王贵芳+彭福田+赵永飞+罗静静+于雯+肖元松+陈晓璐
摘要:植物SnRK1蛋白激酶与酵母SNF1 以及哺乳动物AMPK在结构和功能上同源性较高,以α催化亚基、β和γ调节亚基组成异源三聚体复合物的形式存在。SnRK1蛋白激酶广泛存在于高等植物中,响应环境胁迫、营养匮乏、光暗周期等引起的能量缺失信号。SnRK1是调控植物代谢和能量平衡的重要枢纽,调节光合作用途径相关基因的表达以及蔗糖合成、淀粉合成和降解相关酶编码基因的表达,参与糖代谢途径。此外,SnRK1在植物的生长、发育和胁迫响应中也是重要的调控枢纽。但SnRK1在代谢网络途径的调控非常复杂,很多调节机制还不清楚,亟需进一步的研究。本研究通过对SnRK1蛋白激酶的结构,酶活性的调节机制,及在植物碳氮代谢、生长发育及响应胁迫应答中的调控研究现状进行综述,旨在为进一步研究植物SnRK1的功能提供参考。
关键词:SnRK1蛋白激酶;结构;酶活性;功能
中图分类号:S188+.3文献标识号:A文章编号:1001-4942(2018)01-0164-09
Abstract Plant SnRK1 has high homology in the structure and functions with mammalian AMPK and yeast SNF1, and is a heterotrimer complex composed of α catalytic subunit, β and γ regulatory subunit. SnRK1 protein kinase exists in higher plants widely, and responses the energy deficit signal caused by environmental stress, nutrition deficiency and light-dark cycle. SnRK1 is an important hub which can regulate metabolism and energy homeostasis in plants, and it regulates gene expression in photosynthetic pathway as well as the sucrose synthesis, starch synthesis and degradation related enzymes encoding gene expression, and it participates in sugar metabolic pathways. In addition, SnRK1 protein kinase regulates plant growth, development and stress response. But the regulatory mechanisms in plant metabolic network are very complex, it is less clear and urgent to be studied. In this paper, we reviewed the structure of SnRK1 protein kinase, the regulation of SnRK1 activities, and the research advances of SnRK1 regulating in carbon, growth and development process and response stress in plants, which was expected to provide references for further research in the functions of plant SnRK1 protein kinase.
Keywords SnRK1 protein kinase; Structure; Enzyme activity; Function
植物SnRK1蛋白激酶與酵母SNF1 以及哺乳动物AMPK在结构和功能上都具有较高的同源性[1]。1981年,Carlson等首次发现酵母Snf1突变体不能在缺少葡萄糖而仅含有蔗糖、甘油或乙醇等其它碳源的培养基上生长[2];随后,Celenza和Carlson首次从酵母中分离得到SNF1基因,并证明它编码一个蛋白激酶[3]。在动物中鉴定出与SNF1相似的蛋白激酶AMPK[4]。1991年,植物中第一个SnRK1基因(pcRKin1)从黑麦中分离得到,它编码一个相对分子量为57.7 kD的多肽链,氨基酸序列与酵母和动物中的同源基因SNF1和AMPKα的同源性为48%[5]。1992年,Le Guen等又从拟南芥中分离得到一个SNF1的同源基因AKIN10,并推测其可能在碳水化合物代谢和基因表达调控的信号转导中起重要作用[6]。植物SnRK1蛋白激酶以α、β和γ亚基结合形成复合体的形式存在,是植物体内生理活动的调控枢纽之一,参与植物代谢、发育及胁迫应答等多种生理活动过程[7]。
1 植物SnRK1蛋白激酶的结构
SNF1/AMPK/SnRK1蛋白激酶在所有的真核生物中具有高度的保守性,以α、β和γ亚基组成异源三聚复合体的形式存在[8-10]。α催化亚基由两部分组成,激酶结构域和调节结构域;激酶结构域包括一个典型折叠结构和一个激活环(也称T-loop);在酵母和动物中调节结构域包含一个自我抑制的结构域(AIS),可以抑制激酶的活性[11,12],而在植物中此结构域不能进行自我抑制[13],而是包含一个与泛素相关的结构域(UBA),可以调节与泛素化蛋白的互作[14];另外,α亚基包含一个激酶相关的结构域(KA1)可以跟调节亚基及上游的磷酸酶相互作用[15-18]。endprint
β亚基作为一个支架将α与γ亚基连接在一起,β亚基包含两个明确的不同结构域。第一个结构域位于蛋白质的中部,最早被认为是激酶互作的序列域(KIS),但是现在一般是指碳绑定域(CBM,以前也称GBD)[19,20]。在酵母SNF1和植物SnRK1中,GBD/KIS是β亚基与α催化亚基相互作用所必须的。第二个结构域位于C端,被称为与SNF1相关的复合物(ASC),调节与酵母SNF1及植物SnRK1γ亚基的相互作用。植物SnRK1蛋白激酶特有的β3亚基缺少GBD/KIS结构域,只含有ASC结构域,能与α催化亚基及γ亚基互作,并且能互补酵母三突变体gal83Δsip1Δsip2Δ[19]。此外,β亚基N末端延伸域可以对激酶进行亚细胞定位[21],比如,酵母在高浓度的葡萄糖情况下,三个β亚基都位于细胞质;而在低浓度的葡萄糖条件下,Gal83转移到细胞核内,Sip1定于液泡中,而Sip2仍位于细胞质[22]。
在酵母和哺乳动物中,γ调节亚基通过CBS(cystathionine-β-synthase)结构域与α亚基上的腺苷酸绑定调节催化亚基的活性[23],γ亚基由N延伸端和两对CBS结构域串联而成(也称Bateman1和Bateman2)[9]。植物中还存在一个非典型的γ亚基(βγ亚基),在γ亚基的N端融合了一个CBM/GBD结构域,这个βγ亚基可以互补酵母突变体snf4Δ的表型,表明植物βγ亚基具有γ亚基的典型功能[24]。
2 植物SnRK1蛋白激酶的活性调节
2.1 磷酸化调节
α催化亚基的激酶结构域T-loop上保守的苏氨酸磷酸化是SNF1/AMPK/SnRK1保持活性状态所必须的[13,25-27,29]。在高浓度的葡萄糖介质中时,酵母Snf1大部分处于去磷酸化状态,此时SNF1激酶复合体失去活性;把酵母细胞转移至低浓度葡萄糖介质中时,Snf1被磷酸化, SNF1激酶复合体被激活[26]。与酵母SNF1相似,AMPK激酶复合体在代谢胁迫的情况下(ATP生成受阻或ATP的消耗加剧)被激活[29],即当T-loop环上苏氨酸残基(T172)被磷酸化时激酶复合体才具有活性[25]。對植物研究发现,在胁迫条件下与正常条件下总的细胞磷酸化水平没有差异[30,31],这表明胁迫条件下植物中可能存在其他的磷酸化残基或调节机制调控激酶的活性;依据不同分子大小进行分离,发现激酶复合体催化亚基T-loop上磷酸化水平较高[32];因此,植物在胁迫条件下可能只是提高了激酶α催化亚基的磷酸化水平,而细胞总的磷酸化水平不能反映这种变化。
2.2 上游激酶的调节
1987年Carling 等对动物的研究中最早发现关于上游激酶对SNF1/AMPK/SnRK1活性调节[33],哺乳动物中存在至少两种上游激酶(肿瘤抑制性激酶LKB1和Ca2+/钙调素依赖的蛋白激酶Camkkβ);而在酵母细胞中SNF1存在三种上游激酶Elm1、Tos3和Sak1,Sak1是SNF1主要的上游激酶,因为它对SNF1活性的影响大于Elm1和Tos3[34]。
最先在拟南芥中发现的植物SnRK1上游激酶是GRIK1和GRIK2(又称SnAK1和SnAK2),体外试验研究发现自动磷酸化是使其具有活性所必须的[35,28],并且其可以被SnRK1反馈抑制调节[28]。植物的顶端分生组织中表达SnAKs并且SnRK1被磷酸化,认为SnAKs/GRIKs仅存在于生长活跃的分生组织或被病菌感染的成熟叶片组织中;而正常的成熟叶片中也发现SnRK1被磷酸化,因此正常的成熟叶片中也可能存在SnAKs/GRIKs磷酸化SnRK1的现象[13],然而检测到磷酸化的水平较低,这可能是蛋白酶降解的结果[36],也可能存在其他的上游激酶。对水稻的研究发现,CIPK15是SnRK1的一个上游激酶[37],然而还需要其他更多的证据证实SnRK1是被CIPK15直接磷酸化的。体外试验研究发现菠菜叶片提取物中SnRK1可以被哺乳动物CaMKK磷酸化,这表明可能存在内源Ca2+依赖的激酶(如CIPKs)或钙调素依赖的蛋白激酶充当SnAKs的角色。有意思的是番茄中存在一个由病原菌引发的抑制细胞死亡的蛋白(Adi3)可以和SnRK1互作,磷酸化Gal83β亚基,调节SnRK1蛋白激酶的活性[38],这种磷酸化机制是否只存在病原菌侵染的情况下,还是也存在于其他环境条件下、代谢途径或激素调节途径中,还有待进一步研究。
2.3 上游磷酸酶调节
去磷酸化作用对SNF1/AMPK/SnRK1的活性调节至关重要[17,18,39-44]。目前为止,确定的蛋白磷酸酶是酵母细胞的PPs,Snf1催化亚基的去磷酸化由PP1磷酸酶Reg1调节亚基上Glc7位点执行[9],缺失Reg1A基因的酵母在葡萄糖介质中表现为SNF1的磷酸化及活性状态[26],然而酵母glc7Δ突变体是致死的[45],可能因为SNF1的活性太强的缘故。另外研究表明,Snf1可以被2C类型的磷酸酶(Ptc1)和2A类型的磷酸酶(Sit4)去磷酸化[46,47]。体外试验研究表明AMPK可以被PP1、PP2A和金属离子依赖性的PP2C磷酸酶去磷酸化,且PP1和PP2C去磷酸化的效率高于PP2A[48,49]。
植物中, PP2C磷酸酶、ABI1和PP2CA可以跟SnRK1α1互作使之去磷酸化[18],这与之前发现的人类PP2C能够使菠菜SnRK1α去磷酸化并使之失活相似[50];另外PP2C也能够通过与SnRK2互作负调节ABA途径,其抑制作用可以被ABA受体绑定ABA解除[51];因此,PP2C调节SnRK1不仅抑制SnRK1响应糖信号途径,而且抑制ABA响应途径[18]。通过体外试验及酵母双杂交试验研究发现其他一些磷酸酶如PP2C、PP2C74可以跟SnRK1α2互作,尽管其功能及作用机制还不清楚[52]。endprint
2.4 翻译后修饰调节
虽然T-loop的磷酸化被認为SNF1/AMPK/SnRK1活性调节的主要机制,然而还存在其他一些翻译后修饰调节,如乙酰化、泛素化、SUMO修饰、豆蔻酰化和氧化作用。
2.4.1 乙酰化 研究发现Sip2(酵母SNF1的一个β亚基)是核小体乙酰转移酶H4复合体(NuA4)的非染色质底物[53]。Sip2乙酰化使之与Snf1催化亚基的互作更稳定从而抑制其活性,另外Sip2乙酰化可以使细胞延长寿命[54]。体外试验研究表明AMPKα1催化亚基能被P300乙酰转移酶乙酰化,但还需要进一步的体内试验加以证明[55],另外对AMPK亚基进行光谱分析发现AMPKγ1在N末端的延伸域被乙酰化且不存在其他的翻译后修饰[56]。目前在植物中虽然还没发现乙酰化的现象,但酵母SNF1和哺乳动物AMPK激酶复合体的三个亚基都存在乙酰化的修饰。
2.4.2 泛素化 当酵母生长在碳源改变的情况下,泛素化负向调节Snf1的稳定性、磷酸化和催化活性,一个组蛋白调节器SAGA复合体的亚基Ubp8可以使Snf1去泛素化[57]。对哺乳动物深色的脂肪组织研究发现Cidea(cell death-inducing DFF45-like effector A)通过泛素化与AMPKβ互作在活体内形成复合体,而缺少Cidea的老鼠体内AMPKαT172磷酸化水平及催化活性提高;相反表达Cidea增加了AMPK复合体蛋白酶体的降解[58]。植物中激酶的活性及磷酸化与蛋白质的稳定性有很大的关系[27];低营养条件下SnRK1α1以5-磷酸酶(5P Tase13)依赖性肌醇磷酸盐的方式被蛋白酶降解[59]。PRL1作为SnRK1α1蛋白激酶复合体的底物受体被DDB1-CUL4-ROC-PRL1 E3泛素连接酶调节降解[60],SnRK1α1可以与PRL1相互作用[61,14],与对照野生型WT相比,prl1和cul4cs突变体中SnRK1α1蛋白通过26S蛋白酶体降解的途径受阻,积累较高水平的SnRK1α1蛋白质和较高的酶活性[60],此外突变体prl1中被SnRK1抑制的3羟基-3-甲基乙酰辅酶A羧化酶(3-hydroxy-3-methyl-glutaryl-CoA reductase)的活性降低[62]
2.5 腺苷酸调节
酵母中AMP不能通过变构来激活[63],但是ADP能保护SNF1防止去磷酸化[42,43]。尽管这种机制起初被认为是通过ADP结合Snf4的方式来调节的,但是越来越多的研究表明,调控亚基不需要这种保护[64]。目前的假说是,磷酸化一个底物以后,ADP仍停留在活性位点,防止激酶去磷酸化从而起保护作用。
AMPK在几个水平上受腺苷酸调控[48]。第一,AMP通过结合γ-亚基,从而变构激活AMPK[33]。第二,AMP结合γ-亚基,增加其作为底物与上游激酶结合的能力[65,66],这已经在LKB1得到了论证[67]。蛋白AXIN与LKB1相互作用,能提高其与AMP绑定AMPK的互作,这解释了为什么依赖LKB1的AMPK磷酸化,会受AMP的刺激[68]。第三,低能量的ADP和AMP与γ亚基的结合,使AMPK复合物避免去磷酸化或失活[39,44,49]。ADP结合γ亚基是AMPK避免去磷酸化的主要因素[17],但最近更多的研究认为,与ADP相比,AMP在生理浓度范围内更能使AMPK避免去磷酸化[67]。
植物中,在纯化的菠菜叶片SnRK1复合物中检测到其对腺苷酸敏感,当纯化的SnRK1复合物与重组的动物PP2C一起孵育时,AMP保护复合物防止其去磷酸化[50]。虽然目前对这种作用机制还知之甚少,但异源三聚复合体的所有亚基在真核生物中是相当保守的,植物的亚基能相应地互补酵母突变体[8],因而有理由认为,它们的作用机制是相似的;另一方面,激酶结构域更加保守,因此ADP可能对激酶的活性位点起直接的保护作用。
2.6 激素调节
SNF1/AMPK/SnRK1广泛存在于真核生物中,从简单的单细胞生物到复杂的多细胞生物[29],因此这就需要其能够响应激素和系统信号的调节能力,较好地在整个生物体水平上达到能量平衡。
哺乳动物AMPK的活性在整个生物体水平上受激素信号调节,包括肥胖荷尔蒙、脂联素、饥饿荷尔蒙、胰岛素、胰岛高血糖肽、糖皮质激素及甲状腺激素等[69,70]。值得注意的是一些激素对AMPK活性的调节是有组织特异性的,如肥胖荷尔蒙在肝脏激活AMPK而在心脏和下丘脑抑制其活性[70]。虽然多数激素调节AMPK的机制还不清楚[70],但已发现在心肌组织中胰岛素通过激活Akt/PKB激酶(其可磷酸化AMPRS485而减少AMPKT172的磷酸化)抑制AMPK的活性[71];凝血酶通过诱导Ca2+信号和激活CaMKKβ而激活AMPK;治疗慢性病TNFα时,在肌肉细胞通过诱导AMPK的抑制因子PP2C抑制其活性[72]。
越来越多的研究表明植物中SnRK1与ABA相互联系。在ABA的调控下,在种子的成熟和萌发过程中 SnRK1发挥核心作用[73-75]。超表达SnRK1α1的拟南芥在种子萌发和幼苗生长发育的过程中对ABA信号敏感[75,76];在成熟的光合组织中,ABA通过抑制SnRK1的负调节因子2C-型磷酸酶ABI1和PP2CA激活SnRK1[18]。在种子萌发和早期幼苗的生长阶段ABA通过与SnRK1A互作的负调节因子作用抑制SnRK1信号途径[77],这表明ABA在不同的组织(自养和异养)中对SnRK1的调节不同,这与动物不同组织中激素对AMPK表现为相反方向的调节类似[70]。
3 植物SnRK1蛋白激酶的生理调节功能
SnRK1蛋白激酶是植物代谢、生长发育及胁迫响应中重要的调控枢纽(图1)。体外试验研究发现,SnRK1蛋白激酶抑制植物代谢中四种重要的代谢酶活性,他们分别是3-羟基-3-甲基戊二酰-辅酶A还原酶(HMG-CoA还原酶)、蔗糖磷酸合成酶(SPS)、海藻糖磷酸合酶5(TPS5)和硝酸还原酶(NR)[8]。其中SPS是植物叶片中催化蔗糖合成的一个关键酶;NR是氮素同化过程中催化硝酸盐还原成亚硝酸盐最重要的酶之一;HMG-CoA还原酶催化HMG-CoA还原成甲羟戊酸(MVA) [50,78],这一步是所有类异戊二烯的前体异戊烯焦磷酸合成的关键限速步骤,而类异戊二烯是植物化学家非常感兴趣的物质,它包括多种重要的次生代谢物如可溶性维生素、植物固醇和色素等,这些物质的水平影响果实和植物油料的营养品质、风味和色泽等;TPS5是海藻糖6磷酸(T6P)合成的关键酶,而T6P是植物中重要的糖信号,调节植物的代谢和生长发育[79]。endprint
3.1 植物SnRK1蛋白激酶调节碳氮代谢
SnRK1能够被黑暗和能量缺失所诱导。SnRK1 响应高蔗糖/低葡萄糖信号,诱导相关基因的表达,参与糖代谢途径。烟草 SnRK1 基因(NPK5)转入snf1 酵母突变体后其可以在含有蔗糖的培养基上生长[80],由此可以推断植物SnRK1 可以代替酵母SNF1行使信号传导的功能,也存在类似酵母的糖代谢途径。
SnRK1调节蔗糖合成、淀粉合成和降解有关酶编码基因的表达,间接调控碳水化合物的代谢,SnRK1在转录水平上对蔗糖合酶和α-淀粉酶进行调节[81,82]。研究发现SnRK1响应高浓度的蔗糖,激活AGPase,参与淀粉的生物合成[83],马铃薯中SnRK1同源基因PKIN1反义表达使得叶片和块茎中蔗糖合成酶编码基因表达量急剧降低[81],拟南芥KIN10和KIN11参与糖代谢的调控网络, 叶肉细胞中KIN10瞬时表达在转录水平上影响到1 000多个基因的表达,KIN10和KIN11是植物对黑暗和多种抗逆信号传导过程中很多重要的转录组件的调节基因[27,30]。反义表达SnRK1的大麦,出现花粉败育的性状,败育的花粉粒较小,呈梨形,不含淀粉或淀粉含量很少[84];Zhang等认为,花粉的败育通常与淀粉的积累及蔗糖的代谢有关,而在反义表达 SnRK1 的花粉粒中,不能通过表达相应的转化酶而利用外源蔗糖而使花粉败育[84]。反义表达SnRK1的豌豆种子中碳氮比值高于野生型,通过对反义表达SnRK1豌豆的表型观察推测SnRK1可能与细胞的分裂与伸长有关,另外SnRK1可能与种子成熟时ABA调节途径有关[85]。本课题组研究发现,平邑甜茶MhSnRK1在番茄中超表达提高了植株叶片的光合速率及淀粉合成关键酶AGPase的活性,数字基因表达谱分析显示,超表达MhSnRK1的植株叶片光合途径中差异表达的10个基因中7个基因的转录水平上调,叶片和果实的可溶性糖和淀粉含量提高,夜晚淀粉的利用率提高,糖代谢加强,硝酸的吸收利用率提高,可溶性蛋白含量、AsA和可滴定酸含量明显降低;SnRK1响应外源海藻糖信号,其活性被抑制,海藻糖处理的番茄叶片的可溶性糖含量明显高于未经处理的对照[86-88]。
3.2 植物SnRK1蛋白激酶调节植物的生长发育
SnRK1蛋白激酶在植物代谢途径中起着重要的作用,SnRK1通过对碳水化合物代谢的调控影响植物的生长发育进程[27,89]。在SnRK1反义表达的大麦植株中, 对糖反应的调控途径产生了可遗传的影响, 如花粉粒变小, 含有少量或不含淀粉, 最终致使花粉败育, 同时胚珠的发育也在一定程度上受其影响[84];拟南芥SnRK1突变体KINβγ植株的花粉在柱头上不能吸水萌发,花粉中线粒体及过氧化物酶体的结构受损且数量明显少于野生型拟南芥,并且花粉中活性氧的水平明显降低[90]。SnRK1反义表达的豌豆种子出现了许多成熟缺陷, 表现为减少了糖转变成储存物的数量,球蛋白含量较低,多数种子的子叶外观、形状、匀称性改变及早熟现象[85]。苔藓中SnRK1阻断新陈代谢,丝状体和配子体有异常生长和过早衰老的现象[91]。拟南芥SnRK1通过磷酸化抑制与糖代谢相关的转录因子IDD8,延迟拟南芥的开花时期[92]。本课题组对果树SnRK1蛋白激酶的研究发现,平邑甜茶MhSnRK1在番茄中超表达提高了植株的光合速率、淀粉含量及其利用率,果实成熟期比野生型提前10天,SnRK1响应海藻糖信号,超表达MhSnRK1番茄和野生型番茄在100 mmol·L-1海藻糖处理条件下,植株对碳水化合物的利用受阻,主梢生长受到明显的抑制[86,87]。
3.3 植物SnRK1蛋白激酶对胁迫的响应
首次发现植物SnRK1参与胁迫响应是反义表达StubGAL83的马铃薯的抗盐性,将StubGAL83基因在马铃薯植株中反义表达, 转基因植株对高盐胁迫非常敏感, 并且与野生型植株相比, 转基因植株的主根生长受到了抑制,根细胞变小、形状不规则, 说明StubGAL83基因的反义表达影响了马铃薯根和块茎的发育,SnRK1可能激活某种保护机制抵抗盐胁迫[93]。拟南芥中的一个SnRK1基因在烟草中反义表达导致烟草易受病毒的伤害, 而过表达明显提高了烟草对病毒的抗性[94],因此SnRK1可能是抗病毒防御机制的一部分。植物特有的AKINβγ亚基通过GBD结构域与两种蛋白互作提高植物抗线虫的能力[24],另有研究发现SnRK1可使更多的碳回流到根中以抵御食草性动物的攻击[95]。
4 展望
SnRK1蛋白激酶广泛存在于高等植物中,是调控植物代谢和能量平衡的重要枢纽;随着对植物SnRK1蛋白激酶研究的不断深入,其序列、结构特征、自身活性调节以及在代谢过程中的调节机制也愈来愈明确。SnRK1蛋白激酶的活性不仅与α催化亚基上T-loop的磷酸化有关,还与调节亚基β及γ的磷酸化状态有关;一些翻译后修饰调节,如乙酰化、泛素化、SUMO修飾、豆蔻酰化和氧化作用也影响SnRK1蛋白激酶的活性。目前的研究表明SnRK1蛋白激酶在植物的代谢途径、生长、发育及抗逆境生理方面均表现出一定的调节作用。SnRK1信号途径主要在代谢调控网络中发挥重要作用, 与能量的状态密切相关,但信号途径是如何开始?如何传递?又是如何结束的?这些调控机制仍不清楚,亟需进一步的研究。
参 考 文 献:
[1] Halford N G, Hardie D G. SNF1-related protein kinases: global regulators of carbon metabolism in plants? [J]. Plant Mol. Biol., 1998, 37(5):735-748.
[2] Carlson M, Osmond B C, Botstein D. Mutants of yeast defective in sucrose utilization[J]. Genetics, 1981, 98(1):25-40.endprint
[3] Celenza J L, Carlson M. A yeast gene that is essential for release from glucose repression encodes a protein kinase[J]. Science, 1986, 233(4769):1175-1180.
[4] Crute B E, Seefeld K, Gamble J, et al. Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase[J]. J. Biol. Chem., 1998, 273:35347-35354.
[5] Alderson A, Sabelli P A, Dickinson J R, et al. Comple-mentation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA[J]. Proc. Nati. Acad. Sci. USA, 1991, 88(19): 8602-8605.
[6] Le Guen L, Thomas M, Bianchi M, et al. Structure and expression of a gene from Arabidopsis thaliana encoding a protein related to SNF1 protein kinase[J]. Gene, 1992, 120(2):249-254.
[7] Smeekens S, Ma J, Hanson J, et al. Sugar signals and molecular networks controlling plant growth[J]. Curr. Opin. Plant Biology, 2010, 13:274-279.
[8] Polge C, Thomas M. SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? [J]. Trends Plant Sci., 2007, 12(1):20-28.
[9] Hedbacker K, Carlson M. SNF1/AMPK pathways in yeast[J]. Front. Biosci., 2008, 13:2408-2420.
[10]Carling D, Thornton C, Woods A, et al. AMPK-activated protein kinase: new regulation, new roles? [J]. Biochem. J., 2012, 445(1):11-27.
[11]Pang T, Xiong B, Li J Y, et al. Conserved alpha-helix acts as autoinhibitory sequence in AMP-activated protein kinase alpha subunits[J]. J. Biol. Chem., 2007(282):495-506.
[12]Chen L, Jiao Z H, Zheng LS, et al. Structural insight into the autoinhibition mechanism of AMP-activated protein kinase[J]. Nature, 2009, 459(7250):1146-1149.
[13]Shen W, Reyes M I, Hanley-Bowdoin L. Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activationm loop[J]. Plant Physiol., 2009, 150:996-1005.
[14]Farras R, Ferrando A, Jasik J, et al. SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase[J]. EMBO J., 2001, 20(11):2742-2756.
[15]Kleinow T, Bhalerao R, Breuer F, et al. Functional identification of an Arabidopsis snf4 ortholog by screening for heterologous multicopy suppressors of snf4 deficiency in yeast[J]. Plant J., 2000, 23(1): 115-122.
[16]Amodeo G A, Rudolph M J, Tong L. Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1[J]. Nature, 2007, 449(7161): 492-495.
[17]Xiao B, Sanders M J, Underwood E, et al. Structure of mammalian AMPK and its regulation by ADP[J]. Nature, 2011,472(7342):230-233.endprint
[18]Rodrigues A, Adamo M, Crozet P, et al. ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis[J]. Plant Cell, 2013, 25(10):3871-3884.
[19]Crozet P, Margalha L, Confraria A, et al. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinase[J]. Front. Plant Science, 2014, 5(190):1-17.
[20]Ghillebert R, Swinnen E, Wen J, et al. The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation[J]. FEBS J.,2011, 278(21):3978-3990.
[21]Hedbacker K, Carlson M. Regulation of the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase[J]. Eukaryot. Cell, 2006, 5(12):1950-1956.
[22]Vincent O, Townley R, Kuchin S, et al. Subcellular localization of the snf1 kinase is regulated by specific beta subunits and novel glucose signaling mechanism[J]. Genes Dev., 2001, 15(9):1104-1114.
[23]Bateman A. The structure of a domain common to archaebacteria and the homocystinuria disease protein[J]. Trends Biochem. Sci., 1997, 22(1):12-13.
[24]Gissot L, Polge C, Jossier M, et al. AKIN betagamma contributes to SnRK1 heterotrimeric complexes and interacts with two proteins implicated in plant pathogen resistance through its KIS GBD sequence[J]. Plant Physiol., 2006, 142:931-944.
[25]Stein S C, Woods A, Jones N A, et al. The regulation of AMP-activated protein kinase by phosphorylation[J]. Biochem. J., 2000, 345(Pt3):437-443.
[26]McCartney R R, Schmidt M C. Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit[J]. J. Biol. Chem., 2001, 276:36460-36466.
[27]Baena-Gonzalez E, Rolland F, Thevelein J M,et al. A central integrator of transcription networks in plant stress and energy signalling[J]. Nature, 2007, 448(7156):938-942.
[28]Crozet P, Jammes F, Valot B, et al. Cross-phosphorylation between Arabidopsis thaliana sucrose nonfermenting 1-related protein kinase 1 (AtSnRK1) and its activating kinase (AtSnAK) determines their catalytic activities[J]. J. Biol. Chem., 2010, 285:12071-12077.
[29]Hardie D G. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function[J]. Genes Dev., 2011, 25:1895-1908.
[30]Fragoso S, Espindola L, Paez-Valencia J, et al. SnRK1 isoforms AKIN10 and AKIN11 are differentially regulated in Arabidopsis plants under phosphate starvation[J]. Plant Physiol., 2009, 149: 1906-1916.endprint
[31]Coello P, Hirano E, Hey S J, et al. Evidence that abscisic acid promotes degradation of SNF1-related protein kinase (SnRK 1) in wheat and activation of a putative calcium-dependent SnRK2[J]. J. Exp. Bot., 2012, 63:913-924.
[32]Nunes C, Primavesi L F, Patel M K, et al. Inhibition of SnRK1 by metabolites: tissue-dependent effects and cooperative inhibition by glucose 1-phosphate in combination with trehalose 6-phosphate[J]. Plant Physiol. Biochem., 2013, 63:89-98.
[33]Carling D, Zammit V A, Hardie D G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis[J]. FEBS Lett., 1987, 223:217-222.
[34]Hedbacker K, Townley R, Carlson M. Cyclic AMP-dependent protein kinase regulates the subcellular localization of Snf1-Sip1 protein kinase[J]. Mol. Cell Biol., 2004, 24:1836-1843.
[35]Kong L J, Hanley-Bowdoin L. A geminivirus replication protein interacts with a protein kinase and a motor protein that display different expression patterns during plant development and infection[J]. Plant Cell, 2002, 14:1817-1832.
[36]Shen W, Hanley-Bowdoin L. Geminivirus infection up-regulates the expression of two Arabidopsis protein kinases related to yeast SNF1- and mammalian AMPK-activating kinases[J]. Plant Physiol., 2006, 142(4):1642-1655.
[37]Lee K W, Chen P W, Lu C A, et al. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding[J]. Sci. Signal, 2009, 2(91): ra61.
[38]Avila J, Gregory O G, Su D, et al. The beta-subunit of the SnRK1 complex is phosphorylated by the plant cell death suppressor Adi3[J]. Plant Physiol., 2012, 159:1277-1290.
[39]Suter M, Riek U, Tuerk R, et al. Dissecting the role of 5-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase[J]. J. Biol. Chem., 2006, 281:32207-32216.
[40]Sanders M J, Grondin P O, Hegarty B D, et al. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade[J]. Biochemistry J., 2007, 403:139-148.
[41]Rubenstein E M, Mccartney R R, Zhang C, et al. Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase[J]. J. Biol. Chem., 2008, 283:222-230.
[42]Chandrashekarappa D G, Mccartney R R, Schmidt M C. Subunit and domain requirements for adenylate-mediated protection of Snf1 kinase activation loop from dephosphorylation[J]. J. Biol. Chem., 2011, 286: 44532-44541.endprint
[43]Mayer F V, Heath R, Underwood E, et al. ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase[J]. Cell Metab., 2011, 14:707-714.
[44]Oakhill J S, Steel R, Chen Z P, et al. AMPK is a direct adenylate charge-regulated protein kinase[J]. Science, 2011, 332:1433-1435.
[45]Cannon J F, Pringle J R, Fiechter A, et al. Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae[J]. Genetics, 1994, 136: 485-503.
[46]Ruiz A, Xu X, Carlson M. Roles of two protein phosphatases, Reg1-Glc7 and Sit4, and glycogen synthesis in regulation of SNF1 protein kinase[J]. Pro. Natl. Acad. Sci. USA, 2011, 108:6349-6354.
[47]Ruiz A, Xu X, Carlson M. Ptc1 protein phosphatase 2C contributes to glucose regulation of SNF1/AMP-activated protein kinase (AMPK) in Saccharomyces cerevisiae[J]. J. Biol. Chem., 2013, 288:31052-31058.
[48]Carling D, Clarke P R, Zammit V A, et al. Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities[J]. Eur. J. Biochem., 1989, 186:129-136.
[49]Davies S P, Helps N R, Cohen P T, et al. 5-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC[J]. FEBS Lett., 1995, 377:421-425.
[50]Sugden C, Crawford R M, Halford N G, et al. Regulation of spinach SNF1-related (SnRK1) kinases by protein kinases and phosphatases is associated with phosphorylation of the T loop and is regulated by 5 -AMP[J]. Plant J., 1999a, 19:433-439.
[51]Cutler S R, Rodriguez P L, Finkelstein R R, et al. Abscisic acid: emergence of a core signaling network[J]. Annu. Rev. Plant Biol., 2010, 61:651-679.
[52]Tsugama D, Liu S, Takano T. A putative myristoylated 2C-type protein phosphatase, PP2C74, interacts with SnRK1 in Arabidopsis[J]. FEBS Lett., 2012, 586: 693-698.
[53]Lin Y Y, Lu J Y, Zhang J, et al. Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis[J]. Cell, 2009, 136:1073-1084.
[54]Lu J Y, Lin Y Y, Sheu J C, et al. Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction[J]. Cell, 2011, 146:969-979.
[55]Lin Y Y, Kiihl S, Suhail Y, et al. Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK[J]. Nature, 2012, 482:251-255.endprint
[56]Mitchelhill K I, Michell B J, House C M, et al. Posttranslational modifications of the 5-AMP-activated protein kinase beta1 subunit[J]. J. Biol. Chem., 1997, 272:24475-24479.
[57]Wilson M A, Koutelou E, Hirsch C, et al. Ubp8 and SAGA regulate Snf1 AMP kinase activity[J]. Mol. Cell Biol., 2011, 31: 3126-3135.
[58]Qi J, Gong J, Zhao T, et al. Downregulation of AMP-activated protein kinase by Cidea-mediated ubiquitination and degradation in brown adipose tissue[J]. EMBO J., 2008, 27:1537-1548.
[59]Ananieva E A, Gillaspy G E, Ely A, et al. Interaction of the WD40 domain of a myoinositol polyphosphate 5-phosphatase with SnRK1 links inositol, sugar, and stress signaling[J]. Plant Physiol., 2008, 148:1868-1882.
[60]Lee J H, Terzaghi W, Gusmaroli G, et al. Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases[J]. Plant Cell, 2008, 20: 152-167.
[61]Bhalerao R P, Salchert K, Bako L, et al. Regulatory interaction of PRL1 WD protein with Arabidopsis SNF1-like protein kinases[J]. Proc. Natl. Acad. Sci. USA, 1999, 96:5322-5327.
[62]Sugden C, Donaghy P G, Halford N G, et al. Two SNF1-related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutaryl-coenzyme A reductase, nitrate reductase, and sucrose phosphate synthase in vitro[J]. Plant Physiol., 1999b, 120:257-274.
[63]Wilson W A, Hawley S A, Hardie D G. Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP∶ATP ratio[J]. Curr. Biol., 1996, 6:1426-1434.
[64]Chandrashekarappa D G, Mccartney R R, Schmidt M C. Ligand binding to the AMP-activated protein kinase active site mediates protection of the activation loop from dephosphorylation[J]. J. Biol. Chem., 2013, 288:89-98.
[65]Hawley S A, Selbert M A, Goldstein E G, et al. 5-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms[J]. J. Biol. Chem., 1995, 270:27186-27191.
[66]Oakhill J S, Chen Z P, Scott J W, et al. β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK) [J]. Proc. Natl. Acad. Sci. USA, 2010, 107: 19237-19241.
[67]Gowans G J, Hawley S A, Ross F A, et al. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation[J]. Cell Metab., 2013, 18:556-566.endprint
[68]Zhang Y L, Guo H, Zhang C S, et al. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation[J]. Cell Metab., 2013, 18:546-555.
[69]Hardie D G. Hot stuff: thyroid hormones and AMPK[J]. Cell Res., 2010, 20:1282-1284.
[70]Lim C T, Kola B, Korbonits M. AMPK as a mediator of hormonal signalling[J]. J. Mol. Endocrinol., 2010, 44:87-97.
[71]Horman S, Vertommen D, Heath R, et al. Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase alpha-subunits in heart via hierarchical phosphorylation of Ser485/491[J]. J. Biol. Chem., 2006, 281:5335-5340.
[72]Steinberg G R, Michell B J, Van Denderen B J, et al. Tumor necrosis fator alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling[J]. Cell Metab. Dec., 2006, 4(6):465-474.
[73]Lu C A, Lin C C, Lee K W, et al. The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice[J]. Plant Cell, 2007, 19:2484-2499.
[74]Radchuk R, Emery R J, Weier D, et al. Sucrose non-fermenting kinase 1 (SnRK1) coordinates metabolic and hormonal signals during pea cotyledon growth and differentiation[J]. Plant J., 2010, 61:324-338.
[75]Tsai A Y, Gazzarrini S. AKIN10 and FUSCA3 interact to control lateral organ development and phase transitions in Arabidopsis[J]. Plant J., 2012, 69: 809-821.
[76]Jossier M, Bouly J P, Meimoun P, et al. SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABA signalling in Arabidopsis thaliana[J]. Plant J., 2009, 59:316-328.
[77]Lin C R, Lee K W, Chen C Y, et al. SnRK1A-interacting negative regulators modulate the nutrient starvation signaling sensor SnRK1 in source-sink communication in cereal seedlings under abiotic stress[J]. Plant Cell, 2014, 26:808-827.
[78]Dale S, Wilson W A, Edelman A M, et al. Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I[J]. FEBS Lett., 1995, 361:191-195.
[79]Harthill J E, Meek S E, Morrice N, et al. Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2- deoxyglucose[J]. Plant J., 2006, 47: 211-223.
[80]Muranaka T, Banno H, Machida Y. Characterization of tobacco protein kinase NPK5, a homolog of Saccharomyces cerevisiae SNF1 that constitutively avtivates expression of the glucose-repressible SUC2 gene for a secreted invertase of S. cerevisiae[J]. Mol. Cell Biol., 1994, 14(5):2958-2965.endprint
[81]Purcell P C, Smith A M, Halford N G. Antisense expression of a sucrose non-fermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves[J]. Plant J., 1998, 14:195-202.
[82]Laurie S, McKibbin R S, Halford N G. Antisense SNF1-related (SnRK1) protein kinase gene represses transient activity of an a-amylase (a-Amy2) gene promoter in cultured wheat embryos[J]. Journal of Exp. Bot., 2003, 54(383): 739-747.
[83]Geigenberger P, Stitt M, Fernie A R. Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers[J]. Plant Cell Environ., 2004, 27:655-673.
[84]Zhang Y, Shewry P R, Jones H, et al.. Expression of antisense SnRK1 protein kinase sequence causes abnormal pollen development and male sterility in transgenic barley[J]. Plant J., 2001, 28(4):431-441.
[85]Radchuk R, Radchk V, Weschke W, et al. Repressing the expression of the SUCROSE NONFERMENTING-1-RELATED PROTEIN KINASE gene in pea embryo causes pleiotropic defects of maturation similar to an abscisic acid-insensitive phenotype[J]. Plant Physiol., 2006, 140(1):263-278.
[86]Wang X L, Peng F T, Li M J, et al. Expression of a heterologous SnRK1 in tomato increases carbon assimilation, nitrogen uptake and modifies fruit development[J]. Journal of Plant Physiol., 2012 (4):1-10.
[87]Li G J, Peng F T, Zhang L, et al. Cloning and characterization of a SnRK1-encoding gene from Malus hupehensis Rehd. and heterologous expression in tomato[J]. Mol. Biol. Rep., 2010, 37:947-954.
[88]王貴芳, 彭福田, 张亚飞, 等. 平邑甜茶MhSnRK1在番茄中超表达对植株碳代谢的影响[J]. 园艺学报, 2014, 41(11):2188-2195.
[89]Wingler A, Fritzius T, Wiemken A, et al. Trehalose induces the ADP-glucose gyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis[J]. Plant Physiology, 2000, 124:105-114.
[90]Gao X Q, Liu C Z, Li D D, et al. The Arabidopsis KINβγ subunit of the SnRK1 complex regulates pollen hydration on the stigma by mediating the level of reaction oxygen species in pollen[J]. PLoS Genet., 2016, 12(7): e1006228.
[91]Thelander M, Olsson T, Ronne H. Effect of the energy supply on filamentous growth and development in Physcomitrella patents[J]. J. Exp. Bot., 2005, 56(412):653-662.
[92]Jeong E Y, Seo P J, Woo J C, et al. AKIN10 delays flowering by inactivating IDD8 transcription factor through protein phosphorylation in Arabidopsis[J]. BMC Plant Biol., 2015, 15:110.
[93]Lovas A, Bimb A, Szab L, et al. Antisense repression of StubGAL83 affects root and tuber development in potato[J]. Plant J., 2003, 33(1):139-147.
[94]Hao L, Wang H, Sunter G, et al. Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase[J]. Plant Cell, 2003, 15(4):1034-1048.
[95]Schwachitje J, Peter E H M, Sigfried J, et al. SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots[J]. Proc. Natl. Acad. Sci. USA, 2006, 103(34):12935-12940.endprint