王 瑞, 沈 雳
复旦大学附属中山医院心内科,上海市心血管病研究所,上海 200032
血管平滑肌细胞(vascular smooth muscle cells, VSMCs)是血管壁的重要组成部分,也是维持血管张力的主要细胞成分[1-2]。血管平滑肌表型改变引起的结构和功能变化在高血压、肺动脉高压等大血管疾病的病理生理过程中发挥重要作用[3-6]。此外,血管平滑肌的迁移、增殖、凋亡及表型转变在动脉粥样硬化的发生发展和静脉旁路移植和金属支架植入后血管壁的重构过程中也起着关键作用[7-9]。
生理状态下心脏泵出的周期搏动的血流维持着血管系统的稳态,产生的两种主要生物机械力,包括剪切力(shear stress)和牵张应力(stretch stress),它们通过力学感受器影响着细胞内信号转导、基因和蛋白的表达,调节着内皮细胞和平滑肌细胞的功能。剪切力主要作用于内皮细胞,因其与内皮的直接作用,较早地被人们所认识[2]。牵张力由频率、幅度和时间3个主要要素构成,其大小为剪切力的数十倍,引起血管壁发生的形变被称为牵张应变(stretch strain)。平滑肌细胞是血管壁中主要承受脉动血流产生的牵张力的细胞,二者的相互作用对血管重构的进程发挥着至关重要的影响。因此,本文旨在从血管平滑肌细胞的角度就牵张应力对血管重构的影响作一综述。
近年来,人们一直致力于特异性机械力感受器的寻找,它的发现将为高血压药物的开发提供靶标,也将对心血管疾病引起的血管重构提供有效的治疗手段,遗憾的是至今仍无明确结果。但细胞膜上固有的一些细胞连接蛋白和受体也可以发挥非特异性机械力感受器的职能。
1.1 整合素(integrin) Wernig等[10]发现对于培养在预包被不同物质基底上的大鼠VSMCs,只有对培养在包被Ⅰ型胶原基底上的VSMCs施加周期性张应力时,可观察到明显的细胞凋亡,提示与Ⅰ型胶原连接相关的整合素β1可能是机械力的感受器。进一步采用整合素β1抗体及整合素抑制剂细胞松弛素B可阻断张应力引起的p38MAPK(mitogen-activated protein kinase, 丝裂原活化蛋白激酶)磷酸化及p53的表达。结果进一步证实了张应力-Ⅰ-integrin-rac-p38-p53这一凋亡调控通路。10%周期性牵张的条件下整合素αvβ3表达增加,同时增加大鼠VSMCs表面血凝素的表达,这个过程可以被整合素αvβ3拮抗剂cRGDPV、αv-siRNA及选择性阻滞αvβ3内到信号转导的talin-siRNA所阻断[11]。整合素αvβ3可能通过对PINCH-1的稳定来发挥其生理性保护作用[12]。
整合素力学传导功能的发挥离不开脂筏及整合素相关蛋白如人黏着斑激酶(focal adhesion kinase, FAK)、富含脯氨酸的非受体酪氨酸激酶(proline-rich tyrosine kinase 2, PYK2)、尿激酶纤维蛋白溶酶原激活物受体(urokinase-type plasminogen activator receptor, uPAR)的协助。牵张力作用于整合素,在uPAR的协助下下调细胞因子信号抑制物1(suppressor of cytokine signaling 1, SOCS-1)的表达,从而减少FAK的泛素化和降解,影响平滑肌细胞外基质的分泌和表型转变[13]。而牵张力引起的PYK2磷酸化水平的提高仅与平滑肌细胞的增殖有关,并未显著改变其收缩表型[14]。
1.2 牵张激活性离子通道(stretch-activated channel, SAC) 牵张相关的钙离子通道广泛存在于平滑肌细胞中,如猪冠脉平滑肌、大鼠肠系膜动脉平滑肌、大鼠主动脉平滑肌以及大鼠肺动脉平滑肌等[4,6,15-16]。牵张可以引起这类通道的开放导致非选择性的K+、Ca2+、Na+的内流,使细胞膜去极化,可以被SAC阻滞剂Gd、链霉素、GsMTx-4等抑制[17]。牵张同时可引起瞬时受体电位通道4(transient receptor potential channels 4, TRPC4)蛋白的下调,这可能是一种保护机制,防止过多的Ca2+内流。VSMCs的Ca2+内流激活一系列下游通路,如EGFR、ERK1/2。CAKβ(cell adhesion kinase β)也与非选择性离子通道的开放有关[18],同时发现c-Src是通过与CAKβ结合发挥作用的CAKβ的下游信号通路。SAC的激活与生理状态下细胞对牵张应力的反应有关;而在病理状态,如肺动脉高压时,内质网RyR受体的空间分布异常和胞内Ca2+储量增加与牵张是引起的Ca2+释放的关键因素[19]。Naruse等[20]在人脐静脉内皮细胞上证实桩蛋白(paxillin)、FAK、Crk相关底物(Crk-associated substrate, pp130CAS)的激活与SAC有关,但在VSMCs上尚缺乏验证。除钙离子通道外,Wan等[20-21]报道了牵张力作用下大电导钙激活钾通道(large conductance calcium and voltage-activated potassium, BKca)的激活,并探究了应激调控外显子(stress axis-regulated exons, STREX)对BKca感受机械牵张的重要作用。Hayabuchi等[22-23]发现,中等电导钙激活钾离子通道(intermediate-conductance Ca2+-activated K+, IKca)因细胞膜牵张而激活,而IKca的激活还可被PKC抑制剂GF109203X、松胞素D抑制。
1.3 血小板衍生因子受体(platelet derived growth factor, PDGFR) PDGFR是一种跨膜糖蛋白,具有酪氨酸蛋白激酶活性,当受体与其配体结合后激活细胞内结构域酪氨酸残基自身磷酸化,或促使激活特殊靶蛋白的酪氨酸残基磷酸化,将信号传入细胞内。PDGFR由2种亚单位α及β构成,各自与PDGF结合力不同,α单位与PDGFA链及B链有较高的亲和力,而β亚单位仅与B链有高亲和力[24]。机械牵张力可以同时激活PDGFR-α和PDGFR-β,但仅PDGFR-β与Akt通路的激活有关并引起基质金属蛋白酶2(matrix metallopeptidase, MMP-2)表达增加。且牵张应力仅引起血管平滑肌PDGFR-β表达增加,而对内皮无影响[25]。Hu等[26]也观察到了牵张应力引起的PDGFR-α激活,且证明了张应力不是通过受体-配体途径激活PDGFR,而是可能由于力的直接作用扰乱细胞膜功能或引起受体构象改变而造成。
1.4 G蛋白偶联受体(G protein-coupled receptors, GPCRs) GPCRs为7次跨膜蛋白,广泛存在于真核细胞细胞膜表面,调控着细胞对激素、神经递质、趋化因子等的应答,参与视觉、嗅觉和味觉的形成,是40%药物的作用靶标。心肌细胞牵张应力激活血管紧张素受体-1(angiotensin type 1 receptor, AT1 receptor)的过程与血管紧张素2(AngⅡ)无关,可被AT-1受体反向激动剂抑制[27]。增加对机械力无反应的大鼠主动脉A7r5细胞的AT-1受体密度,可以使细胞出现机械力感受能力,应用AT-1受体反向激动剂后,大鼠大脑动脉和肾动脉肌源性紧张极度降低[28]。这些发现证实了G蛋白偶联受体在VSMCs也发挥着机械力感受器的作用。
1.5 斑联蛋白(zyxin) 斑联蛋白是一种结构蛋白,调节着肌动蛋白在黏着斑处的聚合,通过召集血管舒张剂刺激磷蛋白(vasodilator-stimulated phosphoprotein, VASP)参与应力纤维的修复与重建[29-30]。Cattaruzza等[31]首先观察到使用15%机械牵张刺激大鼠主动脉血管平滑肌细胞时,斑联蛋白从黏着斑上脱离,并在细胞核内聚集,且证实斑联蛋白的存在与机械力传导相关的基因表达有关。这一发现使得斑联蛋白成为第1个能直接接受机械力刺激向细胞核内转位,从而发挥转录因子作用的分子。Ghosh等[32]验证了Cattaruzza团队在细胞学层面的发现,他们通过使用斑联蛋白敲除鼠证实90%左右与牵张力有关的基因表达与斑联蛋白有关。且缺乏斑联蛋白的小鼠血管平滑肌明显转变为分泌表型,增殖加快,凋亡减少。虽然细胞学改变明显,但使用醋酸去氧皮质酮(DOCA)盐诱导小鼠高血压时,斑联蛋白敲除小鼠与野生型小鼠相比并未表现出血压的差异和明显的动脉重构。斑联蛋白在细胞层面的作用可能被动物机体的某些因素所掩盖了。因此,未来需要更多动物层面的实验来阐明斑联蛋白作为力学感受器的作用。
2.1 细胞增殖 机体在高血压状态下,主动脉平滑肌细胞张应变可以较常人增加30%,大多数实验将10%以上的张应变定义为病理性,将5%~7%的张应变定义为生理性。VSMCs增殖状态与张应变大小密切相关[33]。5%的张应变抑制动脉VSMCs增殖,使其处于稳定状态;15%的张应变显著刺激动脉VSMCs增殖,可能与血管重构等病理过程有关[34]。Morrow和Waard等研究团队发现,10%的张应变可使动脉VSMCs维持一个相对静息的状态,增殖活性降低[35-36]。而其他研究[33-37]发现10%的张应变能通过增加AngII和PDGF的表达,促进动脉VSMCs增殖。这种矛盾结果的出现可能与细胞的种属来源有关,前两者的实验结果是基于兔和人来源的原代动脉平滑肌细胞,而后两者使用的则是鼠源动脉平滑肌,种属间生理性牵张应力存在差异。静脉VSMCs对牵张应力的反应与动脉VSMCs反应大不相同,10%张应变可引起人大隐静脉VSMCs发生明显增殖,而乳内动脉VSMCs处于一个相对静息的状态[36]。除上述途径外,张应力对细胞增殖的影响还可能通过Rho-GDIα(guanine dissociation inhibitor, GDP解离抑制因子α)、植物血凝素样氧化低密度脂蛋白受体(lectin like Ox-LDL receptor-1,LOX-1)、雷帕霉素靶蛋白(mTOR)/核糖体S6蛋白激酶、Notch受体以及L-脯氨酸转运等途径实现[33,35,37-39]。Ochoa等[3]在肺动脉管壁细胞中发现,内皮细胞与平滑肌细胞的交互作用也是生理性张应力抑制平滑肌细胞增殖的机制之一。结果发现暴露于生理性张应变下内皮细胞的条件培养液可抑制肺动脉平滑肌细胞增殖,而这一过程可以被血小板反应蛋白-1(thrombospondin-1, TSP-1)逆转。同时,ox-LDL和AngⅡ可与病理性张应变协同促进VSMCs的增殖。辛伐他汀可通过部分抑制LOX-1途径来抑制ox-LDL与张应变协同引起的VSMCs增殖[38]。
2.2 细胞凋亡 15%的张应变可激活氧化DNA损伤与rac-p38MAPK通路,从而介导p53依赖的细胞凋亡[40]。Wernig等[41]证实了此通路并提出整合素β1作为其上游分子。内质网应激也参与了病理性牵张力引起的细胞凋亡过程,20%的张应变可引起内质网应激相关蛋白GADD153(growth arrest and DNA damage-inducible gene153)、p53上调凋亡调节因子(p53 upregulated modulator of apoptosis, PUMA)的表达,导致平滑肌细胞凋亡,而10%的张应变对GADD153和PUMA的表达无影响[42-43]。但Morrow等[44]研究发现,10%的张应变就足以诱导血管平滑肌的凋亡,10%的张应变可显著降低Notch1和Notch3的表达水平,并具有时间依赖性,Notch3表达降低增加了Bax并降低了Bcl-xL的表达,从而启动了血管平滑肌的凋亡。一系列细胞死亡相关受体,如肿瘤坏死因子α受体1(tumor necrosis factor-α receptor-1, TNFR-1)及其相关因子TRAF-2(TNF-α receptor-associated factor-2)也与机械牵张引起的细胞凋亡有关[44]。
2.3 细胞迁移 VSMCs迁移在血管成形术后再狭窄以及动脉粥样硬化的病理过程中发挥重要作用[45]。Zhang与Qi等团队的研究均发现15%的张应变与5%张应变相比显著增加VSMCs的迁移率[39,46]。Akt/PKB、Rac1/p38通路及组氨酸去乙酰化酶(histone deacetylases, HDACs)的激活是细胞迁移率增加的可能机制[47]。此外,高牵张应变激活活化T细胞核因子-5(nuclear factor of activated T cells 5, NFAT-5)来调节腱生蛋白-C(tenascin-C)的表达,可能是导致VSMCs迁移增加促进高血压引起的动脉硬化的机制,NFAT-5的激活可能与c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)有关[48-49]。
2.4 细胞表型 培养状态下的VSMCs可快速从生理性的收缩表型转换为相对分化程度低的分泌表型,这种去分化可使平滑肌细胞发生收缩功能障碍,促进血管重构,引起血管壁硬化[50]。于是有人假设血管壁生理状态下所受的力学刺激可以阻止这种去分化的过程,使VSMCs保持收缩表型。这一假设得到了Rodríguez等的证实,他们发现周期性牵张可以增加VSMCs内氧化应激水平,导致细胞的去分化,肌细胞增强因子2B(myocyte enhancer binding factor 2B, MEF2B)介导了NADPH氧化酶1(Nox-1)来源的活性氧簇(ROS)的增加[51]。Jiang等[52]随后的实验也显示机械应变可增加平滑肌细胞α肌动蛋白(α-actin)、calponin以及细胞骨架相关蛋白SM22α蛋白的表达,周期性牵张应变引起的平滑肌细胞表型改变是通过SIRT1/FoxO通路激活介导的。
Hu等[53]的研究显示,与生理性机械刺激相反,病理性牵张应变(16%)抑制miRNA145表达,降低VSMCs收缩表型的标志物水平,miRNA145的过表达可使其部分恢复。miRNA145类似物的应用可改变周期性牵张引起的VSMCs表型主要的调控蛋白心肌素(myocardin)和Krüppel样因子4(Krüppel-like factor4, KLF4)蛋白的表达。周期性牵张应变引起的ERK通路的激活和ACE的表达可能与miRNA145抑制有关。
总之,血管的负性重构主要表现为血管顺应性的降低、血管外弹力膜面积的缩小和管腔的狭窄。病理性牵张力通过平滑肌力学感受器感知,通过下游信号的调节,促进血管中膜平滑肌细胞向内膜迁移,并引起平滑肌增殖,使其由稳定的收缩表型向分泌型转变,进而引起MMP-2分泌增加,细胞外基质构成改变,最终造成血管重构[54]。此外,血管平滑肌细胞血管内皮生长因子(vascular endothelial growth factor, VEGF)和缺氧诱导因子1α(hypoxia-inducible factor-1α, HIF1α)基因的表达也可能在牵张应力引起的血管重构中发挥着一定的作用[55-56]。
血管生理环境的变化及外部因素的影响可引起牵张应力的改变,从而启动血管重构的进程,这些因素与其他心血管病危险因素协同,共同参与临床疾病的发生。
3.1 高血压 在原发性高血压患者中,早期血管壁的生物力学变化主要为逐渐增高的血压而带来的病理性牵张。病理性牵张导致的VSMCs增殖及其从稳定的收缩表型向分泌型的转变已被大量体内、体外实验所证实。血管平滑肌细胞的过度增殖和多种细胞外基质的合成将导致血管壁力学性质的改变[57-58],MMP家族也参与了血管重构的过程[59],这些生理学变化最终将导致动脉硬化,血管顺应性降低,反应为超声多普勒下脉搏传导速度(pulse wave velocity, PWV)的减低。而PWV是高血压患者发生主要冠状动脉事件以及脑卒中和慢性肾病患者心血管病死亡的独立预测因子[60-61]。
3.2 动脉粥样硬化 通常认为,与动脉粥样硬化密切相关的生物力是剪切力,而近来的研究表明,牵张应力也在粥样硬化斑块的进展中发挥着重要的作用。在多个动脉粥样硬化动物模型中发现,高血压可加速粥样硬化斑块的形成,该现象可能与炎症、氧化应激有关[62]。
3.3 血管植入物反应 经皮冠状动脉成形术(PTCA)最早被用于冠状动脉疾病的器械治疗,此后为防止管腔的弹性回缩,维持管腔通畅,冠脉支架应运而生。但支架植入后,管壁长期处于较高的非生理性牵张状态下,因此而产生的牵张应力会刺激血管平滑肌细胞,通过力学感受器激活细胞内信号通路,促进VSMCs的增殖和迁移,增加VSMCs细胞内氧化应激水平,是支架内再狭窄发生的潜在机制之一[63-64]。
3.4 静脉移植物疾病 大隐静脉是最常被用于外周和冠状动脉旁路移植的桥血管之一,但40%~50%的静脉桥在10年后会发生闭塞[65]。手术过程中对血管的牵拉以及从静脉循环的低牵张应力到动脉循环的高牵张应力的转变,使得血管平滑肌细胞转变为分泌表型,迁移能力增强,在内皮下不断增殖,合成细胞外基质,引起内膜增生,从而导致管腔狭窄闭塞。周期性牵张力可引起大隐静脉平滑肌细胞的显著增殖,而对乳内动脉平滑肌细胞无明显影响[66]。而且血管外支架的应用,可显著减少周期性牵张对动脉移植物的影响,能有效移植血管平滑肌的增生[67]。
经过近30年的不懈努力,众多机械力与细胞功能相联系的途径被人类发现。但在是否存在特异性机械力受体、生物机械力如何作用于已发现的受体引起一系列病理生理变化等方面仍存在很多未解之谜。这些问题的阐明将有助于指导高血压、肺动脉高压和动脉粥样硬化的治疗。生物可降解支架(bioresorbable vascular scaffold, BVS)被称为冠脉介入治疗的第4个里程碑,与传统金属支架引起的“金属外壳”现象相比,血管顺应性的恢复是其主要优势,血管壁生理性牵张的恢复有助于平滑肌细胞收缩性表型的恢复,避免长期过度牵张引起的血管重构,以期减少临床不良事件的发生率,然而在随后进行的几项大型临床研究中并未发现BVS较传统药物洗脱支架在主要临床终点上的优势[68-69]。血管顺应性与管壁细胞尤其是平滑肌细胞的牵张应变关系密切,牵张应变对平滑肌细胞影响的阐明将有助于验证生物可降解支架“血管功能恢复”的理论优势,从而指导支架的改进与下一代的研发。
[ 1 ] CHAABANE C, OTSUKA F, VIRMANI R, et al.Biological responses in stented arteries[J]. Cardiovasc Res, 2013,99(2):353-363.
[ 2 ] WU J, THABET S R, KIRABO A, et al. Inflammation and mechanical stretch promote aortic stiffening in hypertension through activation of p38 mitogen-activated protein kinase[J].Circ Res, 2014,114(4):616-625.
[ 3 ] OCHOA C D,BAKER H,HASAK S,et al.Cyclic stretch affects pulmonary endothelial cell control of pulmonary smooth muscle cell growth[J].Am J Respir Cell Mol Biol, 2008,39(1):105-112.
[ 4 ] DUCRET T, EL ARROUCHI J, COURTOIS A, et al.Stretch-activated channels in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats[J].Cell Calcium, 2010,48(5):251-259.
[ 5 ] LIU G, HITOMI H, HOSOMI N, et al. Mechanical stretch potentiates angiotensin Ⅱ-induced proliferation in spontaneously hypertensive rat vascular smooth muscle cells[J]. Hypertens Res, 2010,33(12):1250-1257.
[ 6 ] OHYA Y, ADACHI N, NAKAMURA Y, et al. Stretch-activated channels in arterial smooth muscle of genetic hypertensive rats[J]. Hypertension, 1998,31(1 Pt 2):254-258.
[ 7 ] BENEIT N, FERNNDEZ-GARCA C E, MARTN-VENTURA J L, et al. Expression of insulin receptor (IR) A and B isoforms, IGF-IR, and IR/IGF-IR hybrid receptors in vascular smooth muscle cells and their role in cell migration in atherosclerosis[J]. Cardiovasc Diabetol, 2016,15(1):161.
[ 8 ] CORNELISSEN J, ARMSTRONG J, HOLT C M. Mechanical stretch induces phosphorylation of p38-MAPK and apoptosis in human saphenous vein[J]. Arterioscler Thromb Vasc Biol, 2004,24(3):451-456.
[ 9 ] COLOMBO A, GUHA S, MACKLE J N, et al. Cyclic strain amplitude dictates the growth response of vascular smooth muscle cells in vitro: role in in-stent restenosis and inhibition with a sirolimus drug-eluting stent[J]. Biomech Model Mechanobiol, 2013,12(4):671-683.
[10] WERNIG F, MAYR M, XU Q. Mechanical stretch-induced apoptosis in smooth muscle cells is mediated by beta1-integrin signaling pathways[J]. Hypertension, 2003,41(4):903-911.
[11] MAO X, SAID R, LOUIS H, et al. Cyclic stretch-induced thrombin generation by rat vascular smooth muscle cells is mediated by the integrin αvβ3 pathway[J]. Cardiovasc Res, 2012,96(3):513-523.
[12] CHENG J, ZHANG J, MERCHED A, et al. Mechanical stretch inhibits oxidized low density lipoprotein-induced apoptosis in vascular smooth muscle cells by up-regulating integrin alphavbeta3 and stablization of PINCH-1[J]. J Biol Chem, 2007,282(47):34268-34275.
[13] DANGERS M, KIYAN J, GROTE K, et al. Mechanical stress modulates SOCS-1 expression in human vascular smooth muscle cells[J]. J Vasc Res, 2010,47(5):432-440.
[14] BHATTACHARIYA A, TURCZYN'SKA K M, GROSSI M, et al. PYK2 selectively mediates signals for growth versus differentiation in response to stretch of spontaneously active vascular smooth muscle[J]. Physiol Rep, 2014,2(7). pii: e12080.
[15] DAVIS M J, DONOVITZ J A,HOOD J D.Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells[J]. Am J Physiol, 1992,262(4 Pt 1):C1083- C1088.
[16] LIU X, HYMEL L J, SONGU-MIZE E. Role of Na+and Ca2+in stretch-induced Na+-K+-ATPase alpha-subunit regulation in aortic smooth muscle cells [J]. Am J Physiol, 1998,274(1 Pt 2):H83-H89.
[17] DAVIS M J, MEININGER G A, ZAWIEJA D C. Stretch-induced increases in intracellular calcium of isolated vascular smooth muscle cells[J]. Am J Physiol, 1992,263(4 Pt 2):H1292-H1299.
[18] IWASAKI H, YOSHIMOTO T, SUGIYAMA T, et al. Activation of cell adhesion kinase beta by mechanical stretch in vascular smooth muscle cells[J]. Endocrinology, 2003,144(6):2304-2310.
[19] GILBERT G, DUCRET T, MARTHAN R, et al. Stretch-induced Ca2+signalling in vascular smooth muscle cells depends on Ca2+store segregation[J]. Cardiovasc Res, 2014,103(2):313-323.
[20] NARUSE K, YAMADA T, SAI X R, et al. Pp125FAK is required for stretch dependent morphological response of endothelial cells[J]. Oncogene, 1998,17(4):455-463.
[21] WAN X J, ZHAO H C, ZHANG P, et al. Involvement of BK channel in differentiation of vascular smooth muscle cells induced by mechanical stretch[J].Int J Biochem Cell Biol, 2015,59:21-29.
[22] ZHANG Z, WEN Y, DU J, et al.Effects of mechanical stretch on the functions of BK and L-type Ca2+channels in vascular smooth muscle cells[J]. J Biomech, 2018,67:18-23.
[23] HAYABUCHI Y, NAKAYA Y, MAWATARI K, et al. Cell membrane stretch activates intermediate-conductance Ca2+-activated K+channels in arterial smooth muscle cells[J]. Heart Vessels, 2011,26(1):91-100.
[24] SEO K W, LEE S J, KIM Y H, et al.Mechanical stretch increases MMP-2 production in vascular smooth muscle cells via activation of PDGFR-β/Akt signaling pathway[J].PLoS One, 2013,8(8):e70437.
[25] TANABE Y, SAITO M, UENO A, et al. Mechanical stretch augments PDGF receptor beta expression and protein tyrosine phosphorylation in pulmonary artery tissue and smooth muscle cells[J]. Mol Cell Biochem, 2000,215(1-2):103-113.
[26] HU Y, BÖCK G, WICK G, et al.Activation of PDGF receptor alpha in vascular smooth muscle cells by mechanical stress[J].FASEB J, 1998,12(12):1135-1142.
[27] ZOU Y, AKAZAWA H, QIN Y, et al. Mechanical stress activates angiotensin Ⅱ type 1 receptor without the involvement of angiotensin Ⅱ[J]. Nat Cell Biol, 2004,6(6):499-506.
[28] YASUDA N, MIURA S, AKAZAWA H, et al. Conformational switch of angiotensin Ⅱ type 1 receptor underlying mechanical stress-induced activation[J]. EMBO Rep, 2008,9(2):179-186.
[29] CRAWFORD A W, MICHELSEN J W, BECKERLE M C. An interaction between zyxin and alpha-actinin[J]. J Cell Biol, 1992,116(6):1381-1393.
[30] HOFFMAN L M,JENSEN C C,KLOEKER S,et al.Genetic ablation of zyxin causes Mena/VASP mislocalization, increased motility, and deficits in actin remodeling[J].J Cell Biol, 2006,172(5):771-782.
[31] CATTARUZZA M, LATTRICH C, HECKER M. Focal adhesion protein zyxin is a mechanosensitive modulator of gene expression in vascular smooth muscle cells[J]. Hypertension, 2004,43(4):726-730.
[32] GHOSH S, KOLLAR B, NAHAR T, et al. Loss of the mechanotransducer zyxin promotes a synthetic phenotype of vascular smooth muscle cells[J]. J Am Heart Assoc, 2015,4(6):e001712.
[33] REYNA S V, ENSENAT D, JOHNSON F K, et al. Cyclic strain stimulates L-proline transport in vascular smooth muscle cells[J]. Am J Hypertens, 2004,17(8):712-717.
[34] QI Y X, YAO Q P, HUANG K, et al. Nuclear envelope proteins modulate proliferation of vascular smooth muscle cells during cyclic stretch application[J]. Proc Natl Acad Sci U S A, 2016,113(19):5293-5298.
[35] MORROW D, SWEENEY C, BIRNEY Y A, et al. Cyclic strain inhibits Notch receptor signaling in vascular smooth muscle cellsinvitro[J]. Circ Res, 2005,96(5):567-575.
[36] DE WAARD V, ARKENBOUT E K, VOS M, et al. TR3 nuclear orphan receptor prevents cyclic stretch-induced proliferation of venous smooth muscle cells[J]. Am J Pathol, 2006,168(6):2027-2035.
[37] LI W, CHEN Q, MILLS I, et al. Involvement of S6 kinase and p38 mitogen activated protein kinase pathways in strain-induced alignment and proliferation of bovine aortic smooth muscle cells[J]. J Cell Physiol, 2003,195(2):202-209.
[38] ZHANG Z, ZHANG M, LI Y, et al. Simvastatin inhibits the additive activation of ERK1/2 and proliferation of rat vascular smooth muscle cells induced by combined mechanical stress and ox-LDL through LOX-1 pathway[J]. Cell Signal, 2013,25(1):332-340.
[39] QI Y X, QU M J, YAN Z Q, et al.Cyclic strain modulates migration and proliferation of vascular smooth muscle cells via Rho-GDIalpha, Rac1, and p38 pathway[J].J Cell Biochem, 2010,109(5):906-914.
[40] MAYR M, HU Y, HAINAUT H, et al.Mechanical stress-induced DNA damage and rac-p38MAPK signal pathways mediate p53-dependent apoptosis in vascular smooth muscle cells[J]. FASEB J, 2002,16(11):1423-1425.
[41] WERNIG F, MAYR M, XU Q. Mechanical stretch-induced apoptosis in smooth muscle cells is mediated by beta1-integrin signaling pathways[J]. Hypertension, 2003,41(4):903-911.
[42] CHENG W P, HUNG H F, WANG B W,et al.The molecular regulation of GADD153 in apoptosis of cultured vascular smooth muscle cells by cyclic mechanical stretch[J].Cardiovasc Res, 2008,77(3):551-559.
[43] CHENG W P,WANG B W,CHEN S C,et al.Mechanical stretch induces the apoptosis regulator PUMA in vascular smooth muscle cells[J]. Cardiovasc Res, 2012,93(1):181-189.
[44] SOTOUDEH M, LI Y S, YAJIMA N, et al. Induction of apoptosis in vascular smooth muscle cells by mechanical stretch[J]. Am J Physiol Heart Circ Physiol, 2002,282(5):H1709- H1716.
[45] YUNG Y C,CHAE J,BUEHLER M J,et al.Cyclic tensile strain triggers a sequence of autocrine and paracrine signaling to regulate angiogenic sprouting in human vascular cells[J]. Proc Natl Acad Sci USA,2009,106(36):15279-15284.
[46] ZHANG B C, ZHOU Z W, LI X K, et al. PI-3K/AKT signal pathway modulates vascular smooth muscle cells migration under cyclic mechanical strain[J]. Vasa, 2011,40(2):109-116.
[47] YAN Z Q, YAO Q P, ZHANG M L, et al. Histone deacetylases modulate vascular smooth muscle cell migration induced by cyclic mechanical strain[J]. J Biomech, 2009,42(7):945-948.
[48] SCHERER C, PFISTERER L, WAGNER A H, et al. Arterial wall stress controls NFAT5 activity in vascular smooth muscle cells[J]. J Am Heart Assoc, 2014,3(2):e000626.
[49] CAO W, ZHANG D, LI Q, et al. Biomechanical stretch induces inflammation, proliferation, and migration by activating NFAT5 in arterial smooth muscle cells[J]. Inflammation, 2017,40(6):2129-2136.
[50] CHAMLEY-CAMPBELL J, CAMPBELL G R, ROSS R. The smooth muscle cell in culture[J]. Physiol Rev, 1979,59(1):1-61.
[52] HUANG K, YAN Z Q, ZHAO D,et al.SIRT1 and FOXO mediate contractile differentiation of vascular smooth muscle cells under cyclic stretch[J]. Cell Physiol Biochem, 2015,37(5):1817-1829.
[53] HU B, SONG J T, QU H Y, et al. Mechanical stretch suppresses microRNA-145 expression by activating extracellular signal-regulated kinase 1/2 and upregulating angiotensin-converting enzyme to alter vascular smooth muscle cell phenotype[J]. PLoS One, 2014,9(5):e96338.
[54] MENG X, MAVROMATIS K, GALIS Z S. Mechanical stretching of human saphenous vein grafts induces expression and activation of matrix-degrading enzymes associated with vascular tissue injury and repair[J]. Exp Mol Pathol, 1999,66(3):227-237.
[55] SHYU K G, CHANG M L, WANG B W, et al. Cyclical mechanical stretching increases the expression of vascular endothelial growth factor in rat vascular smooth muscle cells[J]. J Formos Med Assoc, 2001,100(11):741-747.
[56] CHANG H, SHYU K G, WANG B W, et al. Regulation of hypoxia-inducible factor-1alpha by cyclical mechanical stretch in rat vascular smooth muscle cells[J]. Clin Sci (Lond), 2003,105(4):447-456.
[57] JIAO Y, LI G, LI Q, et al. mTOR (mechanistic target of rapamycin) inhibition decreases mechanosignaling, collagen accumulation, and stiffening of the thoracic aorta in elastin-deficient mice[J]. Arterioscler Thromb Vasc Biol, 2017,37(9):1657-1666.
[58] HUYARD F, YZYDORCZYK C, CASTRO M M, et al. Remodeling of aorta extracellular matrix as a result of transient high oxygen exposure in newborn rats: implication for arterial rigidity and hypertension risk[J]. PLoS One, 2014,9(4):e92287.
[59] LEHOUX S,LEMARIÉ C A,ESPOSITO B,et al.Pressure-induced matrix metalloproteinase-9 contributes to early hypertensive remodeling[J].Circulation, 2004,109(8):1041-1047.
[60] LAURENT S,BOUTOUYRIE P,ASMAR R, et al.Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients[J].Hypertension, 2001,37(5):1236-1241.
[61] BLACHER J,GUERIN A P,PANNIER B,et al.Impact of aortic stiffness on survival in end-stage renal disease[J]. Circulation, 1999,99(18):2434-2439.
[62] CHOBANIAN A V, ALEXANDER R W. Exacerbation of atherosclerosis by hypertension. Potential mechanisms and clinical implications[J]. Arch Intern Med, 1996,156(17):1952-1956.
[63] TIMMINS L H, MILLER M W, CLUBB F J JR, et al. Increased artery wall stress post-stenting leads to greater intimal thickening[J]. Lab Invest, 2011,91(6):955-967.
[64] PENDYALA L K, LI J, SHINKE T, et al. Endothelium-dependent vasomotor dysfunction in pig coronary arteries with Paclitaxel-eluting stents is associated with inflammation and oxidative stress[J]. JACC Cardiovasc Interv, 2009,2(3):253-262.
[65] GAUDINO M, ANTONIADES C, BENEDETTO U, et al. Mechanisms, consequences, and prevention of coronary graft failure[J]. Circulation, 2017,136(18):1749-1764.
[66] PREDEL H G, YANG Z, VON SEGESSER L, et al.Implications of pulsatile stretch on growth of saphenous vein and mammary artery smooth muscle[J]. Lancet, 1992,340(8824):878-879.
[67] MEIRSON T, ORION E, DI MARIO C, et al.Flow patterns in externally stented saphenous vein grafts and development of intimal hyperplasia[J].J Thorac Cardiovasc Surg, 2015,150(4):871-878.
[68] JIM M H, YIU K H, HO H H, et al. Angiographic and clinical outcomes of everolimus-eluting stent in the treatment of extra long stenoses (AEETES)[J]. J Interv Cardiol, 2013,26(1):22-28.
[69] SERRUYS P W, CHEVALIER B, SOTOMI Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB Ⅱ): a 3 year, randomised, controlled, single-blind, multicentre clinical trial[J]. Lancet, 2016,388(10059):2479-2491.