皮肤创伤愈合和增生性瘢痕动物模型的研究进展

2018-01-15 12:12周思政综述李青峰审校
组织工程与重建外科杂志 2018年1期
关键词:瘢痕创面伤口

周思政 综述 李青峰 审校

人皮肤深层创伤后通过纤维性修复的方式进行愈合[1]。该过程中,创面基底肉芽组织增生,支持创缘表皮增殖,并向创面中央迁移,最终覆盖创面,完成愈合[2-3]。由于皮肤的修复能力有一定的限度,大面积皮肤缺损往往愈合时间较长;同时,一些基础疾病可能会干扰创伤愈合的进程,使伤口迁延不愈,这些问题目前在临床上仍缺乏良好的对策[4-5]。皮肤伤口的纤维性修复虽然恢复了皮肤的完整性和表皮的屏障作用,但主要是通过肉芽组织增生填补皮肤的缺损,愈合后不可避免地遗留瘢痕[6]。皮肤伤口愈合后产生的普通瘢痕,在形成后迅速进入成熟期,期间细胞发生凋亡、胶原重排、血管密度降低,瘢痕颜色逐渐变淡、质地变软[7-8]。若皮肤创伤愈合过程中炎症反应过度[9-10],或创面受到机械张力牵拉[11],则可能诱导增生性瘢痕的产生。增生性瘢痕的增生期明显,期间细胞增殖活跃、胶原大量沉积、多种生长因子(如转化生长因子β1、胰岛素样生长因子1等)异常高表达[12-13],导致瘢痕隆起、颜色发红、质地变硬、易产生挛缩,可导致患者局部外观和功能受损,并产生严重的心理影响,是临床一大难题[14]。

长期以来,大量的研究针对皮肤创面愈合、瘢痕形成的病理生理机制及治疗方法进行探索。由于人皮肤创面和瘢痕标本在临床的取材常常受到限制,因此这一领域的大部分研究需建立实验动物模型。但是,种系间的差异使得常用的实验动物从皮肤结构、创面愈合过程到瘢痕形成、瘢痕增生等多个环节,均与人体存在较大差别[15],为实验研究带来了很大的困难。本文针对目前皮肤创伤愈合和增生性瘢痕动物模型的研究进展进行综述,以期为最终攻克瘢痕难题提供线索。

1 皮肤创伤愈合模型

1.1 啮齿类动物创伤模型

啮齿类动物易管理,建模方法相对简便,基因编辑、在体示踪等生物学技术在该类动物中的应用日趋成熟。因此,啮齿类动物的创伤模型在实验研究中最为常用。在上世纪40年代即有报道利用小鼠观察致癌物对皮肤创伤愈合的影响[16],之后SD大鼠、Lewis大鼠、BALB/c小鼠、C57BL/6小鼠等均用于建立皮肤创伤愈合模型[17-20]。在啮齿类动物中建立的模型包括线性切割伤口模型、皮肤切除创伤模型、热损伤模型、感染性创面模型等。

线性切割伤口模型、皮肤切除创伤模型通常于啮齿类动物背部皮肤进行,伤口大小不一、深度各异。除了应用手术刀、手术剪制造伤口外,为了提高建模的稳定性和使伤口标准化,皮肤打孔器[21]、植皮刀[22]等亦常用于该类模型的建立。热损伤模型有多种建模方式,有将动物皮肤浸泡于热水中引起皮肤烫伤的[23],亦有应用加热的金属对皮肤进行热损伤的[24]。感染性创面的建模,则通过局部涂抹或注射微生物悬液制备,较多的是采用金黄色葡萄球菌[25]和铜绿假单胞菌[26]。

啮齿类动物皮肤创伤愈合模型被用于观察伤口愈合过程及新治疗方法的效果。但是,啮齿类动物皮肤伸缩性较强,皮肤与皮下组织间较为疏松,皮下存在易于收缩的肉膜层,导致了创面形成后创缘容易收缩[22,27],使创面缩小。Chen等[28]报道小鼠背部伤口愈合过程中,伤口闭合约60%的力量来自于创缘收缩。因此,啮齿类动物创面闭合的速度相对较快,愈合过程中肉芽增生较弱,病理生理过程与人体差异较大。另外,啮齿类动物在皮肤愈合后,创面瘢痕会继续收缩,出现明显的萎缩,大创面愈合后约2个月时可出现毛囊再生等现象[29],与人体皮肤存在根本性地差异。应用药物或基因敲除技术可建立糖尿病小鼠或大鼠模型[30-31],这类动物皮肤创面的愈合功能受损,创面收缩减弱,但由于动物存在基础疾病,使这类动物模型的应用受到限制。Wu等[32]在大鼠背部伤口皮下植入明胶海绵,使伤口的炎症反应加重,愈合后瘢痕的宽度扩大了11倍,但该方法在创面引入了异物,对创面修复的过程形成了干扰。Wang等[33]提出,在背部创面周围使用一硅胶圈防止创缘收缩,可更好地模拟人创面愈合、瘢痕形成的过程,但啮齿类动物较为活跃,实验过程中硅胶圈易损坏或脱落,导致建模的稳定性欠佳。

1.2 猪皮肤创伤愈合模型

常用于建立皮肤创伤愈合模型的猪种包括约克郡猪[34]、杜洛克猪[35]和体型较小的尤卡坦猪[36]、汉福德猪[37]等。猪皮肤创伤愈合模型包括皮肤切除模型和热损伤模型,与啮齿类动物建模方式类似,分别用手术器械、皮肤打孔器、植皮刀或加热后的金属来制造损伤。

猪皮肤创伤愈合模型的最大优势在于猪皮肤的结构、创伤愈合过程与人皮肤较为接近。猪皮肤表皮与真皮厚度之比和毛发密度等,与人皮肤接近,且表皮、真皮细胞表达标志物与人皮肤细胞有一定的相似性[38],其创伤愈合过程以肉芽组织增生与表皮再生为主,与人创伤纤维性修复的模式也较为接近。同时,猪皮肤创伤愈合后可形成较明显的皮肤瘢痕[15]。Sullivan等总结了180篇文献,发现78%以猪为实验动物的创面研究结果与临床研究结果一致,这一比例高于小动物实验(53%)与体外实验(57%)[39]。但是,猪作为实验动物,其饲养、管理条件和经济成本较高,更为重要的是很多新兴的生物学手段,如基因编辑技术等,在猪模型上应用较少,不利于对创面愈合的基因、分子机制进行深入研究[40],因此猪皮肤创伤愈合模型并未获得大量的应用。

2 皮肤增生性瘢痕模型

增生性瘢痕是皮肤创伤愈合过程中修复反应过度而产生的病理性瘢痕,病理生理机制尚不明确。目前认为增生性瘢痕的产生与过度炎症反应[41]和机械张力作用有关[11,42]。一般的实验动物创面愈合后形成的瘢痕不明显,而且消退较快,因此增生性瘢痕模型的建立是该领域的一大难题。

2.1 兔耳增生性瘢痕模型

Morris等[43]发现兔耳皮肤创伤愈合后可自发形成较为稳定、持久的增生性瘢痕,有69%的兔耳创面愈合后形成明显隆起的瘢痕,且可持续90 d,组织学染色提示瘢痕组织明显高于周边正常皮肤,具备人增生性瘢痕的组织学特点。Kloeters等[44]改进了此模型,使形成的增生性瘢痕更加稳定。他们在兔耳上建立直径为7 mm的创面,并去除兔耳的软骨膜,使创面收缩变缓、愈合速度减慢,成纤维细胞持续在创面张力的作用下,最终导致增生性瘢痕的发生。进一步研究表明,直径7 mm的兔耳创面与5 mm的创面相比,在瘢痕过程中表达的Ⅰ型胶原和TGF-β1显著升高[45],提示适当扩大创面、延迟创面愈合可形成更明显的增生性瘢痕。Qian等[41]在兔耳创面中加入病原体相关分子模式和损伤相关分子模式,使创面持续发生炎症反应,创面多核白细胞数量、白介素-6表达明显升高,创面愈合延迟,创面愈合后形成的增生性瘢痕隆起更为明显,中性粒细胞浸润增多,该模型可用于炎症性创面与增生性瘢痕的研究。Friedrich等[46]在兔耳上建立烧伤创面,与皮肤切除创面相比,其形成的瘢痕面积显著增加,适合用于烧伤病理生理过程、烧伤后瘢痕形成的研究。

但是,兔耳模型暴露了兔耳的软骨,使得创面基底与一般情况下人皮肤创面的基底条件有差异;另外,兔耳瘢痕增生的同时出现了软骨的增生[44],提示兔耳瘢痕增生的机制可能与人增生性瘢痕形成的机制存在差别。

2.2 免疫缺陷小鼠移植模型

Polo等[47]成功地将人增生性瘢痕标本移植至免疫缺陷小鼠皮下,移植的瘢痕组织可保留人增生性瘢痕的特点。随后,Momtazi等[48-49]指出,将人刃厚皮片移植至免疫缺陷小鼠背部皮肤缺损处亦可产生瘢痕,瘢痕组织内可见成纤维细胞、肥大细胞浸润,同时decorin表达下降、二聚糖表达上升,符合人增生性瘢痕的特点。他们还发现该模型在TCRαβ-/-γδ-/-、RAG-1-/-和RAG-2-/-γc-/-免疫缺陷小鼠中均可建立,有利于研究不同类型的免疫细胞(T细胞、B细胞、自然杀伤细胞)在增生性瘢痕形成中的作用[50]。Zhu等[51]在此类模型中应用氯膦酸二钠脂质体诱导裸鼠体内巨噬细胞凋亡,发现瘢痕内的肌成纤维细胞数量、胶原合成均下降,提示巨噬细胞促进裸鼠皮片移植导致的增生性瘢痕形成。

此类模型中,移植的增生性瘢痕所处的微环境与人增生性瘢痕差异较大,瘢痕的形成由皮肤移植而非创伤愈合导致。同时,裸鼠免疫系统存在缺陷,所以该类模型亦存在局限性。

2.3 猪增生性瘢痕模型

雌性杜洛克猪皮肤具有和人皮肤类似的皮肤锥体结构,其皮肤创面愈合后可形成纤维增生性的瘢痕[52-53],所形成的瘢痕在胶原排列、胶原表达、生长因子(TGF-β1、IGF-1、VEGF)表达,以及蛋白聚糖表达、一氧化氮(NO)表达、神经密度和微血管密度等方面,与人增生性瘢痕有较高的相似性[53-57]。研究提示,雌性杜洛克猪皮肤创伤后第2天、第4天可在创面处检测到与组织纤维化相关的纤维细胞[58]。体外实验表明,雌性杜洛克猪与约克郡猪相比,其皮肤中的成纤维细胞黏附性、收缩性较强,迁移减弱,同时TGF-β1、α-SMA及Ⅰ型胶原表达上升、decorin表达下降,成纤维细胞的这些促纤维化特性可能导致了杜洛克猪易于形成增生性瘢痕[59]。Travis等[60]发现杜洛克猪瘢痕外周色素加深,该区域中黑色素、α-黑素细胞刺激素等表达升高,黑色素细胞的激活更为显著,提示该模型亦可用于研究创伤愈合和瘢痕形成中黑色素细胞的作用。

尽管猪瘢痕模型在组织学、病理生理学方面与人体较为接近,但其形成的瘢痕在外观上并未发红、隆起,猪深层创面愈合需要约3个月,建模时间较长;另外,动物管理、费用等问题,亦限制了此模型的广泛应用。

2.4 小鼠皮肤伤口牵张模型

临床观察发现,人体皮肤伤口受到机械牵张与增生性瘢痕的发生具有相关性,应用减张的方法可有效减少增生性瘢痕的发生[61]。因此,Arabi等[11]在小鼠背部安装一皮肤牵张器,对小鼠背部切割伤口在愈合后施加10 d的机械牵张力,诱导了增生性瘢痕的产生,并符合人皮肤增生性瘢痕的特点。该研究证实,在此模型中,机械张力使瘢痕内成纤维细胞凋亡受到抑制,从而使胶原沉积、瘢痕增生。同时,他们发现机械张力通过辅助T细胞介导小鼠瘢痕内出现持续慢性炎症反应,巨噬细胞、成纤维细胞募集增多,促纤维化生长因子表达升高,导致增生性瘢痕的产生[62],提示该模型在增生性瘢痕形成的免疫学机制上与人有相似之处。进一步的研究中,他们还利用基因芯片分析,发现机械张力激活一类与细胞连结、迁移相关的分子——局部粘着斑激酶(FAK),通过FAKERK-MCP-1信号传导通路,导致瘢痕内炎症反应加重,瘢痕增生[63]。该发现将增生性瘢痕发生的二大因素——机械力与炎症反应相联系,一定程度上解释了生物力学在瘢痕增生中所起的具体作用,该模型成为目前较为常用的增生性瘢痕模型。但由于小鼠活动活跃,建模过程中牵张器经常受损脱落,导致模型建立不稳定,影响实验研究的可重复性。

2.5 药物诱导小鼠增生性瘢痕的产生

博来霉素被用于建立肺纤维化、硬皮病的动物模型[64-65]。因此,Cameron等[66]在BALB/c小鼠背部皮下置入微泵,以恒定的速度注入博来霉素,发现可诱导皮肤产生增生性瘢痕,所产生的瘢痕组织具备人皮肤增生性瘢痕的特点,认为此模型可用于增生性瘢痕的研究。但是,这样的瘢痕并非由皮肤损伤发展而来,其形成过程与人皮肤增生性瘢痕相差较远,并且皮下应用博来霉素后,可能与瘢痕的药物治疗、细胞治疗等发生相互作用,影响实验的科学性。另外,博来霉素停止输注后,模型的瘢痕组织可能消退,不利于长期观察[67]。

3 现状与展望

皮肤创伤愈合、瘢痕形成一直是临床试图攻克的难点,良好的动物模型是深入研究的基础,对研究结果的可靠性有重要影响。然而,由于创伤愈合、瘢痕形成有明显的种系特异性,纤维性修复、瘢痕增生等过程往往在实验动物上难以很好地重现,各种动物模型的优缺点均很明显。猪在皮肤结构、创伤愈合、瘢痕形成、瘢痕增生等方面与人体皮肤有较好的相似性,但新兴生物学技术尚无法应用。目前针对创伤愈合、皮肤瘢痕化的研究已达基因和分子学层面[68-69],对于基因转录、信号传导的研究常需利用基因编辑技术、在体示踪技术,这些方面的不足限制了猪模型的应用。啮齿类动物管理方便、费用较低、生物学技术应用广泛,成为实验动物的首选。但啮齿类动物在创伤愈合、瘢痕增生过程中与人体皮肤存在明显差异,为新治疗方法的临床转化带来了困难。总而言之,对于皮肤创伤愈合和增生性瘢痕动物模型的研究仍不完善,还需要进一步的积极探索。目前,利用实验工具(如硅胶圈、皮肤牵张器等)干预动物皮肤伤口、瘢痕,以更好地模拟人病理生理过程为建模研究的新趋势。另外,啮齿类动物中基因编辑技术日臻成熟,能否利用该技术在动物中重现人皮肤创伤愈合、瘢痕化的过程,值得进一步探索。

[1]Takeo M,Lee W,Ito M.Wound healing and skin regeneration[J].Cold Spring Harb Perspect Med,2015,5(1):a023267.

[2]Diegelmann RF,Evans MC.Wound healing:an overview of acute,fibrotic and delayed healing[J].Front Biosci,2004,9:283-289.

[3]Reinke JM,Sorg H.Wound repair and regeneration[J].Eur Surg Res,2012,49(1):35-43.

[4]Mahjour SB,Fu X,Yang X,et al.Rapid creation of skin substitutes from human skin cells and biomimetic nanofibers for acute fullthickness wound repair[J].Burns,2015,41(8):1764-1774.

[5]Liu H,Duan Z,Tang J,et al.A short peptide from frog skin accelerates diabetic wound healing[J].Febs J,2014,281(20):4633-4643.

[6]Zielins ER,Atashroo DA,Maan ZN,et al.Wound healing:an update[J].Regen Med,2014,9(6):817-830.

[7]Bond JS,Duncan JA,Sattar A,et al.Maturation of the human scar:an observational study[J].Plast Reconstr Surg,2008,121(5):1650-1658.

[8]Kelf TA,Gosnell M,Sandnes B,et al.Scar tissue classification using nonlinear optical microscopy and discriminant analysis[J].JBiophotonics,2012,5(2):159-167.

[9]Bai X,He T,Liu J,et al.Loureirin Binhibitsfibroblast proliferation and extracellular matrix deposition in hypertrophic scar via TGF-beta/Smad pathway[J].Exp Dermatol,2015,24(5):355-360.

[10]Stramer BM,Mori R,Martin P.The inflammation-fibrosis link?A Jekyll and Hyde role for blood cells during wound repair[J].J Invest Dermatol,2007,127(5):1009-1017.

[11]Aarabi S,Bhatt KA,Shi Y,et al.Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis[J].Faseb J,2007,21(12):3250-3261.

[12]Gao Y,Lu J,Zhang Y,et al.Baicalein attenuates bleomycininduced pulmonary fibrosis in rats through inhibition of miR-21[J].Pulm Pharmacol Ther,2013,26(6):649-654.

[13]Ghahary A,Shen YJ,Nedelec B,et al.Enhanced expression of mRNA for insulin-like growth factor-1 in post-burn hypertrophic scar tissue and its fibrogenic role by dermal fibroblasts[J].Mol Cell Biochem,1995,148(1):25-32.

[14]Xiao Z,Zhang F,Lin W,et al.Effect of botulinum toxin type A on transforming growth factor beta1 in fibroblasts derived from hypertrophic scar:a preliminary report[J].Aesthetic Plast Surg,2010,34(4):424-427.

[15]Nuutila K,Katayama S,Vuola J,et al.Human Wound-healing research:issues and perspectives for studies using wide-scale analytic platforms[J].Adv Wound Care(New Rochelle),2014,3(3):264-271.

[16]Silberberg M,Silberberg R.Course of wound healing in the skin of mice under the influence of carcinogens[J].Arch Pathol(Chic),1946,42:193-205.

[17]Perini JA,Angeli-Gamba T,Alessandra-Perini J,et al.Topical application of Acheflan on rat skin injury accelerates wound healing:ahistopathological,immunohistochemical and biochemical study[J].BMCComplement Altern Med,2015,15:203.

[18]Alves CC,Torrinhas RS,Giorgi R,et al.TGF-beta1 expression in wound healing is acutely affected by experimental malnutrition and early enteral feeding[J].Int Wound J,2014,11(5):533-539.

[19]Mehraein F,Sarbishegi M,Aslani A.Evaluation of effect of oleuropein on skin wound healing in aged male BALB/c mice[J].Cell J,2014,16(1):25-30.

[20]Okizaki S,Ito Y,Hosono K,et al.Suppressed recruitment of alternatively activated macrophages reduces TGF-beta1 and impairs wound healing in streptozotocin-induced diabetic mice[J].Biomed Pharmacother,2015,70:317-325.

[21]van Solingen C,Araldi E,Chamorro-Jorganes A,et al.Improved repair of dermal wounds in mice lacking microRNA-155[J].J Cell Mol Med,2014,18(6):1104-1112.

[22]Davidson JM.Animal models for wound repair[J].Arch Dermatol Res,1998,290 Suppl:S1-S11.

[23]Wu JC,Rose LF,Christy RJ,et al.Full-thickness thermal injury delays wound closure in a murine model[J].Adv Wound Care(New Rochelle),2015,4(2):83-91.

[24]Wang CZ,El Ayadi A,Goswamy J,et al.Topically applied metal chelator reduces thermal injury progression in a rat model of brass comb burn[J].Burns,2015,41(8):1775-1787.

[25]Eyarefe OD,Idowu A,Afolabi JM.Healing potentials of oral moringa oleifera leaves extract and tetracycline on methicillin resistant staphylococcus aureus infected wounds of Wistar rats[J].Niger JPhysiol Sci,2015,30(1-2):73-78.

[26]Kanno E,Tanno H,Suzuki A,et al.Reconsideration of iodine in wound irrigation:the effects on Pseudomonas aeruginosa biofilm formation[J].JWound Care,2016,25(6):335-339.

[27]Chen JS,Longaker MT,Gurtner GC.Murine models of human wound healing[J].Methods Mol Biol,2013,1037:265-274.

[28]Chen L,Mirza R,Kwon Y,et al.The murine excisional wound model:Contraction revisited[J].Wound Repair Regen,2015,23(6):874-877.

[29]Wang X,Hsi TC,Guerrero-Juarez CF,et al.Principles and mechanisms of regeneration in the mouse model for woundinduced hair follicle neogenesis[J].Regeneration(Oxf),2015,2(4):169-181.

[30]Ghaisas MM,Kshirsagar SB,Sahane RS.Evaluation of wound healing activity of ferulic acid in diabetic rats[J].Int Wound J,2014,11(5):523-532.

[31]Park SA,Teixeira LB,Raghunathan VK,et al.Full-thickness splinted skin wound healing models in db/db and heterozygous mice:implications for wound healing impairment[J].Wound Repair Regen,2014,22(3):368-380.

[32]Wu X,Gao Z,Song N,et al.Creating thick linear scar by inserting a gelatin sponge into rat excisional wounds[J].Wound Repair Regen,2007,15(4):595-606.

[33]Wang X,Ge J,Tredget EE,et al.The mouse excisional wound splinting model,including applications for stem cell transplantation[J].Nat Protoc,2013,8(2):302-309.

[34]Reish RG,Zuhaili B,Bergmann J,et al.Modulation of scarring in a liquid environment in the Yorkshire pig[J].Wound Repair Regen,2009,17(6):806-816.

[35]Zhu KQ,Carrougher GJ,Gibran NS,et al.Review of the female Duroc/Yorkshire pig model of human fibroproliferative scarring[J].Wound Repair Regen,2007,15 Suppl 1:S32-S39.

[36]Byl NN,McKenzie AL,West JM,et al.Pulsed microamperage stimulation:a controlled study of healing of surgically induced wounds in Yucatan pigs[J].Phys Ther,1994,74(3):201-213.

[37]Larson DL,Flugstad NA,O'Connor E,et al.Does systemic isotretinoin inhibit healing in a porcine wound model[J]?Aesthet Surg J,2012,32(8):989-998.

[38]Debeer S,Le Luduec JB,Kaiserlian D,et al.Comparative histology and immunohistochemistry of porcine versus human skin[J].Eur JDermatol,2013,23(4):456-466.

[39]Sullivan TP,Eaglstein WH,Davis SC,et al.The pig as a model for human wound healing[J].Wound Repair Regen,2001,9(2):66-76.

[40]Seaton M,Hocking A,Gibran NS.Porcine models of cutaneous wound healing[J].Ilar J,2015,56(1):127-138.

[41]Qian LW,Fourcaudot AB,Yamane K,et al.Exacerbated and prolonged inflammation impairs wound healing and increases scarring[J].Wound Repair Regen,2016,24(1):26-34.

[42]Wong VW,Rustad KC,Akaishi S,et al.Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling[J].Nat Med,2011,18(1):148-152.

[43]Morris DE,Wu L,Zhao LL,et al.Acute and chronic animal models for excessive dermal scarring:quantitative studies[J].Plast Reconstr Surg,1997,100(3):674-681.

[44]Kloeters O,Tandara A,Mustoe TA.Hypertrophic scar model in the rabbit ear:a reproducible model for studying scar tissue behavior with new observations on silicone gel sheeting for scar reduction[J].Wound Repair Regen,2007,15 Suppl 1:S40-S45.

[45]Kryger ZB,Sisco M,Roy NK,et al.Temporal expression of the transforming growth factor-Beta pathway in the rabbit ear model of wound healing and scarring[J].J Am Coll Surg,2007,205(1):78-88.

[46]Friedrich EE,Niknam-Bienia S,Xie P,et al.Thermal injury model in the rabbit ear with quantifiable burn progression and hypertrophic scar[J].Wound Repair Regen,2017,25(2):327-337.

[47]Polo M,Kim YJ,Kucukcelebi A,et al.An in vivo model of human proliferative scar[J].JSurg Res,1998,74(2):187-195.

[48]Wang J,Ding J,Jiao H,et al.Human hypertrophic scar-like nude mouse model:characterization of the molecular and cellular biology of the scar process[J].Wound Repair Regen,2011,19(2):274-285.

[49]Momtazi M,Kwan P,Ding J,et al.A nude mouse model of hypertrophic scar shows morphologic and histologic characteristics of human hypertrophic scar[J].Wound Repair Regen,2013,21(1):77-87.

[50]Momtazi M,Ding J,Kwan P,et al.Morphologic and histologic comparison of hypertrophic scar in nude mice,T-cell receptor,and recombination activating gene Knockout mice[J].Plast Reconstr Surg,2015,136(6):1192-1204.

[51]Zhu Z,Ding J,Ma Z,et al.Systemic depletion of macrophages in the subacute phase of wound healing reduces hypertrophic scar formation[J].Wound Repair Regen,2016,24(4):644-656.

[52]Zhu KQ,Engrav LH,Gibran NS,et al.The female,red Duroc pig as an animal model of hypertrophic scarring and the potential role of the cones of skin[J].Burns,2003,29(7):649-664.

[53]Zhu KQ,Carrougher GJ,Couture OP,et al.Expression of collagen genes in the cones of skin in the Duroc/Yorkshire porcine model of fibroproliferative scarring[J].J Burn Care Res,2008,29(5):815-827.

[54]Zhu KQ,Engrav LH,Tamura RN,et al.Further similarities between cutaneous scarring in the female,red Duroc pig and human hypertrophic scarring[J].Burns,2004,30(6):518-530.

[55]Zhu KQ,Engrav LH,Armendariz R,et al.Changes in VEGF and nitric oxide after deep dermal injury in the female,red Duroc pig-further similarities between female,Duroc scar and human hypertrophic scar[J].Burns,2005,31(1):5-10.

[56]Liang Z,Engrav LH,Muangman P,et al.Nerve quantification in femalered Duroc pig(FRDP)scar compared to human hypertrophic scar[J].Burns,2004,30(1):57-64.

[57]Xie Y,Zhu KQ,Deubner H,et al.The microvasculature in cutaneous wound healing in the female red Duroc pig is similar to that in human hypertrophic scars and different from that in the female Yorkshire pig[J].JBurn Care Res,2007,28(3):500-506.

[58]Travis TE,Mino MJ,Moffatt LT,et al.Biphasic presence of fibrocytes in a porcine hypertrophic scar model[J].J Burn Care Res,2015,36(3):e125-e135.

[59]Sood RF,Muffley LA,Seaton ME,et al.Dermal fibroblasts from the red Duroc pig have an inherently fibrogenic phenotype:an in vitro model of fibroproliferative scarring[J].Plast Reconstr Surg,2015,136(5):990-1000.

[60]Travis TE,Ghassemi P,Ramella-Roman JC,et al.A multimodal assessment of melanin and melanocyte activity in abnormally pigmented hypertrophic scar[J].JBurn Care Res,2015,36(1):77-86.[61]Gurtner GC,Dauskardt RH,Wong VW,et al.Improving cutaneous scar formation by controlling the mechanical environment:large animal and phase Istudies[J].Ann Surg,2011,254(2):217-225.

[62]Wong VW,Paterno J,Sorkin M,et al.Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation[J].Faseb J,2011,25(12):4498-4510.

[63]Aliprantis AO,Wang J,Fathman JW,et al.Transcription factor T-bet regulates skin sclerosis through its function in innate immunity and via IL-13[J].Proc Natl Acad Sci U SA,2007,104(8):2827-2830.

[64]Kang YY,Kim DY,Lee SH,et al.Deficiency of developmental endothelial locus-1(Del-1)aggravates bleomycin-induced pulmonary fibrosis in mice[J].Biochem Biophys Res Commun,2014,445(2):369-374.

[65]Yamamoto T,Takagawa S,Katayama I,et al.Animal model of sclerotic skin.I:Local injections of bleomycin induce sclerotic skin mimicking scleroderma[J].J Invest Dermatol,1999,112(4):456-462.

[66]Cameron AM,Adams DH,Greenwood JE,et al.A novel murine model of hypertrophic scarring using subcutaneous infusion of bleomycin[J].Plast Reconstr Surg,2014,133(1):69-78.

[67]Sacak B,Akalin BE.A novel murine model of hypertrophic scarring using subcutaneous infusion of bleomycin[J].Plast Reconstr Surg,2014,134(1):163e-164e.

[68]Miura Y,Ngo Thai Bich V,Furuya M,et al.The small G protein Arf6 expressed in keratinocytes by HGF stimulation is a regulator for skin wound healing[J].Sci Rep,2017,7:46649.

[69]Yao Z,Li H,He W,et al.P311 accelerates skin wound reepithelialization by promoting epidermal stem cell migration through RhoA and Rac1 Activation[J].Stem Cells Dev,2017,26(6):451-460.

猜你喜欢
瘢痕创面伤口
为什么伤口愈合时会痒?
手指瘢痕挛缩治疗的再认识
为什么在伤口上撒盐会疼?
探讨浓缩生长因子(CGF)在糖尿病足溃疡创面治疗中对溃疡创面愈合的作用
透明质酸基纳米纤维促进创面愈合
手术联合CO2点阵激光、硅胶瘢痕贴治疗增生性瘢痕的疗效观察
负压创面治疗技术应用的研究进展
当子宫瘢痕遇上妊娠
那只给我带来伤口的大橘
当子宫瘢痕遇上妊娠