国外激光雷达的发展趋势

2017-12-17 01:22刘尚富胡辉
舰船电子工程 2017年6期
关键词:激光雷达激光距离

刘尚富 胡辉

(1.海军工程大学武汉430000)(2.海军蚌埠士官学校蚌埠233012)

国外激光雷达的发展趋势

刘尚富1,2胡辉1

(1.海军工程大学武汉430000)(2.海军蚌埠士官学校蚌埠233012)

论文从国外激光雷达的优点、分类出发,详细论述了侦察用成像激光雷达、障碍回避激光雷达、制导激光雷达、化学/生物战剂探测激光雷达、水下探测激光雷达、空间监视激光雷达的现状和发展趋势。

侦察用成像激光雷达;障碍回避激光雷达;制导激光雷达;化学/生物战剂探测激光雷达;水下探测激光雷达;空间监视激光雷达

Class NumberTN95

1 引言

激光雷达是一项正在迅速发展的高新技术,在军事部门具有广泛的用途,受到了各国军事部门的极大关注。国际导弹技术控制法明确指出:“激光雷达系统将激光用于回波测距、定向,并通过位置、径向速度及物体反射特性识别目标,体现了特殊的发射、扫描、接收和信号处理技术”,并把激光雷达作为限制扩散的军事技术之一[1]。

2 激光雷达的优点

激光雷达之所以受到关注,是因为其具有一系列独特的优点:具有极高的角分辨率、具有极高的距离分辨率、速度分辨率高、测速范围广、能获得目标的多种图像、抗干扰能力强、比微波雷达的体积和重量小等。但是,激光雷达的技术难度很高,至今尚未成熟,而且在恶劣天气时性能下降,使其应用受到一定的限制[2]。

3 激光雷达的分类

激光雷达仍是一项发展中的技术,有的激光雷达系统已经试用,但许多激光雷达系统仍在研制或探索之中。激光雷达类别可以从不同的角度来划分。若按用途和功能划分,则有侦察用成像激光雷达、障碍回避激光雷达、制导激光雷达、化学/生物战剂探测激光雷达、水下探测激光雷达、空间监视激光雷达…;若按工作体制划分,则有单脉冲、连续波、调频脉冲压缩、调频连续波、调幅连续波、脉冲多普勒等体制的激光雷达。下面分别介绍军事部门大力发展的几类激光雷达的发展趋势[3]。

4 国外激光雷达的发展趋势

4.1 侦察用成像激光雷达

激光雷达分辨率高,可以采集三维数据,如方位角-俯仰角-距离、距离-速度-强度,并将数据以图像的形式显示,获得辐射几何分布图像、距离选通图像、速度图像等,有潜力成为重要的侦察手段[4]。

美国雷锡昂公司研制的ILR100激光雷达,安装在高性能飞机和无人机上,在待侦察地区的上空以120m~460m的高度飞行,用GaAs激光进行行扫描。获得的影像可实时显示在飞机上的阴极射线管显示器上,或通过数据链路发送至地面站[5]。

美国海军陆战队提出,现有手持摄影装置不能满足现代战场的要求,需要一种新型手持成像设备,不仅提供能及时处理的影像,而且能提供定量信息。据任务需求声明书说,这种设备必须能由一名海军陆战队队员携带,重量在2.3kg~3.2kg之间,能安装在三脚架上;系统必须能自聚焦,能在低光照条件下工作;采集的影像必须足够清晰,能分辨远距离的车辆和近距离的人员,而且可先由使用者观看,然后在海军陆战队空-地特遣部队中分发。具体的性能要求是视场15×15mrad,影像分辨率0.15mrad,作用距离1km,距离分辨率15m,拍摄时间1/3 s。根据海军陆战队的要求,桑迪亚国家实验室和Burns公司分别提出了手持激光雷达的设计方案。一种是无扫描器的系统,使用闪光灯泵浦Q开关Nd(YAG激光器、数字CCD摄像机和调制像增强器。另一种是扫描型系统,采用二极管泵浦固体激光器、32元雪崩光电二极管、纤维光学中继系统和二元光学扫描器。据称两种方案都能满足要求[6]。

4.2 障碍回避激光雷达

许多国家在研制直升机用的障碍回避激光雷达。美国罗斯洛普·格鲁曼公司与陆军通信电子司令部夜视和电子传感器局联合研制直升机超低空飞行用的障碍回避系统。该系统使用半导体激光发射机和旋转全息扫描器,探测直升机前很宽的范围,可将障碍信息显示在平视显示器或头盔显示器上。该激光雷达系统已在两种直升机上进行了试验[7]。

在美国陆军夜视和电子传感器处的指导下,作为陆军直升机障碍回避系统计划的一部分,Fibertek公司研制了直升机激光雷达系统,用于探测电话线、动力线之类的障碍。该激光雷达由传感器吊舱和电子装置组成,是使用二极管泵浦1.54μm固体激光器。吊舱中安装激光发射机、接收机、扫描器和支持系统。电子装置由计算机、数据和视频记录器、定时电子系统、功率调节器、制冷系统和控制面板组成。该激光雷达系统安装在UH-1H直升机上[8]。

德国达索电子技术公司、蔡司电光公司和英国GEC-马可尼航空电子公司、马可尼SpA公司联合研制的Eloise CO2激光雷达,是另一种直升机载障碍报警系统,可提前10s提供前方有5mm电缆的报警,使直升机能在恶劣气候条件下作战飞行。

马可尼SpA公司还提供自行研制的Loam障碍回避系统。该系统使用人眼安全激光技术,探测电线、树木、桅杆等障碍。飞行员接收视觉和声音报警,显示器显示障碍的形状、位置、方位和距离[9]。

4.3 制导激光雷达

以非制冷二极管泵浦固体激光器为基础的工作波长1μm左右的激光雷达系统,可以提供以距离和强度为基础的高分辨率影像。激光雷达得到的影像不同于红外影像,允许使用比处理红外场景简单的算法实现自主目标捕获。因此,激光雷达寻的器可以为空-地武器提供自主精确制导手段。随着成本的降低,激光雷达寻的器还将用于短程消耗性弹药。

美国陆军和空军开展了多项激光雷达制导技术的研究工作。按照国防部的“武器自动目标识别”科技目标,美国陆军正在试验将成像红外传感器自动目标识别用的图形识别算法用于激光雷达。目标是演示将快速响应和低虚警相结合的自动目标识别技术。该技术将允许发展以有限搜索、发射前锁定和发射后锁定模式工作的武器。有效的自动目标识别能力可以给士兵提供直接攻击、发射后不管的武器。这种武器能在发射后捕获目标,锁定丢失后能自动再捕获目标,识别友军,并为弹头选择最佳瞄准点。

美国陆军研究实验室集中于低空、近距离应用的低成本、高距离分辨率激光雷达。最初,军用激光雷达的研究曾集中于CO2激光器。CO2激光雷达虽能探测远距离目标,但对陆军应用来说,太大、太贵、太不可靠。因而目前的研究工作大多集中于采用二极管泵浦激光器的激光雷达。这种激光雷达作用距离可在1km以上,但成本高,也不能满足要求。陆军子弹药目标捕获、引信、遥控传感器等,需要用低成本、高距离分辨率激光雷达获得理想的三维影像。为此,陆军研究实验室将低成本连续波半导体激光器与现代调频雷达信号处理技术相结合,来获得便宜、结实、可靠的激光雷达系统。这种激光雷达用射频子载波调制发射的激光。目标反射光被光电二极管非相干探测,转变成电压波形。然后,这个波形与原调制波形无延迟采样混合。再对混频器的输出进行处理,去除自杂波。最后,利用离散傅立叶变换将无杂波波形进行相干处理,获得目标的振幅和距离。研制的实验室型激光雷达,采用工作波长830nm的30WGaAlAs半导体激光器,获得的影像和距离响应表明,理论距离分辨率为0.25m。

空军提出的“灵巧小炸弹”将采用激光雷达制导。灵巧小炸弹是一种以外科手术式精度投放22.7kg(50磅)高爆炸药的113.4kg(250磅)炸弹,其毁伤效能类似于现有的精度较低的900kg(2000磅)侵彻武器,而且附带破坏的危险较小。按照空军-海军的联合DASSL计划,赖特实验室已经根据灵巧小炸弹的任务要求导出对激光雷达的要求和激光雷达寻的器的基本设计参数[10]。

4.4 化学/生物战剂探测激光雷达

化学/生物武器是一种大规模毁伤武器。面对不断扩散的化学/生物武器的威胁,许多国家正在采取措施,加强对这类武器的防御。美国国防部认为,需要能在战场上使用的、快速响应的、灵敏的监视系统,以尽快提供化学/生物威胁的报警。这种系统不同于防空和反潜警戒系统,必须具有搜索、探测、识别、定量化、监测和诊断等功能。激光雷达可用于化学/生物战剂的遥测。每种化学战剂仅吸收特定波长的激光,对其他波长的激光是透明的。被化学战剂污染的表面则反射不同波长的激光。化学战剂的这种特性,就允许利用激光雷达探测和识别之。激光雷达可以利用差分吸收、差分散射、弹性后向散射、感应荧光等原理,实现化学生物战剂的探测。

按照国防部高级研究计划局的研究合同,EOO公司正在研制紧凑的红外/紫外混合激光雷达系统。该系统利用二极管泵浦Nd:YAG激光器产生的1.064μm激光,进行弹性后向散射测量,探测生物战剂气溶胶云的位置、形状、大小,并利用多普勒探测边缘滤波技术确定风向和风速;通过将1.064μm红外激光4倍频成0.266μm的紫外激光,进行生物战剂气溶胶云感应荧光的探测。最终的目标是研制出战术无人机载激光雷达系统样机。预计样机重量34kg,体积0.0425m3,功率需求小于500W。目前设计的实验室型系统,打算测量气溶胶浓度的距离为5km,以1m/s的分辨率测量风场的距离为2km,测量荧光的距离为1km以上。该实验室型系统进行地面性能评估后,将再建造一个可供机载使用的实验室型装置,安装在“空中女王”飞机上测量布撒的气溶胶。该机载系统是足够结实和灵活的,在需要时可进一步最佳化。

EOO公司还在按照国防部高级研究计划局的小型商业创新研究合同,研制高空化学-生物战剂探测系统。该系统是高空飞机携带的多功能成套传感器,将Nd:YAG激光雷达、10μm外差可调谐差分吸收激光雷达和频率调制-差分吸收激光雷达光谱仪的功能组合在一起,探测和识别浓度极低的短暂发射,用于监视化学-生物战威胁。频率调制-差分吸收激光雷达使用频率调制激光发射机和灵敏的射频探测技术。射频探测技术是将射频边带置于激光脉冲上,当欲探测的化学战剂产生边带的差分吸收时,造成以射频频率振幅调制激光脉冲,然后利用标准信号处理技术探测这个振幅调制,从而探测和分离出化学战剂的吸收谱线。实验已证明,实验室系统在进行点化学战剂探测时,能够以量子噪声极限运转[11]。

4.5 水下探测激光雷达

激光雷达具有足够的空间分辨率,来分辨目标的尺寸和形状,因而是有效的探测水下目标并进行分类的工具。1988年美国“罗伯茨”号护卫舰在阿拉伯湾几乎被廉价的水雷击沉。此后Kaman宇航公司研制了“魔灯”水雷探测激光雷达。该激光雷达使用蓝-绿激光器、灵敏的电子选通像增强摄像机和精确脉冲定时发生器。机载激光器向海面发射激光脉冲,扫描水雷。同时,脉冲定时发生器控制摄像机快门,仅接收特定深度反射的激光能量。在这个深度的目标反射激光而被显现。影像通过数据链路传送给舰船。“魔灯”激光雷达可以在海面以上120m~460m高度工作,名义工作高度460m,但低空飞行时分辨率和信噪比较高,而视场有限。探测深度最初定为12m~61m的浅水区,但根据初步作战评估和不断的研究,调整为包括3m~12m的极浅水区和深度不足3m的冲浪区。“魔灯”激光雷达不仅可以自动探测水中目标,而且可以实施目标分类和定位。1988年的样机试验表明,该系统可以迅速探测锚雷,并定位。

海湾战争期间,美国军舰“特里波利”号和“普林斯顿”号被水雷毁伤,使人们将注意力集中到采用新技术的水雷对抗手段上。部署到该地区的“魔灯”水雷探测激光雷达初样机成功地发现了水雷和水雷锚链。1996年美国海军将第一个“魔灯”系统部署到海军航空兵HSL-94预备役中队。

瑞典国防研究局、国家海洋局、海军和国防器材局共同开展了激光海洋测绘研究,首先研制了“手电筒”机载激光雷达,继而进一步研制了“鹰眼”激光雷达。萨伯动力学公司(Saab Dynamics)作为主承包商,研制了两台“鹰眼”激光雷达。试验表明,激光雷达是一种快速、精确的测深设备,可以满足国际水文办公室对海洋深度测量的精度要求。

4.6 空间监视激光雷达

美国空军在毛伊岛空间监视站利用激光雷达的精密跟踪和高分辨率成像能力,进行远距离探测、跟踪和成像,核查轨道上的卫星。安装在毛伊岛的高性能CO2激光雷达监视传感器系统(也称为“野外激光雷达演示”系统),是一台高功率、宽带、相干激光雷达。该激光雷达是按照一项分四个阶段的计划研制的。第一阶段建造了实验室硬件,在毛伊岛组装了综合激光雷达系统,使用紧凑的脉冲相干CO2振荡器、外差接收器、信号记录器与0.6m激光束定向器耦合,演示了卫星捕获、照明、回波信号探测和信号记录。然后,通过脱机处理,从回波信号中提取距离和距离速率数据,实现了距离-振幅成像。随后的第二阶段,研制了改进的振荡器、接收器、处理器和光束定向器,并将其组合成最终的系统,使系统能力达到在30Hz时输出能量12J。第三阶段在发射机上增加了功率放大器(最后一个主要的部件),使系统能力达到30Hz时激光输出能量为30J。在第四阶段,提供高精度位置和速度跟踪,并打算最终测量非美国的航天器的尺寸、形状和取向。按照计划,这台激光雷达将能进行高精度位置和速度跟踪,并提供尺寸、形状和方位信息。

美国陆军空间和导弹防御司令部也于1997年开始一项称为“战场激光雷达技术转移演示”的探索性计划,并成功地试验了在最远1000km的距离探测卫星、巡航导弹和化学武器。由Textron公司制造的激光雷达发射几种波长接近11μm、11.15μm的激光脉冲,根据激光往返时间确定目标距离,用多普勒频移确定目标速度,并可以利用获得的信息确定目标的尺寸和形状,获得目标的多普勒影像,以识别之。在毛伊岛空间监视站的试验期间,该激光雷达不仅探测到距离达24km的直升机,而且确定了直升机旋翼桨叶的个数和长度、旋翼的间距和转速[12]。

5 结语

激光雷达是传统雷达技术与现代激光技术相结合的产物。激光问世后以来,激光雷达技术从最简单的激光测距技术开始,逐步发展了激光跟踪、激光测速、激光扫描成像、激光多普勒成像等技术,陆续开发出不同用途的激光雷达,在未来的军事中将会得到更广阔的应用。

[1]戴永江.激光雷达技术[M].北京:电子工业出版社,2010:78-79.

[2]王春辉.激光雷达系统设计[M].哈尔滨:哈尔滨工业大学出版社,2011:45-46.

[3]童志鹏,刘星.综合电子信息系统——现代战争的擎天柱[M].北京:国防工业出版社,1999:102-103.

[4]候印鸣,李德成,等.综合电子战——现代战争的杀手锏[M].北京:国防工业出版社,2000:55-56.

[5]周一宇等.电子战原理与技术[M].北京:国防工业出版社,1999:32-33.

[6]王殿勇.雷达对抗[M].北京:国防工业出版社,1979:61-62.

[7]NicholsonDB.Hexagonal ferrite for millimeterwave application[J].Hewlett-Packard Journal,1990,41(5):42-43.

[8]Michael J Cantella.Staring-Sensorsystems the infrared and electro-optical system handbook[M].Infrared Information Analys,SPIE Optical Engineering Press,1993,5:12-13.

[9]Don Herskovite.Future Trends in Simulation Systems[J]. JED,1995,5:32-33.

[10]Don Herskovite.The State of Simulate software[J].JED,1998,8:5-6.

[11]刘敬民.毫米波雷达无源对抗技术[J].电子对抗技术,2001(5):23-25.

[12]付伟.毫米波制导武器及其对抗技术[J].火控雷达技术,2000(29):8-12.

Development Trend of Foreign Laser Radar

LIU Shangfu1,2HU Hui2
(1.Naval University of Engineering,Wuhan430000)(2.Bengbu Naval Petty Office Academy,Bengbu233012)

In this paper,from aspects of the advantages,classification of foreign laser radar,the paper discusses the status and development trends of reconnaissance imaging laser radar,obstacle avoidance laser radar,laser radar guidance,chemical/biological warfare agent detection laser radar,status of underwater detection laser radar,laser radar space surveillance.

reconnaissance imaging radar,obstacle avoidance laser radar,guidance laser radar,the chemical/biological agent detection laser radar,underwater laser radar,space surveillance radar

TN95

10.3969/j.issn.1672-9730.2017.06.001

2016年12月1日,

2017年1月19日

刘尚富,男,副教授,研究方向:雷达。胡辉,男,讲师,研究方向:雷达。

猜你喜欢
激光雷达激光距离
激光雷达实时提取甘蔗垄间导航线
法雷奥第二代SCALA?激光雷达
激光熔覆专题文摘
算距离
Velodyne激光雷达宣布将GaN技术用于小型化低成本固态激光雷达传感器的新设计
Velodyne激光雷达公司推出Puck高分辨率激光雷达传感器;更高的分辨率以辨认更远距离的物体
激光3D长绳
神奇的激光
每次失败都会距离成功更近一步
爱的距离