致时会促进人们的表情识别, 而当情境信息与表情效价不一致时则会阻碍人们的表情识别(Barrett, Mesquita & Gendron, 2011; Wieser & Brosch, 2012)。
除了那些效价明确且情绪强度较高的表情外, 人们在现实生活中还会面对一些效价不明确或情绪强度较低的模糊表情。Neta等(2011)认为模糊表情(ambiguous expressions)是一种效价不清晰的表情, 人们对此类表情的效价判断往往由情境信息的效价决定。因此, 模糊表情常被用于评估个体的积极—消极偏见。此外, Todorov (2011)也认为模糊表情的情绪信息得不到有效的利用, 因此需要从效价和注意优势两个维度对其进行评估。基于此, 本文将受到情境信息影响并能发生效价转移的面部表情统称为模糊表情, 包括情绪强度较低的中性表情(Frühholz, Trautmann-Lengsfeld & Herrmann, 2011)、情绪强度较高但效价不明确的惊讶表情(Adolphs, 2002; Kim, et al., 2004)和歧义表情(一般由积极表情和消极表情混合而成) (Zhou & Chen, 2009)。由于模糊表情的多样性和情境信息的复杂性使得此类研究错综复杂, 本文以此为出发点回顾前人研究, 探究了影响模糊表情识别的五类情境信息, 包括文字描述、情绪表情、颜色背景、嗅觉信号和人格因素, 旨在揭示情境信息影响人类识别模糊表情的作用机制。
Barrett等(2011)认为文字描述作为情境信息影响表情识别, 是因为对表情的情绪感知可以通过文字知识在感知者心中进行建构, 从而为表情肌肉动作赋予意义。因此, 在被试识别孤立表情时为其提供文字描述都是潜在地提供一种塑造感知加工的情境。这里我们回顾前人研究并将此类情境信息划分为自我参照性情境信息和社会性情境信息两类, 以此总结文字描述影响模糊表情识别的一般规律。
Herbert等(2011a, 2011b)的研究发现, 当情境信息具有自我参照性时能在很大程度上改变人们对此信息的感知。例如, 与他人参照性情境信息(如:他的快乐)相比, 人们在加工自我参照性情境信息(如:我的快乐)时杏仁核的激活程度更强。
Schwarz, Wieser, Gerdes, Mühlberger和Pauli (2013)的fMRI研究中将情境信息作为中性表情的启动刺激, 情境信息包含两个维度, 分别是参照性(自我、他人)和效价(正性、负性), 如“她/他认为你是有能力的”即自我参照正性条件, 而“他/她认为张三是没能力的”即他人参照负性条件, 要求被试观看完情境信息后评价中性表情的效价和唤醒度。结果表明, 自我参照条件下中性表情的效价强度要显著高于他人参照条件, 即正性效价下的表情被评价为更正性, 负性效价下的表情被评价为更负性。同时, 与他人参照条件相比, 自我参照条件下的中性表情诱发了内侧前额皮层(mPFC)和右侧梭状回(right Fusiform Gyrus)更强的活动, 说明自我参照性促进了前额对情境信息的加工, 引发了对中性表情的情绪性评价, 同时激活了梭状回等面部表征区域。后来Wieser等(2014)的研究中采用了时间分辨率较高的ERP技术探究此类问题, 行为结果与Schwarz等(2013)的行为结果一致。在ERP成分上发现, 与他人参照条件相比, 中性表情在自我参照条件下引起了较强的晚期成分EPN和LPP, 而早期成分P1和N170并未因启动刺激类型的不同而出现差异, 这表明中性表情需要一定的时间才能获得自我参照性情境信息中的情绪色彩, 所以诱发的是与情绪相关的ERP晚期成分, 而不是早期成分。以上研究表明, 自我参照性维度可以改变人们对情境信息的感知, 继而影响模糊表情加工。
除了参照性维度, 情境信息还具有社会性维度, 分为社会性和和非社会性两类。Bliss-Moreau, Barrett和Wright (2008)认为社会性信息会外显地或内隐地参照他人, 而非社会性信息不会参照任何人。由于面部表情是一种重要的社会交往符号, 所以社会性信息要比非社会信息对模糊表情识别产生更大的影响(Hess & Hareli, 2015; Ito & Cacioppo, 2000)。
Anderson, Siegel, Bliss-Moreau和Barrett (2011)采用情感学习任务(affective learning procedure), 在注意水平上探究了社会性情境信息对模糊表情识别的影响。研究中首先让中性表情与情境信息同时出现以使被试对表情形成情感经验。情境信息包含两个维度, 分别是效价(负性、正性、中性)和社会性(社会性、非社会性), 如“殴打了一名孕妇”即负性社会信息, 而“感受温暖的阳光”即正性非社会信息。然后让被试完成一个双眼竞争任务, 其中一只眼睛出现单独的表情(无情境信息), 另一只眼睛出现房屋。结果表明, 与正性和中性社会信息相比, 和负性社会信息匹配过的中性表情在双眼竞争任务中被注意的时间更长, 但是当表情分别与三类效价的非社会信息匹配时则没有出现注意差异, 说明带有负性社会信息的表情具有注意优势。后来, Xu, Li, Diao, Fan和Dong (2016)在此基础上探究了社会性情境信息影响模糊表情加工的神经机制。结果发现, 与中性社会信息相比, 和负性社会信息匹配过的表情诱发了较强的EPN和LPP, 而这两种成分在负性和中性非社会性信息条件下则不存在差异。在后面的点探测任务中发现, 指示注意偏向的指标N2pc也出现了相同的结果。这些结果说明社会性情境信息能够调节被试对模糊表情的情绪感知和选择性注意, 并且这种调节作用受到效价和社会性两个维度的交互影响。
Anderson等(2011)的研究结果表明, 双眼竞争任务中第一知觉到的对象(表情或房屋)不受社会性情境信息的影响, 而Xu等(2016)的研究则揭示出负性社会信息在早期阶段(N2pc)就将注意指向表情。产生这种差异的原因是, 与行为测量相比, ERP对注意分配提供了更精细的测量方式, 因此对注意捕获的评估更为有效(Kappenman, Macnamara & Proudfit, 2014; Qi, Zeng, Ding & Li, 2013)。然而, 2012年Morel, Beaucousin, Perrin和George就发现社会性情境信息引起的这种早期注意偏向其实出现的更早。研究者使用了时间分辨率和空间分辨率都高于ERP的脑磁图(MEG)进行探究, 实验范式同上, 不同之处在于情境信息以音频的形式进行播放。有趣的发现是, 与中性和负性社会信息相比, 在正性社会信息条件下的表情引起了较强的M70, 源定位表明梭状区域和杏仁核主要参与这种早期加工。与前面研究中得出的结论不同, 社会性维度促进了人们对负性信息的选择, 这种在如此短的时间内对正性社会信息条件下的表情进行深度编码的原因尚不得而知。
上述研究表明, 当情境信息具有自我参照性或社会性时, 不仅引导人们赋予模糊表情以情绪意义, 还引起了人们对模糊表情的早期注意偏向, 并且这一加工在行为和神经水平上均有体现。
如前言所述, 我们按照面部表情效价的明确性与否和情绪强度的高低将其区分为两类:一类是效价明确且情绪强度较高的情绪表情, 包括快乐、悲伤、愤怒、厌恶表情等; 另一类是效价不明确或情绪强度较低的模糊表情, 包括中性、惊讶、歧义表情。当情绪表情作为模糊表情的启动刺激时, 由于其具有强烈的情绪色彩, 对人们加工模糊表情产生的影响更为直接。
在Suslow等(2013)的研究中, 先短暂呈现(33 ms)一个表情(悲伤、快乐或中性), 然后让被试判断接下来出现的中性表情的效价强度, 同时进行fMRI扫描。行为结果表明, 与中性启动相比, 被试在悲伤启动下对中性表情的评价更为负性; 而在神经水平上发现, 杏仁核和前额内侧可能参与这种自动化的负性评价转移。随后, Lapate, Rokers, Li和Davidson (2014)的皮肤电研究也间接的证实了这种观点, 实验者采用双眼竞争任务, 目的是使启动刺激(恐惧表情、蜘蛛和鲜花)出现在被试的意识水平之下, 然后同样让被试对中性表情进行效价评分。结果发现, 与鲜花启动相比, 被试在恐惧表情启动下的皮肤电强度更高, 而且皮肤电强度越高, 被试对中性表情的评分就越低, 即二者存在负相关。而Mangina和Beuzeron-Mangina早在1996年就揭示出皮肤电是交感神经系统活动的指标, 而交感神经系统活动是由杏仁核兴奋引起的, 所以该研究强调了杏仁核在这种负性评价转移中的关键作用。
除了杏仁核外, Lapate等(2017)还探讨了外侧前额皮层(lPFC)在情绪表情影响人们评价中性表情时发挥的作用。一般认为, 外侧前额皮层是促进情景适应性行为或目标导向行为发生的区域(Sakai & Passingham, 2006; Wise, 2008), 其暂时受到抑制会导致刺激驱动行为的发生(Figner et al., 2010; Knoch, Schneider, Schunk, Hohmann & Fehr, 2009)。所以该研究使用TMS抑制左侧lPFC, 原因是左侧lPFC与杏仁核存在功能性连接(Lapate et al., 2016)。控制组为了避免刺激到面部表征区域, 选择左内侧初级躯体感觉皮层(S1区)作为抑制区。实验结果表明, 抑制lPFC组被试对中性表情的评分受到前面启动情绪的影响, 即与恐惧表情启动相比, 被试在快乐表情启动下对中性表情的评分更为正性, 表明刺激驱动行为发生, 而在控制组两类评分并未出现差异。该研究证明了外侧前额皮层是决定情绪表情能否干扰到模糊表情加工的控制区域。
综上所述, 情绪表情对模糊表情加工的影响主要体现在两个方面。首先, 在行为水平上, 被试即使意识不到前面出现过的情绪表情, 但也会在一定程度上赋予随后呈现的模糊表情以相对应的情绪色彩, 使其表现出与启动情绪相似的情绪加工特征。然后, 在神经水平上发现, 杏仁核和前额皮层在这一类研究中执行不同的功能, 其中杏仁核负责感知启动情绪, 而前额皮层负责决定是否将这种启动情绪转移到模糊表情上。
颜色具有一定的情绪意义并且出现了跨文化的差异性, 如红色在西方文化里具有一定的负性情绪色彩, 表示愤怒、挑衅、威胁(Krenn, 2014; Recours & Briki, 2015; Velden, Baas, Shalvi, Preenen & de Dreu, 2012)。而在东方文化里, 尤其是在中国, 以红、橙为代表的“暖色”, 通常表达热情、温暖、愉快的情绪色彩; 以蓝色为代表的“冷色”, 通常表达寒冷、郁闷、冷静的情绪色彩(黄希庭, 黄巍, 李小融, 1991)。那么当这些颜色作为背景出现时又是怎样影响模糊表情识别的呢?
Gil和Bigot (2015)将中性表情和惊讶表情分别呈现在4种不同的颜色背景(红、绿、灰、红绿混合)上, 然后要求被试对背景上的表情效价(正性还是负性)进行判断。结果发现, 与其他颜色背景相比, 被试判断红色背景上的表情为负性的比例最大, 说明红色背景具有负性情绪意义。此外, 被试判断中性表情为负性的比例要高于惊讶表情, 说明中性表情比惊讶表情更易结合情绪背景信息。同样以成人为被试的研究也得到了类似的结果, 即单纯的颜色背景就可以产生情绪意义(Spence, 2011; Palmer, Schloss, Xu & Prado-León, 2013)。随后, Gil和Le (2016)开展的儿童研究也证明了红色与负性情绪有关。研究者以5~10岁的儿童作为研究对象, 要求其判断出现在红、灰、绿三种颜色背景上的惊讶表情看起来是感觉好一点还是感觉坏一点。与成人研究结果一致, 该年龄段的儿童认为红色背景上的惊讶表情看起来感觉更坏一点, 表明对红色背景上模糊表情的负性加工偏向在个体发展的早期就已形成。意外的发现是, 在Gil和Bigot (2015)的成人研究中还出现了效价性别效应(Biele & Grabowska, 2006), 即评价男性表情时, 女性评价其为负性的情况多于男性, 而评价女性表情时则没有出现差异。但在后来的儿童研究中并没有出现类似的情况, 其具体原因还有待进一步探究。
国内近几年一些关于颜色影响模糊表情识别的研究则发现, 与冷色调背景相比, 被试将暖色调背景上的中性表情感知为愉快的比例更高, 愉快程度的评分也更高, 表明红、橙等暖色具有正性情绪意义(顾子贝, 杨昭宁, 代亚男, 谭旭运, 王晓明, 2016)。同类研究也得到了相似的结果, 赵月, 赵银, 顾子贝和王晓明(2015)使用橙色和蓝色饮品对冷暖色调和冷暖温度进行操纵, 探究其对中性表情识别的影响。结果表明, 与冷色调背景相比, 被试倾向于将暖色调背景上的表情识别为愉快; 与温度为冷相比, 被试倾向于在温度为暖的条件下将表情识别为愉快, 即人们对暖色调背景的正性加工偏向还可能与具身效应有关。
关于颜色背景对模糊表情识别的影响, 我们回顾并总结了国内外两类研究成果, 一致地发现颜色作为一种纯粹的物理属性确实可以影响人们的情绪体验, 不一致的发现是这种情绪体验具有跨文化的差异性, 即西方人对红色有消极偏向, 而中国人对红色有积极偏向。
Li, Moallem, Paller和Gottfried (2007)的研究发现, 嗅觉信号等跨通道的情境信息也会调节被试的社会偏好。实验者在被试意识不到气味的情况下向其呈现三种情绪性化学气味, 分别是愉快(柠檬醛)、中性(苯甲醚)和不愉快(戊酸)气味, 然后让被试评价对中性表情的喜爱程度。结果表明, 气味类型会影响被试对表情的感知判断, 与不愉快气味相比, 在愉快和中性气味条件下被试对表情的喜爱程度更高。此外, 随着被试对气味敏感性的增强, 气味启动效应降低, 说明被试意识到气味可能会破坏这种影响。不同于Li等(2007)使用化学分子作为情境信息, Zhou等(2009)收集了男性在不同情绪状态(快乐或恐惧)下的汗味并作为一种嗅觉信号呈现, 然后要求被试判断歧义表情(该表情由快乐表情和恐惧表情混合而成, 因此即可以被知觉成快乐, 也可以被知觉成恐惧)的类别。结果发现, 与控制条件(空气作为嗅觉信号)相比, 恐惧的嗅觉信号更易使被试将歧义表情知觉成恐惧。
以上两个研究表明, 嗅觉信号确实在一定程度上影响被试对模糊表情的感知判断, 但Seubert等(2010)却得出了相反的结论。研究者将被试分别暴露在快乐、中性和厌恶的化学气味中, 然后要求其判断中性表情的类别(快乐、中性或厌恶)。结果表明, 被试识别中性表情的反应时和准确率都不受化学气味类别的影响。出现该结果的原因可能是, 中性表情与快乐或厌恶表情的面部结构差异过大, 被试即使由嗅觉信号诱发了快乐或厌恶情绪也不易影响其做出理性的判断。后来, Rubin, Botanov, Hajcak和Mujica-Parodi (2012)在神经水平上做出了进一步的探究。实验中使用的嗅觉信号同样来自男性的汗味, 分别在应激(第一次跳伞)和控制(运动)条件下产生, 要求被试观看从中性—愤怒按10%递进变化的表情, 但不需要做按键反应。根据表情的变化程度将其分为中性(10% ~ 30%愤怒), 模糊(40% ~ 60%愤怒)和愤怒(70% ~ 90%愤怒)三类。结果发现, 在控制条件下, 晚期成分LPP在愤怒表情上的幅值要高于中性表情和模糊表情; 然而, 在应激条件下, LPP在三种表情上的幅值都很高且无差异, 这说明应激条件下的汗味影响了与注意环境中突出线索相关的皮层电位的活动, 增强了对情绪不显著刺激(指该研究中的中性表情和模糊表情)的注意。
以上研究结果显示, 无论是可以诱发不同情绪状态的化学气味, 还是不同情绪状态下的人类汗味都易导向被试对模糊表情的感知判断, 但由于人类嗅觉系统具有适应性的特点, 使得此类刺激本身具有局限性。
Dodge (1993)研究表明, 感知他人情绪能力的下降会导致攻击性行为的产生和维持, 这种感知下降表现为对模糊表情具有负性解释偏向。攻击性个体易将各种模糊的社会线索解释成敌意的, 即敌意归因偏见(Nasby, Hayden & Depaulo, 1980), 这种偏见导致了攻击性行为的发展(Crick & Dodge, 1994)。Pentonvoak, Thomas, Gage, Mcmurran和Mcdonald (2013)以健康成人和高风险攻击性青少年作为研究对象, 采用反馈训练法将被试对歧义表情(快乐表情和愤怒表情混合)的情绪感知导向为快乐, 探究经过训练的被试是否能降低其主观愤怒感和攻击性行为。结果发现, 这种情绪感知的改变导致了两类人群主观愤怒感和攻击性的下降。而且经过训练后, 看守人员对高风险攻击性青少年的攻击性行为评估也在下降。以上结果表明, 对模糊表情的情绪加工对愤怒感和攻击性行为的维持起到重要作用, 但此类群体的情绪加工能力缺陷可以通过训练而得到改善。
社交焦虑个体对模糊表情同样具有负性解释偏向, 原因是该群体的基本恐惧是接收负性评价, 而负性评价常常是由表情来传达和推断的(Philippot & Douilliez, 2005)。Yoon和Zinbarg (2008)的研究中使用条件学习范式探究社交焦虑个体对中性表情的解释偏向。任务分为学习和测试两个阶段, 要求被试探测表情(线索)出现后的目标位置。在学习阶段, 被试能习得将不同的目标位置与正性或负性线索联结起来的经验。在测试阶段发现, 当中性线索出现时, 被试对曾与负性线索关联过的目标位置探测的快, 表明社交焦虑个体以负性的方式解释中性表情。此外, 实验还用演讲威胁来评估个体对恐惧情景的预期是否能影响这种解释偏向。结果表明, 无论有无威胁, 社交焦虑个体对中性表情都具有负性解释偏向这一特征; 相反, 非焦虑个体仅在面临威胁时以负性的方式解释中性表情。不同于以往研究者以社交焦虑个体对模糊表情的主观评分作为解释偏向的指标(Yoon & Zinbarg, 2007), 该研究使用了更客观的反应时数据说明了这个问题。
综上所述, 人格因素作为个体自身内部的一种情境信息在模糊表情识别中起到重要的作用。而攻击性、社交焦虑等个体具有负性解释偏向这一特征, 不仅提示我们在后续的实验中要对被试进行区分, 以达到控制变量的目的, 还要探究出更客观的神经生理指标来调控此类人群的社会适应性不良的问题。
关于情境信息影响表情识别这一研究领域, 已经积累了比较丰富的资料。本文首次尝试将模糊表情单独作为一个表情分支, 总结影响此类表情识别的五类情境信息并简要探讨了这些情境信息的作用机制, 主要得出以下三点结论:首先在认知层面上, 人们倾向于根据情境信息去赋予模糊表情以相对应的情绪色彩, 即效价转移发生。接着, 我们发现这种效价转移在神经层面上也具有体现, 如当情境信息是文字描述(Wieser et al., 2014; Xu et al., 2016)或嗅觉信号(Rubin et al., 2012)时, 模糊表情诱发的是与情境相关的ERP晚期成分(EPN和LPP)。最后, 前额皮层可能会影响杏仁核将其感知到的情境信息转移到模糊表情上, 但仅在情境信息是情绪表情(Suslow et al., 2013; Lapate et al., 2017)或情绪场景(Mobbs et al., 2006)时。对于未来的研究方向, 研究者们可以从以下四个方面着手:
第一, 突出模糊表情的主体研究地位。如中性表情在研究中常常为其他情绪表情起基线比较的作用, 很少有人对其进行独立研究。以往证据表明, Ekman (1992)提出的6种基本面部表情:悲伤、恐惧、厌恶、愤怒、高兴和惊讶, 并不是占据了我们现实生活中全部的表情识别总量, 这里我们回顾的模糊表情仅仅是其中的一部分, 还有胜利的悲喜交加, 疼痛的面部扭曲等这类情绪极端、表情夸张而又具体难以指向正负性事件的面部表情, 同样受到各种情境信息的影响(Aviezer, Trope & Todorov, 2012)。此外, 强调模糊表情识别的必要性将会拓宽人工智能中表情识别的范畴, 使其更具有生态效度和现实意义。
第二, 清晰界定情境信息。回顾前人研究, 我们发现对于情境信息还缺乏清晰的界定, 其中文字描述类情境信息的定义最不明确。本文虽按性质将文字描述区分出自我参照性和社会性两类, 但研究者在选取实验材料时一般只评估文字信息的效价和唤醒度, 并没有评估文字信息的参照性(如:你认为这件事在多大程度上与你/他人有关?)或社会性(如:你认为这件事在多大程度上属于一个社会性事件?)维度, 缺乏量化的数据指标, 所以容易让人质疑此类变量操纵的有效性。此外, 由于人格因素也会影响模糊表情识别, 在考察其他变量是如何影响模糊表情识别时需要对被试群体进行区分, 以避免混淆无关变量。
第三, 探索新的研究范式。对于情境信息影响模糊表情识别这类研究多采用情绪启动范式, 情境信息的呈现又分为阈上和阈下两种方式。实验范式略显单一, 未来研究可以考虑探索新的研究范式。另外, 对于因变量测量, 在神经水平上虽引进了fMRI、MEG、ERP等先进的脑科学技术手段, 但在行为水平上大多以被试对模糊表情的主观效价评分为主, 故该分值的客观性易遭到质疑。未来研究可以使用一些恰当的统计分析方法来矫正此类数据, 或者在探索新的研究范式时考虑使用反应时, 正确率这类因变量测量指标, 借此提升行为数据的客观性。
第四, 明确影响效价转移的脑区。Lapate等(2017)的研究表明, 当外侧前额皮层(lPFC)被TMS抑制时, 杏仁核先前所感知到的情绪色彩就会自动转移到模糊表情上, 表明效价转移发生。但Kim等(2004)的研究发现, 腹侧前额皮层(vPFC)与杏仁核也存在功能上的相关。此研究中腹内侧前额皮层(vmPFC)和腹外侧前额皮层(vlPFC)分别由正性情境信息和负性情境信息诱发而产生激活, 而且与正性情境信息相比, 杏仁核在负性情境信息下对模糊表情的激活程度更高。这些结果表明vPFC可以自上而下地提取情境信息(Bar, 2004)并参与效价转移。所以lPFC和vPFC这两个脑区 究竟哪一个在影响效价转移还需要进一步的实证研究, 一旦确定了这个关键的脑区, 可以考虑用TMS或tDCS (Junghofer, Winker, Rehbein & Sabatinelli, 2017)阻断其加工负性情境信息或促进其加工正性情境信息, 以此将人们对模糊表情的加工偏向导向为正性偏向, 进而改善特殊人群的社会适应不良问题。
顾子贝, 杨昭宁, 代亚男, 谭旭运, 王晓明. (2016). 背景颜色对中性面孔情绪识别的影响: 隐喻的视角.(3), 541–546.
黄希庭, 黄巍, 李小融. (1991). 关于中国人颜色情调的研究.(6), 1–7.
赵月, 赵银, 顾子贝, 王晓明. (2015). 饮品的感知水平对表情识别及人际印象的影响.(1), 58–64.
Adolphs, R. (2002). Recognizing emotion from facial expressions: psychological and neurological mechanisms.(1), 21–62.
Anderson, E., Siegel, E. H., Bliss-Moreau, E., & Barrett, L. F. (2011). The visual impact of gossip.(6036), 1446–1448.
Aviezer, H., Hassin, R. R., & Bentin, S. (2013). Inherently ambiguous: Facial expressions of emotions, in context.(1), 60–65.
Aviezer, H., Trope, Y., & Todorov, A. (2012). Body cues, not facial expressions, discriminate between intense positive and negative emotions.(6111), 1225–1229.
Bar, M. (2004). Visual objects in context.(8), 617–629.
Barrett, L. F., Mesquita, B., & Gendron, M. (2011). Context in emotion perception.(5), 286–290.
Biele, C., & Grabowska, A. (2006). Sex differences in perception of emotion intensity in dynamic and static facial expressions.(1), 1–6.
Bliss-Moreau, E., Barrett, L. F., & Wright, C. I. (2008). Individual differences in learning the affective value of others under minimal conditions.(4), 479–493.
Crick, N. R., & Dodge, K. A. (1994). A review and reformulation of social information-processing mechanisms in children’s social adjustment.(1), 74–101.
Dodge, K. A. (1993). Social-cognitive mechanisms in the development of conduct disorder and depression.(1), 559–584.
Ekman, P. (1992). An argument for basic emotions.(3–4), 169–200.
Figner, B., Knoch, D., Johnson, E. J., Krosch, A. R., Lisanby, S. H., Fehr, E., & Weber, E. U. (2010). Lateral prefrontal cortex and self-control in intertemporal choice.(5), 538–539.
Frühholz, S., Trautmann-Lengsfeld, S. A., & Herrmann, M. (2011). Contextual interference processing during fast categorisations of facial expressions.(6), 1045–1073.
Gil, S., & Bigot, L. L. (2015). Grounding context in face processing: color, emotion, and gender., 322.
Gil, S., & Bigot, L. L. (2016). Colour and emotion: children also associate red with negative valence.(6), 1087–1094.
Herbert, C., Herbert, B. M., & Pauli, P. (2011a). Emotional self-reference: brain structures involved in the processing of words describing one's own emotions.(10), 2947–2956.
Herbert, C., Pauli, P., & Herbert, B. M. (2011b). Self- reference modulates the processing of emotional stimuli in the absence of explicit self-referential appraisal instructions.(5), 653–661.
Herring, D. R., Taylor, J. H., White, K. R., Crites, S. L. (2011). Electrophysiological responses to evaluative priming:the LPP is sensitive to incongruity.(4), 794–806.
Hess, U., & Hareli, S. (2015). The role of social context for the interpretation of emotional facial expressions.119–141
Ito, T. A., & Cacioppo, J. T. (2000). Electrophysiological evidence of implicit and explicit categorization processes.(6), 660–676.
Junghofer, M., Winker, C., Rehbein, M. A., & Sabatinelli, D. (2017). Noninvasive stimulation of the ventromedial prefrontal cortex enhances pleasant scene processing.(6), 3449–3456.
Kappenman, E. S., Macnamara, A., & Proudfit, G. H. (2014). Electrocortical evidence for rapid allocation of attention to threat in the dot-probe task.(4), 577–583.
Kim, H., Somerville, L. H., Johnstone, T., Polis, S., Alexander, A. L., Shin, L. M., & Whalen, P. J. (2004). Contextual modulation of amygdala responsivity to surprised faces.(10), 1730–1745.
Knoch, D., Schneider, F., Schunk, D., Hohmann, M., & Fehr, E. (2009). Disrupting the prefrontal cortex diminishes the human ability to build a good reputation.(49), 20895–20899.
Krenn, B. (2014). The impact of uniform color on judging tackles in association football.(2), 222–225.
Lapate, R. C., Rokers, B., Li, T., & Davidson, R. J. (2014). Nonconscious emotional activation colors first impressions: A regulatory role for conscious awareness.(2), 349–357.
Lapate, R. C., Rokers, B., Tromp, D. P. M., Orfali, N. S., Oler, J. A., Doran, S. T., … , Davidson, R. J. (2016). Awareness of emotional stimuli determines the behavioral consequences of amygdala activation and amygdala- prefrontal connectivity., 25826.
Lapate, R. C., Samaha, J., Rokers, B., Hamzah, H., Postle, B. R., & Davidson, R. J. (2017). Inhibition of lateral prefrontal cortex produces emotionally biased first impressions: a transcranial magnetic stimulation and electroencephalography study.e(7), 942–953.
Li, W., Moallem, I., Paller, K. A., & Gottfried, J. A. (2007). Subliminal smells can guide social preferences.(12), 1044–1049.
Mangina, C. A., & Beuzeronmangina, J. H. (1996). Direct electrical stimulation of specific human brain structures and bilateral electrodermal activity.(1–2), 1–8.
Mobbs, D., Weiskopf, N., Lau, H. C., Featherstone, E., Dolan, R. J., & Frith, A. C. D. (2006). The kuleshov effect: the influence of contextual framing on emotional attributions.(2), 95–106.
Morel, S., Beaucousin, V., Perrin, M., & George, N. (2012). Very early modulation of brain responses to neutral faces by a single prior association with an emotional context: Evidence from MEG.(4), 1461–1470.
Nasby, W., Hayden, B., & Depaulo, B. M. (1980). Attributional bias among aggressive boys to interpret unambiguous social stimuli as displays of hostility(3), 459–468.
Neta, M., Davis, F. C., Wahlen, P. J. (2011). Valence resolution of ambiguous facial expressions using an emotional oddball task.(6), 1425–1433.
Palmer, S. E., Schloss, K. B., Xu, Z., & Prado-León, L. R. (2013). Music-color associations are mediated by emotion.(22), 8836–8841.
Pentonvoak, I. S., Thomas, J., Gage, S. H., Mcmurran, M., Mcdonald, S., & Munafò, M. R. (2013). Increasing recognition of happiness in ambiguous facial expressions reduces anger and aggressive behavior.(5), 688–697.
Philippot, P., & Douilliez, C. (2005). Social phobics do not misinterpret facial expression of emotion.(5), 639–652.
Qi, S., Zeng, Q., Ding, C., & Li, H. (2013). Neural correlates of reward-driven attentional capture in visual search., 32–43.
Recours, R., & Briki, W. (2015). The effect of red and blue uniforms on competitive anxiety and self-confidence in virtual sports contests.(2), 67–69.
Righart, R., & de Gelder, B. (2008a). Recognition of facial expressions is influenced by emotional scene gist.(3), 264–272.
Righart, R., & de Gelder, B. (2008b). Rapid influence of emotional scenes on encoding of facial expressions: an ERP study.(3), 270–278.
Rubin, D., Botanov, Y., Hajcak, G., & Mujica-Parodi, L. R. (2012). Second-hand stress: inhalation of stress sweat enhances neural response to neutral faces.(2), 208–212.
Sakai, K., & Passingham, R. E. (2006). Prefrontal set activity predicts rule-specific neural processing during subsequent cognitive performance.(4), 1211–1218.
Schwarz, K. A., Wieser, M. J., Gerdes, A. B. M., Mühlberger, A., & Pauli, P. (2013). Why are you looking like that? how the context influences evaluation and processing of human faces.(4), 438–445.
Seubert, J., Loughead, J., Kellermann, T., Boers, F., Brensinger, C. M., & Habel, U. (2010). Multisensory integration of emotionally valenced olfactory–visual information in patients with schizophrenia and healthy controls.(3), 185–194.
Spence, C. (2011). Crossmodal correspondences: a tutorial review.(4), 971–995.
Suslow, T., Kugel, H., Ohrmann, P., Stuhrmann, A., Grotegerd, D., Redlich, R., … , & Dannlowski, U. (2013). Neural correlates of affective priming effects based on masked facial emotion: an fMRI study.(3), 239–245.
Todorov, A. (2011). Evaluating faces on social dimensions. In: Todorov, A. B., Fiske, S.T.,Prentice, D.A. (Eds.), Social Neuroscience: Toward Understanding the Underpinnings of the Social Mind., New York, pp. 54–76.
Velden, F. S. T., Baas, M., Shalvi, S., Preenen, P. T. Y., & de Dreu, C. K. W. (2012). In competitive interaction displays of red increase actors' competitive approach and perceivers' withdrawal.(5), 1205–1208.
Wieser, M. J., & Brosch, T. (2012). Faces in context: a review and systematization of contextual influences on affective face processing.(3), 471.
Wieser, M. J., Gerdes, A. B. M., Büngel, I., Schwarz, K. A., Mühlberger, A., & Pauli, P. (2014). Not so harmless anymore: how context impacts the perception and electrocortical processing of neutral faces., 74–82.
Wise, S. P. (2008). Forward frontal fields: Phylogeny and fundamental function.(12), 599–608.
Xu, M., Li, Z., Diao, L., Fan, L., & Dong, Y. (2016). Contextual valence and sociality jointly influence the early and later stages of neutral face processing., 1258.
Yoon, K. L., & Zinbarg, R. E. (2007). Threat is in the eye of the beholder: social anxiety and the interpretation of ambiguous facial expressions.(4), 839–847.
Yoon, K. L., & Zinbarg, R. E. (2008). Interpreting neutral faces as threatening is a default mode for socially anxious individuals.(3), 680–685.
Zhou, W., & Chen, D. (2009). Fear-related chemosignals modulate recognition of fear in ambiguous facial expressions.(2), 177–183.
Effects of emotional context information on ambiguous expression recognition and the underlying mechanisms
XU Jin1; LI Hong1,2,3; LEI Yi1,2,3
(1College of Psychology and Sociology, Shenzhen University;2Shenzhen Key Laboratory of Affective and Social Cognitive Science;3Shenzhen Institute of Neuroscience, Shenzhen 518000, China)
The ability of recognizing ambiguous expressions is proposed to be a generally used social skill, which plays a crucial role in human social interaction. Emotion context information as a main factor which affects ambiguous expression recognition, including text description, emotional expression, color background, olfactory signal and personality factors, were reviewed in this paper. We aim to reveal the mechanisms underlying the process of ambiguous expression which was influenced by emotion context information. In the future research, the following topics should be considered: highlighting the dominant research status of ambiguous expression, defining emotional context information clearly, exploring new research paradigms and identifying brain regions that affect the transfer of valance, in order to broaden the research field of ambiguous expression recognition.
emotional context information; ambiguous expression; transfer of valance
10.3724/SP.J.1042.2018.01961
2017-10-18
*国家自然科学基金项目(31571153), 国家自然科学基金项目(31671150), 广东省普通高校创新团队建设项目(2015KCXTD009), 广东省珠江人才计划项目(2016 ZT06S220), 深圳市基础学科布局项目(JCYJ201507 2910424978), 深圳市孔雀计划项目(KQTD2015033 016104926)资助。
雷怡, E-mail: leiyi821@vip.sina.com
B842