王文吉
抗血管内皮生长因子(vascular endothelial growth factor, VEGF) 药物的出现及其在视网膜领域的应用,是视网膜疾病的一次革命性举措。一些过去没有治疗方法或仅能获得少许疗效的视网膜疾病,如年龄相关性黄斑变性(age-related macular degeneration,AMD)、糖尿病视网膜病变(diabetic retinopathy, DR)等,在抗VEGF 药物出现后,不少患者保存了视力,有些甚至还有所提高。本文叙述在视网膜疾病中,哪些应首选抗VEGF 药物治疗的,哪些是可以考虑使用的,哪些则是无效的,供同道参考;同时也简单介绍它们的用法及并发症。
首选抗VEGF药物作为治疗方法的疾病也就是由美国食品药品监督管理局(Food and Drug Administration,FDA)通过,有循证医学依据并疗效确定,被推荐使用的疾病。
1.1 湿性AMD 湿性AMD好发于50岁以上。患者主诉突感一眼视力下降,伴视物变形或中心暗点。检查可见后极视网膜上有出血、水肿或硬性渗出,病变区常可见灰黑色略隆起的新生血管膜。荧光素眼底血管造影(fluorescein fundus angiography, FFA)早期可见新生血管,后期可见渗漏,并伴视网膜水肿及出血区弱荧光。光学相干层析成像(optical coherence tomography, OCT)可见黄斑视网膜增厚、水肿、囊样水肿、色素上皮脱离以及突破Bruch 膜呈高反射的新生血管膜。另一眼或可见玻璃膜疣、色素变化等早期AMD表现或后期的盘状瘢痕。有关湿性AMD的治疗方法,经历了从无治疗方法,到热激光、光动力疗法(photodynamic therapy, PDT),直至近期出现抗VEGF药物的漫长过程。热激光治疗只适用于中心凹外的脉络膜新生血管(choroidal neovascularization, CNV)。如CNV 位于中心凹,激光凝固后,立即出现中心暗点且伴永久性中心视力丧失[1]。即使用于治疗中心凹外的CNV,因其复发率高以及后期瘢痕扩展常累及中心凹而影响视力。20世纪末开发的PDT[2],因不损伤CNV 上方视网膜,因而可用于治疗中心凹下的CNV,但它仅能保持原有视力而少有能提高的。自抗VEGF 药物问世后,不仅90%的患者在2年内保持了视力,而且在历史上第1次出现部分病例(30%~40%)视力有所提高[3-4]。Zhu等[5]观察随访5年的病例,虽视力随时间推移逐渐有所下降,但与基线比较,功能与解剖改善仍较满意。因此抗VEGF 药物已列为湿性AMD 的首选治疗方法。我国生产的康柏西普也已通过国家验收可用于治疗湿性CNV[6]。
1.2 DR黄斑水肿 糖尿病引起的黄斑视网膜水肿与另一增生型DR(proliferative DR, PDR)的并发症,玻璃体积血与牵拉性视网膜脱离是DR患者视力低下或失明的重要原因。且以DR黄斑水肿更常见,非增生型与增生型病变中均可发生。黄斑长期水肿必将导致视网膜萎缩、中心视力丧失。关于治疗方法,在20世纪主要是通过局部或格栅样激光,减少血管渗漏使水肿消退[7],但视力提高不显著。近年多个前瞻性临床试验证实,抗VEGF 药物对DR黄斑水肿有效[8-9]。多中心临床试验还对比了抗VEGF 药物与传统激光疗效的差异,显示前者在视力与黄斑视网膜厚度的减退方面都明显高于后者[10],因而成为DR黄斑水肿的首选治疗方法。但也不是所有黄斑水肿在行抗VEGF 药物治疗后均有效。对一些顽固或无效病例,国外报道可加用或改用玻璃体植入地塞米松缓释体(ozurdex)[11];此外,玻璃体注射糖皮质激素(简称激素)如曲安奈德[12]同样有效,且其价格便宜不少。要注意的是,激素有致眼压增高及加速白内障发展的不良反应;对糖尿病患者,眼内注射糖皮质激素还要注意感染性眼内炎的发生。尽管有了有效的抗VEGF药物,多项研究显示,传统的激光治疗并未过时,抗VEGF 药物配合后期激光治疗(开始注药后6个月),可减少抗VEGF 药物的注射次数,疗效可延续至5年[13]。
1.3 视网膜静脉阻塞 视网膜静脉阻塞(retinal vein occlusion, RVO)是仅次于DR的视网膜血管病变,多见于中老年患者。无论是中央RVO(central RVO, CRVO),还是半侧或分支静脉阻塞、黄斑水肿、视网膜新生血管导致的玻璃体积血和牵拉性视网膜脱离,以及前节新生血管导致的新生血管性青光眼,是本病视力下降甚至失明的重要原因。对分支静脉阻塞引起的黄斑水肿,传统使用格栅样激光光凝[14];CRVO 则因激光仅使水肿减退,不提高视力而未被采用[15],故其治疗尚缺乏有效措施。抗VEGF药物主要作用在于减少血管渗漏及抑制新生血管生长,在RVO 中可起针对性的治疗作用。多中心研究结果显示,玻璃体注射抗VEGF 药物可使中央或分支静脉导致的黄斑水肿减退,视力提高[16-19],4年随访结果显示,分支阻塞效果更优于总干阻塞[20]。光凝如与抗VEGF药物联合使用,注射次数可减少,且远期效果相同[21]。
目前许多国家都将抗VEGF药物作为上述3类疾病的首选治疗方法。发病仅次于AMD 的病理性近视CNV,英国已将雷珠单抗(ranibizumab)作为其一线治疗药物, 我国采用国产康柏西普[22],Wolf 等[23]采用雷珠单抗进行治疗也取得佳效。病理性近视CNV 在我国多见,但在治疗前要先区分是因 Bruch膜破裂(漆裂纹) 引起的单纯出血还是CNV伴发出血,前者只需观察待其自然吸收,后者则需积极行抗VEGF药物治疗。二者的鉴别,除眼底能见到灰黑色的CNV外,FFA、吲哚菁绿血管造影(indocyanine green angiography, ICGA) 及OCT有助确诊。息肉样脉络膜血管病变(polypoidal choroidal vasculopathy, PCV)在亚洲多见,临床及眼底表现和AMD相似。不过视网膜与色素上皮下的出血与渗液更多见于PCV,确诊需靠ICGA。其治疗也以玻璃体注射抗VEGF药物为主,不过联合使用PDT可能促使息肉样病变退化而提高其疗效[24]。其他眼病所致的CNV, 如特发性CNV、血管样条纹[25]、外伤性脉络膜破裂、葡萄膜炎、脉络膜骨瘤、黄斑旁毛细血管扩张症[26]等都可伴发CNV[27]。尽管病因各不相同,但黄斑中心CNV病变产生的渗漏与出血以及晚期形成的瘢痕,对视力的损害是相同的。治疗方法除可治的原发病变如葡萄膜炎外,同样也可使用抗VEGF药物减轻CNV渗漏、减少瘢痕形成,达到保护视力的目的。并发性CNV因病例数较少,都是小组病例报道,还缺乏循证医学依据。
DR除黄斑水肿这一推荐的适应证外,有学者对新生血管增殖旺盛的DR,在做玻璃体手术前1周,先向玻璃体内注入抗VEGF药物,可减少术中及术后出血,缩短手术时间,减少医源性裂孔的发生[28-29]。另外对PDR及CRVO导致的虹膜、房角新生血管和新生血管性青光眼,在全视网膜光凝治疗的基础上,加用抗VEGF 药物前房或玻璃体注射,可使虹膜新生血管快速隐退,避免发生周边虹膜前粘连,使原本为开角型的青光眼不演变成闭角型,从而避免采取植入管引流手术而可做一般的小梁切除手术,或在进行植入管引流时可减少出血等并发症的发生,但这一措施对远期的眼压控制并无裨益[30]。
Coats病是先天性毛细血管渗漏伴视网膜内及视网膜下大量黄白色渗出,导致渗出性视网膜脱离的疾病,最后可致失明。Shields等[31]建议,早期病例仅有血管扩张异常时,可观察或激光治疗,伴视网膜脱离时用冷凝封闭渗漏血管阻止疾病的发展。后期视网膜已明显脱离时,只有通过经巩膜或玻璃体途径,放出视网膜下液使视网膜与色素上皮贴近时,再使用激光或冷凝来阻断异常血管的渗漏。现有作者先向玻璃体内注射抗VEGF药物或激素使渗出减少,待视网膜脱离减低或消失后,再作激光成功的病例报道[32-33]。
早产儿视网膜病变(retinopathy of prematurity, ROP)最初出现的有效治疗方法是冷凝周边无血管视网膜,该方法可减少50%的病例发生严重视力障碍[34]。后来进展到用激光光凝替代冷凝[35]。在发现早产儿眼内液VEGF 增高后,现有不少作者使用抗VEGF 药物治疗的报道[36]。BEAT-ROP试验证实用抗VEGF药物治疗的确使Ⅲ期血管增殖与附加病变血管快速隐退[37],但因其复发常见,故需更长时间与更短间隔的随访。ROP患儿玻璃体注药的量虽少,仍有部分药物进入全身循环,血液中的抗VEGF药物对未成熟婴儿的脑、肺等重要器官的发育有无影响,药物对后极黄斑视网膜的影响又如何,以及药物的远期效果及并发症等,目前都还不全明了。慎重起见,以用于Ⅰ区或Ⅱ区后部病变,即那些具有快速发展成视网膜脱离特性的激进型ROP(aggressive posterior ROP,AP-ROP)为妥;或是中间质混浊、瞳孔不能扩大而不能进行激光的病例。与ROP 病变眼底表现相同但无早产史的疾病——家族性渗出性玻璃体视网膜病变(FEVR),当新生血管处于活动阶段时,亦有注射抗VEGF 药物治疗的报道[38]。不过要注意,与PDR、ROP或Coats病一样,注入抗VEGF 药物可能产生增殖性病变导致牵拉性视网膜脱离的发生或加重而需做非计划内的玻璃体手术[39]。
至于黄斑水肿,除DRM及RVO 外,其他病因如葡萄膜炎、视网膜血管病、放射性视网膜病变[40]、眼内肿瘤等都可引发黄斑水肿,也有用抗VEGF药物治疗并取得良好效果的报道,但这些也都是个案或小组病例报道。
也有对抗VEGF 药物治疗基本无效的疾病,如视网膜色素变性及黄斑旁毛细血管扩张症Ⅱ型伴黄斑水肿,这多属于变性类疾病[26, 41- 45]。有些疾病的治疗尚存在争议,如中心性浆液性视网膜脉络膜病变,有效及无效都各有报道[46-48]。考虑本病为自限性疾病,即使不治疗,6个月内多数都能自行恢复,很难判断药物的效果。再者,前房液中VEGF不增高,也不太支持使用抗VEGF药物。
根据上述,除3种推荐的疾病外,还有无以计数有关抗VEGF 药物治疗各种视网膜脉络膜新生血管或水肿的报道。尽管报道称有效,但多属个案或小宗病例分析,缺乏多中心、前瞻性、大量病例的临床对照试验,其结论也未达到Ⅰ级可信度,不能作为推荐使用,只作为医师与患者讨论各种治疗方案时的参考,以供患者选择。
关于使用方法,因抗VEGF 药物在玻璃体内的半衰期短,湿性AMD的2项经典临床试验[3-4]用法为每月注射1次,连续24个月。虽视力提高最佳,但医师及患者都不胜负荷。后来就出现了按需注射,即pro re nata (PRN)方法[49]。在3针按月注射后,每月复查OCT,如患者视力下降5个字(ETDRS视力表),眼底视网膜出血未吸收或有新出血,OCT 显示黄斑中心视网膜厚度增加100 μm, 或视网膜水肿或脱离重现,则需再次注射。PRN 法虽减少了注药次数,并维持视力不降,但每月复诊及OCT的检查次数并未减少。因而又有了“治疗及延伸”(treat and extend)的方法,即先连续每月注射1次直至湿性AMD黄斑视网膜液体消失,然后将随访时间,每2周、2周延伸。此法使随访与注射次数均减少,而视力基本与每月注射药物相当甚或有些提高,直到病变复发再予治疗,最长间隔有达到12周的。[50]。Hatz等[51]、Chin-Yee等[52]对比了“治疗及延伸”法与PRN法的效果,结果显示解剖与功能都优于PRN,不过注射次数比PRN有所增加但随访次数减少。抗VEGF药物疗效与注射次数呈正相关,但在实际工作中,注射次数一般都达不到临床试验的要求。大约第1年为8~9针,第2年5针左右,以后再减。一项不同国家(包括发展中国家)的用药调查显示,第1年为5.0针,第2年为2.2针[53]。RVO 黄斑水肿用药次数视患者反应而定,一般1~20余针。治疗病理性近视CNV,可先注射1针后观察反应,决定是否继续注射。病理性近视CNV 通常患者年龄较小,特别是年轻人易有视力提高,注药次数比AMD少,但伴有大片严重视网膜脉络膜萎缩者例外。
由于抗VEGF药物安全、有效,众多医师乐于使用,但在目前医疗领域的一些不规范操作未能彻底革除前,很有可能会出现药物被滥用的情况。在此我们郑重提出,要绝对严格掌握药物适应证,这是医师的道德底线,也是不能逾越的法律底线。尽管抗VEGF 药物安全性较高,但玻璃体注射本身也存在严重并发症,如感染性眼内炎、孔源性视网膜脱离、玻璃体积血、眼内压增高及晶状体损伤等。在适应证掌握不当的情况下,过度使用抗VEGF药物而造成的患者损失,医师将难卸其责。
[1] Macular Photocoagulation Study Group. Laser photocoagulation of subfoveal neovascular lesions in age-related macular degeneration. Results of a randomized clinical trial[J]. Arch Ophthalmol, 1991, 109(9): 1220-1231.
[2] Bressler NM, Treatment of Age-Related Macular Degeneration with Photodynamic Therapy (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: two-year results of 2 randomized clinical trials- Tap report 2[J]. Arch Ophthalmol, 2001, 119(2): 198-207.
[3] Brown DM, Michels M, Kaiser PK, et al. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study[J]. Ophthalmology, 2009, 116(1): 57-65.
[4] Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration[J]. N Engl J Med, 2006, 355(14): 1419-1431.
[5] Zhu M, Chew JK, Broadhead GK, et al. Intravitreal ranibizumab for neovascular age-related macular degeneration in clinical practice: five-year treatment outcomes[J]. Graefes Arch Clin Exp Ophthalmol, 2015, 253(8): 1217-1225.
[6] Li X, Xu G, Wang Y, et al. Safety and efficacy of Conbercept in neovascular age-related macular degeneration: results from 12 month randomized phase 2 study: AURORA study[J]. Ophthalmology, 2014, 121(9): 1740-1747.
[7] Early Treatment Diabetic Macular Retinopathy Study Research Group. Photocoagulation for diabetic macular edema. Early treatment diabetic retinopathy study report number 1[J]. Arch Ophthalmol, 1985, 103(12): 1796-1806.
[8] Nguyen QD, Brown DM, Marcus DM, et al. Ranibizumab for diabetic macular edema: results from 2 phase Ⅲ randomized trials: RISE and RIDE[J]. Ophthalmology, 2012, 119(4): 789-801.
[9] Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial[J]. Ophthalmology, 2016, 123(6): 1351-1359.
[10] Elman MJ, Bressler NM, Qin H, et al. Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or Triamcinolone plus prompt laser for diabetic macular edema[J]. Ophthalmology, 2011, 118(4): 609-614.
[11] Boyer DS,Yoon YH, Belfor R Jr, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema[J]. Ophthalmology, 2014, 121(10): 1904-1914.
[12] Martidis A, Duker JS, Greenberg PB, et al. Intravitreal triamcinolone for refractory diabetic macular edema[J]. Ophthalmology, 2002, 109(5): 920-927.
[13] Elman MJ, Ayala A, Bressler NM, et al. Intravitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment :5 years randomized trial results[J]. Ophthalmology, 2015, 122(2):375-381.
[14] The Branch Vein Occlusion Study Group. Argon laser photocoagulation for macular edema in branch vein occlusion[J]. Am J Ophthalmol, 1984, 98(3): 271-282.
[15] The Central Vein Occlusion Study Group M. Evaluation of grid pattern photocoagulation for macular edema in central retinal vein occlusion[J]. Ophthalmology, 1995, 102(10): 1425-1433.
[16] Brown DM, Campochiaro PA, Signh RP, et al. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase Ⅲ study[J]. Ophthalmology, 2010, 117(6): 1124-1133.
[17] Campochiaro PA, Heier JS, Feiner L, et al. Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary and end points results of phase Ⅲ study[J]. Ophthalmology, 2010, 117(6): 1102-1112.
[18] Brown DM, Campochiaro PA, Bhisitkul RB, et al. Sustained benefits from ranibizumab for macular edema following branch retinal vein occlusion: 12-month outcomes of a phase Ⅲ study[J]. Ophthalmology, 2011, 118(8): 1594-1602.
[19] Channa R, Smith R, Campochiaro PA. Treatment of macular edema due to retinal vein occlusions[J]. Clin Ophthalmol, 2011, 5: 705-713.
[20] Campochiaro PA, Sophie R, Pearlman J, et al. Long-term outcomes in patients with retinal vein occlusion treated with ranibizumab: the RETAIN study[J]. Ophthalmology, 2014, 121(1): 209-219.
[21] Donati S, Barosl P, Bianchi M, et al. Combined intravitreal bevacizumab and grid laser photocoagulation for macular edema secondary to branch retinal vein occlusion[J]. Eur J Ophthalmol, 2012, 22(4): 607-614.
[22] 曾苗, 宋艳萍, 丁琴. 玻璃体腔注射康柏西普治疗病理性近视脉络膜新生血管疗效观察[J]. 中华眼底病杂志, 2016, 32(1): 17-21.
[23] Wolf S, Balciuniene VJ, Laganovska G, et al. Radiance: a randomized controlled study of ranibizumab in patients with choroidal neovascularization secondary to pathologic myopia[J]. Ophthalmology, 2014, 121(3): 682-692.
[24] Lai TY, Chan WM, Liu DT, et al. Intravitreal bevacizumab (Avastin) with or without photodynamic therapy for the treatment of polypoidal choroidal vasculopathy[J]. Br J Ophthalmol, 2008, 92(5): 661-666.
[25] Gliem M, Finger RP, Fimmers R, et al. Treatment of choroidal neovascularization due to angioid streaks: a comprehensive review[J]. Retina, 2013, 33(7): 1300-1314.
[26] Charbel Issa P, Finger RP, Kruse K, et al. Monthly ranibizumab for nonproliferative macular telangectasia type 2: a 12-month prospective study[J]. Am J Ophthalmol, 2011, 151(5): 876-886.e1.
[27] Chang LK, Spaide RF, Brue C, et al. Bevacizumab treatment for subfoveal choroidal neovascularization from causes other than age-related macular degeneration[J]. Arch Ophthalmol, 2008, 126(7): 941-945.
[28] Rizzo S, Genovesi-Ebert F, Di Bartolo E, et al. Injection of intravitreal bevacizumab (avastin) as a preoperative adjunct before vitrectomy surgery in the treatment of severe proliferative diabetic retinopathy (PDR)[J]. Graefes Arch Clin Exp Ophthalmol, 2008, 246(6): 837-842.
[29] Yeh PT, Yang CM, Lin YC, et al. Bevacizumab pretreatment in vitrectomy with silicone oil for severe diabetic retinopathy[J]. Retina, 2009, 29(6): 768-774.
[30] Batiogˇlu F, Astam N, Ozmert E. Rapid improvement of retinal and iris neovascularization after a single intravitreal bevacizumab injection in a patient with central retinal vein occlusion and neovascular glaucoma[J]. Int Ophthalmol, 2008, 28(1): 59-61.
[31] Shields JA, Shields CL, Honavar SG, et al. Classification and management of Coats disease: the proctor lecture[J]. Am J Ophthalmol, 2001, 131(5): 572-583.
[32] Jun JH, Kim YC, Kim KS. Resolution of severe macular edema in adult coats' disease with intravitreal triamcinolone and bevacizumab injection[J]. Korean J Ophthalmol, 2008, 22(3): 190-193.
[33] Cakir M, Cekiç O, Yilmaz OF. Combined intravitreal bevacizumab and triamcinolone injection in a child with Coats disease[J]. J AAPOS, 2008, 12(3): 309-311.
[34] Cryotherapy for Retinopathy of Prematurity Cooperative Group. Multicentre trial for cryotherapy for retinopathy of prematurity: preliminary results[J]. Arch Ophthalmol, 1988, 106(4): 471-479.
[35] Early Treatment For Retinopathy of Prematurity Cooperative Group. Revised indications for the treatment of retinopathy of prematurity: results of the early treatment for retinopathy of prematurity randomized trial[J]. Arch Ophthalmol, 2003, 121(12): 1684-1694.
[36] Mintz-Hittner HA, Kennedy KA, Chuang AZ, et al. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity[J]. N Engl J Med, 2011, 364(7): 603-615.
[37] Mutlu FM, Sarici SU. Treatment of retinopathy of prematurity: a review of conventional and promising new therapeutic options[J]. Int J Ophthalmol, 2013, 6(2): 228-236.
[38] Tagami M, Kushuara S, Honda S, et al. Rapid regression of retinal hemorrhage and neovascularization in a case of familial exudative vitreoretinopathy treated with intravitreal bevacizumab[J]. Graefes Arch Clin Exp Ophthalmol, 2008, 246(12): 1787-1789.
[39] Arevalo JF, Maia M, Flynn HW Jr, et al. Tractional retinal detachment following intravitreal bevacizumab (Avastin) in patients with severe proliferative diabetic retinopathy[J]. Br J Ophthalmol, 2008, 92(2): 213-216.
[40] Mason JO 3rd, Albert MA Jr, Persaud TO, et al. Intravitreal bevacizumab treatment for radiation macular edema after plaque radiotherapy for choroidal melanoma[J]. Retina, 2007, 27(7): 903-907.
[41] Melo GB, Farah ME, Aggio FB. Intravitreal injection of bevacizumab for cystoid macular edema in retinitis pigmentosa[J]. Acta Ophthalmol Scand, 2007, 85(4): 461-463.
[42] Artunay O, Yuzbasioglu E, Rasier R, et al. Intravitreal ranibizumab in the treatment of cystoid macular edema associated with retinitis pigmentosa[J]. J Ocul Pharmacol Ther, 2009, 25(6): 545-550.
[43] Matsumoto Y, Yuzawa M. Intravitreal bevacizumab therapy for idiopathic macular telangetcasia[J]. Jpn J Ophthalmol, 2010, 54(4): 320-324.
[44] Kovach JL, Rosenfeld PJ. Bevacizumab (avastin) therapy for idiopathic macular telangectasia type Ⅱ[J]. Retina, 2009, 29(1): 27-32.
[45] Kupitz EH, Heeren TF, Holz FG, et al. Poor long-term outcome of anti-vascular endothelial growth factor therapy in nonproliferative macular telangiectasia type 2[J]. Retina, 2015, 35(12): 2619-2626.
[46] Lim SJ, Roh MI, Kwon OW. Intravitreal bevacizumab injection for central serous chorioretinopathy[J]. Retina, 2010, 30(1): 100-106.
[47] Seong HK, Bae JH, Kim ES, et al. Intravitreal bevacizumab to treat acute central serous chorioretinopathy: short-term effect[J]. Ophthalmologica, 2009, 223(5): 343-347.
[48] Bae SH, Heo J, Kim C, et al. Low-fluence photodynamic therapy versus ranibizumab for chronic central serous chorioretinopathy one-year results of a randomized trial[J]. Ophthalmology, 2014, 121(2): 558-565.
[49] Holz FG, Amoaku W, Donate J, et al. Safety and efficacy of a flexible dosing regimen of ranibizumab in neovascular age-related macular degeneration: the SUSTAIN study[J]. Ophthalmology, 2011, 118(4): 663-671.
[50] Abedi F, Wickremasinghe S, Islam AF, et al. Anti-VEGF treatment in neovascular age-related macular degeneration: a treat-and-extend protocol over 2 years[J]. Retina, 2014, 34(8): 1531-1538.
[51] Hatz K, Prünte C. Treat and Extend versus Pro Re Nata regimens of ranibizumab in neovascular age-related macular degeneration: a comparative 12 month study[J]. Acta Ophthalmol, 2017, 95(1): e67-e72.
[52] Chin-Yee D, Eck T, Fowler S, et al. A systematic review of as needed versus treat and extend ranibizumab or bevacizumab treatment regimens for neovascular age-related macular degeneration[J]. Br J Ophthalmol, 2016, 100(7): 914-917.
[53] Holz FG, Tadayoni R, Beatty S, et al. Multi-country real-life experience of anti-vascular endothelial growth factor therapy for wet age-related macular degeneration[J]. Br J Ophthalmol, 2015, 99(2): 220-226.