施硅提高干湿交替条件下番茄节水性及产量和品质

2017-12-15 02:27曹逼力张志焕
农业工程学报 2017年22期
关键词:营养液坐果节水

曹逼力,张志焕,徐 坤



施硅提高干湿交替条件下番茄节水性及产量和品质

曹逼力,张志焕,徐 坤※

(山东农业大学园艺科学与工程学院,泰安 271018)

硅在提高作物抗旱性中具有重要作用。干湿交替灌溉是通过对植物根系施加干旱处理,来诱导自身的干旱调节潜能的一种节水增产技术。关于节水灌溉影响作物生理特性的研究,结论不尽相同。干湿交替的灌溉方式是否适应于番茄栽培,且在该灌溉技术下施硅对番茄产量品质有何影响,鲜见报道。为探讨干湿交替条件下施硅对番茄的影响,采用潮汐式灌溉系统模拟干湿交替的灌溉方式,研究了干湿交替条件下硅对番茄植株硅质量分数、植株生长、果实产量及品质的影响。结果表明,营养液加硅使番茄根、茎、叶、果的硅质量分数分别提高 494%、444%、246%、631%。在番茄幼苗期至开花坐果期,采用干湿交替的灌溉方式利于控制长势、培育壮苗,但结果前期至结果后期,尤其盛果期,则不宜采用干湿交替的灌溉方式。干湿交替造成了番茄的严重减产及番茄红素质量分数、维生素C质量分数、可滴定酸质量分数的下降,但显著提高番茄果实的可溶性蛋白质量分数、游离氨基酸质量分数、可溶性固形物质量分数、可溶性糖质量分数、可滴定酸质量分数、果实硬度、糖酸比,尤其糖酸比提高了 30%,而施硅可缓解干湿交替对番茄生长发育后期果实产量和品质的不利影响。总之,干湿交替下施硅,在促进番茄稳产优质协调形成的前提下,可节水23%。该研究探讨了多变低水条件下硅的调控效应,丰富了硅提高植物抗旱性的理论内容,研究结果对实现合理节水并提高番茄商品率具有重要的意义。

硅酸盐;灌溉;果实;干湿交替;产量;品质

0 引 言

自然降水的不规律性与作物的关键需水期不一致,显著影响作物的生长发育[1]。通过调节和管理作物用水,开展多变低水条件下作物产量品质变化的研究,是探索稳产、优质、节水栽培措施的有效途径。其中,干湿交替灌溉,是指在作物生育过程中,进行灌水、落干重复循环的灌溉方式。该技术是通过对植物根系施加干旱处理,来诱导自身的干旱调节潜能的一种节水增产技术,已在水稻[2-3]、玉米[4-5]、小麦[6]栽培上进行示范,且节水效果明显。番茄()是中国设施栽培面积最大的蔬菜之一,关于干湿交替灌溉对番茄产量、品质的影响,有待进一步研究。

硅被认定为植物的有益元素[7]。前人研究表明,施硅可促进豇豆根系[8]及黄瓜幼苗[9]的生长。硅不仅影响植物的生长,还可显著影响其发育进程和产量品质。施硅可显著提高甘蔗干物质质量分数和产量[10],还可通过调节水稻植株C/N值,改善初级代谢,提高水稻产量[11]。玉米施硅后,硝酸盐水平降低,产量品质均显著提高[12]。硅尚未被证实是植物生长的必需营养元素,但逆境条件下其调控植物抗逆性的能力已被广泛报道[13]。Zhu等[14]提出,施硅可作为一种提高植物抗旱性从而减轻干旱胁迫的负面影响的有效策略。硅可提高番茄对盐胁迫的耐受性[15-16],笔者前期试验,也证实硅能显著提高番茄的抗旱能力[17]。因此,逆境条件下,硅对番茄抗逆能力的调控较为显著。

关于节水灌溉影响作物生理特性的研究,结论不尽相同[18-19]。一种观点认为,干旱胁迫可降低作物产量[20]。另一种观点则认为,适度干旱胁迫利于光合速率的提高,重度干旱胁迫才对光合不利[21]。光合作用是干物质积累的核心,干物质积累则是作物产量形成的基础。尽管干湿交替灌溉可以充分发挥根区信号反馈控制,实现生理节水,但番茄对干湿交替的灌溉方式的响应如何,且在该灌溉技术下施硅对番茄产量品质有何影响,鲜见报道。由于硅在土壤中广泛分布,为探明干湿交替条件下番茄的施硅效应,本课题组采用营养液水培方式,以自行设计的一种潮汐式灌溉试验装置模拟干湿交替的灌溉方式,研究干湿交替条件下施硅对番茄产量品质形成的影响,为探索番茄灌溉新途径及发展设施农业高效节水栽培提供理论指导。

1 材料与方法

1.1 潮汐式灌溉试验装置

设计1种虹吸式水培装置(图1):包含具有储存营养液的水培壳的水培装置本体、设置为与水培壳连通并且作用于水培壳的营养液虹吸排出的虹吸管道,通过虹吸管道,使水培壳的营养液进行潮汐流动。

注:1、2、3、4、5、6、7分别代表 PVC变径管、“N”型虹吸管道、潜水泵、“U”型PVC管、定植孔方穴、定植孔、定植孔间隔。

1.2 潮汐式灌溉试验装置设计关键

潜水泵与安装微电脑自动控时开关的电路相接,根据设定时间间歇通电供水。在出水口设计了“N”型虹吸管道(图1b),当U型PVC管栽培槽管道内液位低于“N”型虹吸管道(图2a),最高点时,“N”型虹吸管道的液面低于最高点,虹吸作用不发生,U型PVC管栽培槽管道内可驻留液位较深的营养液;如图(图2b),当U型PVC管栽培槽管道内液位高于“N”型虹吸管道最高点时,“N”型虹吸管道的液面高于最高点,虹吸作用发生,将U型栽培槽内的营养液逐渐排入贮液桶,实现植根部的水、气相循环,栽培槽管道末端设计了PVC变径管,保持了管道底部有3~4 cm的浅液层,防止停电等短时性故障引起的供水不足,其工作原理是如图(图2c),在虹吸作用引起的栽培槽内营养液回流过程的后期,由于在出液口处的栽培槽末端连接PVC变径管,减小栽培槽的口径,使出水口管道的下液面高于栽培槽管道的上液面,从而保障栽培槽有3~4 cm的浅液层,防止断电等短时性故障的供水不足。

图2 “N”型虹吸管道工作原理

1.3 试验处理设计

试验在在山东农业大学蔬菜试验站日光温室内进行。供试番茄品种为‘金棚1号’,用无硅水配制的Hoagland营养液水培育苗,于种子播后40 d后,将幼苗定植于PVC栽培槽内继续以营养液进行水培,植株第4果穗坐果后打顶。试验设3个处理,分别为:充分供水对照(CK)、干湿交替处理(T1)、干湿交替条件下施硅处理(T2),具体措施如表1。试验用无硅水由广东仟净公司生产,硅质量分数小于8.3×10-5mmol/L,所用硅源为Na2SiO3·9H2O,通过加入Na2SO4平衡不同处理营养液的Na+质量分数和渗透势,营养液pH值用0.01 mol/L的H2SO4和NaOH调节至6.0左右。

表1 试验设计

注:CK为充分供水对照;T1为干湿交替处理、T2为干湿交替条件下施硅处理,下同。

Note: CK represents well-watered control; T1 represents dry-wet alternate treatment; T2 represents silicon fertilizer under dry-wet alternate treatment, the same below.

1.4 测定项目和方法

分别于种子播后40 d(幼苗期)、70 d(开花坐果期)、100 d(结果前期)、160 d(结果盛期)、190 d(结果后期)取样,测定净光合速率、蒸腾速率及植株耗水量,且每次取3~5株/小区,将根、茎、叶、果分开,置干燥箱中105 ℃杀青30 min,75 ℃烘干至恒质量称量干质量,并以Vorm法[22]测定其硅质量分数(以SiO2计)。

每小区选取10株,自果实成熟采收始,分别计产,直至拉秧。期间选取植株第2穗成熟果实各5个,以GY-3 型果实硬度计测定果实硬度;用阿贝折射仪测定可溶性固形物;滴定法测定可滴定酸;苯酚硫酸法测定可溶性糖;紫外吸收法测定可溶性蛋白;钼蓝比色法测定维生素C;茚三酮比色法测定游离氨基酸[23];石油醚浸提法测定番茄红素[24]。

1.5 数据处理

采用Microsoft Excel 2010软件对试验数据进行处理和绘图,采用DPS 7.5软件进行统计分析,Duncan新复极差法进行处理间差异显著性检验。

2 结果与分析

2.1 干湿交替条件下硅对番茄不同器官硅质量分数的影响

图3表明,即使CK、T1处理的各器官也含一定量的硅,这与配制营养液的无硅水含少量硅有关。随生长的进行,CK、T1处理番茄各器官硅质量分数基本稳定,T2处理则均呈逐渐升高的趋势。因此,随生长进行,T2与CK、T1各器官中硅质量分数的差异逐渐加大,如幼苗期(40 d)T2根系硅质量分数分别较CK、T1高266%、309%,结果盛期(160 d)则分别高491%、539%。与CK相比,T2处理番茄根、茎、叶、果的硅质量分数的最大增幅分别可达494%、444%、246%、631%。同一处理番茄植株硅质量分数以果实和茎较低,根次之,叶片较高,这与蒸腾作用引起番茄植株体内硅的末端集聚相关[25]。

注:不同字母表示处理间差异达5%显著水平,下同。

2.2 干湿交替条件下硅对番茄植株生长影响

从图4可以看出,在开花坐果期(70 d),T1处理的株高略低于CK,而T2处理的株高显著高于CK;在结果前期至结果后期(100~190 d)T1、T2处理的株高均低于CK。T1处理的茎粗在开花坐果期至结果前期(70~100 d)高于CK,但随生长的进行,这种差异减弱,而T2处理的茎粗除幼苗期(40 d)一直显著高于CK。T1、T2处理的根干质量、茎干质量、叶干质量在开花坐果期(70 d)较CK有所增加,且在结果前期(100 d)T1、T2处理的根干质量、叶干质量仍高于CK,但至结果盛期(160 d)及结果后期(190 d)T1、T2处理的根干质量、叶干质量、果干质量则较CK有所降低。在株高、茎粗、根干质量、茎干质量、叶干质量及果干质量方面,尽管T1、T2处理与CK的差异呈现阶段性变化,但从开花坐果期(70 d)至结果后期(190 d),T2处理在一些指标上显著高于T1处理,在其他指标也与T1处理无明显差异。以上数据表明,在番茄生长发育前期(0~70 d)干湿交替处理可降低番茄株高,却促进其茎粗加及各器官干质量的增加,从而起到控制长势,培育壮苗的作用,但在生长发育后期(160~190 d)显著抑制番茄植株生物量的增加。在生长发育前期(0~70 d),干湿交替条件下施硅显著促进番茄生物量的增加;在生长发育后期(160~190 d)则可以降低干湿交替对番茄植株生物量的抑制作用。

图4 不同处理下番茄生物量

2.3 干湿交替条件下硅对番茄光合作用及水分利用的影响

图5表明,整个生育期各处理的净光合速率(Pn)、蒸腾速率(Tr)和耗水量均先升高后降低,且以100 d和160 d时最高。在开花坐果期(70 d),T2处理的Pn略高于CK,但之后T1、T2处理的Pn均较CK降低。开花坐果期(70 d)至结果后期(190 d),T1、T2处理的Tr均显著低于CK处理,但T2处理的Tr显著高于T1处理。开花坐果期(70 d)至结果后期(190 d),尽管T1、T2处理的耗水量也显著低于CK处理(除了70 d T2处理),但开花坐果期至结果前期(70~100 d)T1、T2间并无显著差异,结果盛期至结果后期(160~190 d),T1、T2间差异显著,并在结果后期(190 d)时T1、T2处理分别较CK节水51%、23%。

2.4 干湿交替条件下硅对番茄坐果特性及产量的影响

不同处理番茄坐果特性及产量有显著差异。如图6所示单株总果数以T2处理最高,T1处理次之,CK处理最低。由于T1处理的单果质量低于CK,T1番茄单株产量较CK降低49%,差异显著,尽管T2处理的单果质量也低于CK,但由于其单株总果数显著高于CK,其单株产量较CK降低仅15%。表明干湿交替促进坐果数增加,但单果质量较低,从而导致减产,施硅可显著减弱干湿交替条件下番茄的减产效应。

2.5 干湿交替条件下硅对番茄品质的影响

不同处理番茄果实品质也有显著差异。从表2可以看出,与CK相比,T1、T2处理的果实品质在可溶性固形物质量分数、可溶性蛋白质量分数、可溶性糖质量分数、糖酸比、果实硬度方面呈增高趋势,但在番茄红素质量分数、维生素C质量分数方面却呈现降低趋势。此外,T2处理的的番茄红素质量分数、可溶性蛋白质量分数、游离氨基酸显著高于T1,但其糖酸比显著低于T1。表明,干湿交替可引起番茄果实中部分营养物质的不同程度地增加或降低,如糖酸比提高了30%,番茄红素则降低了32%,而施硅后可抑制干湿交替引起的部分品质指标的下降,甚至进一步促进番茄果实部分品质指标的增加。

图5 不同处理下番茄的净光合速率(Pn)、蒸腾速率(Tr)及耗水量

图6 不同处理下番茄坐果特性及产量

表2 不同处理下番茄的果实品质

3 讨 论

由于番茄吸硅速率慢于吸水速率,且茎伤流液硅浓度低于外部培养液,因此认为番茄属硅排斥吸收类型。然而,Nikolic等[26]研究发现,硅以被动扩散方式随质流进入番茄根部皮层,通过运载体介导进入质外体,故番茄能够积累一定量的硅。本试验结果表明,随营养液加硅显著促进番茄植株根、茎、叶、果中硅质量分数的增加,且随生长进行,各器官含硅量均呈增加的趋势,这与梁永超等[27]和Heine等[28]在番茄上的研究结果一致。此外,Jone s等[29]研究表明,禾谷类作物硅沉积量依次为花序>叶片>叶鞘>茎秆>地下部;与此不同,本研究证实,番茄植株的硅质量分数以叶片及根系较高,果实及茎则较低。这与非洲草、生姜中各器官硅质量分数的分配特性相一致[30-31]。

根区控制性干湿交替灌溉的理论基础是,当植物根系遭受一定程度的干旱胁迫则产生根源信号ABA,进行地上部气孔调节,从而降低蒸腾但不降低光合作用,实现节水的目的[32-34]。本试验研究的结果表明,生长发育前期(0~70 d),干湿交替条件下番茄植株的蒸腾速率降低,但光合作用并未降低。这可解释为干湿交替的方式使耗水过程趋于平缓,在番茄生长发育前期(0~70 d),番茄需水量较小,有利于控制植株长势、壮大茎秆直径,以及促进根系的生长,从而维持较高的光合性能。在生长发育中后期(100~190 d),尽管单纯干旱交替处理的节水效果尤为显著,但却造成番茄植株的生物量及果实产量的显著降低,为保证灌溉效果和效益,单纯干湿交替的灌溉方式则不宜采用。笔者前期试验证实,干旱胁迫条件下施硅能显著提高番茄叶片水分,降低光合色素的降解,提高叶片色素光化学效率,减轻光抑制程度,从而维持较高的光合速率[35],且能提高根系叶片的氧化损伤[17]。本研究进一步证实,硅促进番茄植株各器官硅质量分数的增加,缓解干湿交替条件下光合速率的下降,减弱干湿交替条件下番茄产量的降低,并实现节水23%的效果。

除了产量,品质也是影响作物经济效益的关键指标。张国芹等[36]研究表明,生姜施硅后,根茎中可溶性蛋白、可溶性糖、VC、游离氨基酸均高于对照。季明德等[37]研究证实,硅可促进甘蔗叶片蔗糖的合成和分解,有利于糖分的积累。Lee等[38]研究认为,硅增强了番茄蔗糖合成酶和蔗糖磷酸合成酶的活性。此外,施硅还提高了番茄维生素C和可溶性固形物质量分数[39],增加了果实硬度和番茄红素质量分数[40]。本试验研究表明,干湿交替造成了番茄的严重减产及部分品质指标的下降,但显著提高番茄果实的其他品质指标,尤其糖酸比最为显著。施硅后可抑制干湿交替引起的部分品质指标的下降,甚至进一步促进番茄果实部分品质指标的增加,尤以番茄果实硬度及番茄红素增加最为显著,这可能与硅大多沉积于细胞壁,提高了细胞壁抵抗外力的作用[41],并通过红外热辐射防止高温灼伤果实,有利于番茄红素的形成有关[42]。因此,尽管施硅并未完全逆转干湿交替对番茄生长发育中后期(100~190 d)的生长及部分品质指标的抑制作用,但干旱交替下施硅可综合干旱交替灌溉对作物本身抗旱节水能力的挖掘及硅提高作物抗旱性两方面的优势,在促进番茄稳产优质协调形成的前提下,节水效果较好。

4 结 论

干湿交替措施应用于番茄栽培可行与否,须结合不同的生育期综合考虑,不能一概而论。在番茄生长发育前期(0~70 d),番茄生长需水量相对较小,干湿交替的措施在实现节水的同时,利于培育壮苗。但生长发育后期(100~190 d),尤其盛果期,番茄生长需水量较大,尽管干湿交替措施能可在一定程度上实现番茄品质的改善,但易造成严重减产。而干湿交替条件下施硅可综合干湿交替的节水效能和外源硅提高番茄抗性的调控效应,在实现节水23%的同时,促进番茄稳产优质协调形成。

[1] Wang Y, Xie Z, Malhi S S, et al. Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China[J]. Agricultural water management, 2009, 96(3): 374-382.

[2] 张自常,李鸿伟,陈婷婷,等. 畦沟灌溉和干湿交替灌溉对水稻产量与品质的影响[J]. 中国农业科学,2011,44(24):4988-4998.

Zhang Zichang, Li Hongwei, Chen Tingting , et al. Effect of furrow irrigation and alternate wetting and drying irrigation on grain yield and quality of rice[J]. Scientia Agricultura Sinica, 2011, 44(24): 4988-4998. (in Chinese with English abstract)

[3] 陈婷婷,褚光,华小龙,等. 花后干湿交替灌溉对水稻强、弱势粒蛋白质表达的影响[J]. 中国农业科学,2013,46(22):4665-4678.

Chen Tingting, Chu Guang, Hua Xiaolong, et al. Effect of post-anthesis alternate wetting and drying irrigation on protein expressions in superior and inferior spikelets of rice[J]. Scientia Agricultura Sinica, 2013, 46(22): 4665-4678. (in Chinese with English abstract)

[4] 梁宗锁,康绍忠,邵明安,等. 土壤干湿交替对玉米生长速度及其耗水量的影响[J]. 农业工程学报,2000,16(5):38-40.

Liang Zongsuo, Kang Shaozhong, Shao Ming’an, et al. Growth rate and water consumption of maize plant in soil alternate frying-wettings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(5): 38-40. (in Chinese with English abstract)

[5] 刘永红,杨勤,杨文钰,等. 花期干湿交替对玉米干物质积累与再分配的影响[J]. 作物学报,2006,32(11):1723-1727.

Liu Yonghong, Yang Qin, Yang Wenyu, et al. Effect of soil drying-wetting alternation on dry biomass accumulation and reallocation at maize flowering stage[J]. Acta Agronomica Sinica, 2006, 32(11): 1723-1727. (in Chinese with English abstract)

[6] 董宝娣,张正斌,徐萍,等. 小麦干湿交替条件下的水分利用效率与生物学性状[J]. 干旱地区农业研究,2005,23(3):28-32.

Dong Baodi, Zhang Zhengbin, Xu Ping, et al.Correlation analysis of water use efficiency and biological traits of wheat under alternate drying with wetting[J]. Agricultural Research in the Arid Areas, 2005, 23(3): 28-32. (in Chinese with English abstract)

[7] Liang Y, Sun W, Zhu Y G, et al. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review[J]. Environmental Pollution, 2007, 147(2): 422-428.

[8] Dakora F D, Nelwamondo A. Silicon nutrition promotes root growth and tissue mechanical strength in symbiotic cowpea[J]. Functional Plant Biology, 2003, 30(9): 947-953.

[9] 李清芳,马成仓. 土壤有效硅对黄瓜种子萌发和幼苗生长代谢的影响[J]. 园艺学报,2002,29(5):433-437.

Li Qingfang, Ma Chengcang. Effect of available silicon in soil on cucumber seed germination and seedling growth metabolism[J]. Acta Horticulturae Sinica, 2002, 29(5): 433-437. (in Chinese with English abstract)

[10] Huang Hairong, Bokhtiar S M, Xu Lin, et al. Effect of silicon fertilization on yield and photosynthetic attributes in Sugarcane [J].Guangxi Agricultura Sciences, 2009, 40(12): 1564-1569.

[11] Detmann K C, Araújo W L, et al. Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice[J]. New Phytol, 2012, 196(3): 752-62.

[12] Gottardi S, Iacuzzo F, Tomasi N, et al. Beneficial effects of silicon on hydroponically grown corn salad (L.) Laterr plants [J]. Plant Physiol Bioch, 2012, 56(3): 14-23.

[13] Liang Y, Sun W, Zhu Y G, et al. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review[J]. Environmental Pollution, 2007, 147(2): 422-428.

[14] Zhu Y, Gong H. Beneficial effects of silicon on salt and drought tolerance in plants[J]. Agron Sustain Dev, 2014(2): 455-472.

[15] Al-aghabary K,Zhu Z,Shi Q. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and ant oxidative enzyme activities in tomato plants under salt stress[J]. Journal of plant nutrition, 2004, 27(12): 2101-2115.

[16] Romero-Aranda M R,Jurado O,Cuartero J. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status[J]. Journal of plant physiology, 2006, 163(8): 847-855.

[17] Cao B, Wang L, Gao S, et al. Silicon-mediated changes in radial hydraulic conductivity and cell wall stability are involved in silicon-induced drought resistance in tomato[J]. Protoplasma, 2017, 254(6): 2295-2304.

[18] 程建平,曹凑贵,蔡明历,等. 不同灌溉方式对水稻生物学特性与水分利用效率的影响[J]. 应用生态学报,2006,17(10):1859-1865.

Cheng Jianping, Cao Cougui, Cai Mingli, et al. Effects of different irrigation modes on biological characteristics and water use efficiency of paddy rice[J]. Chinese Journal of Applied Ecology, 2006, 17(10): 1859-1865. (in Chinese with English abstract)

[19] 邵玺文,刘红丹,杜震宇,等. 不同时期水分处理对水稻生长及产量的影响[J]. 水土保持学报,2007,21(1):193-196.

Shao Xiwen, Liu Hongdan, Du Zhenyu, et al. Effects of water disposal on growth and yield of rice[J]. Journal of Soil & Water Conservation, 2007, 21(1): 193-196. (in Chinese with English abstract)

[20] Mahajan S, Tuteja N. Cold, salinity and drought stresses: An overview[J]. Archives of Biochemistry and Biophysics, 2005, 444(2): 139-158.

[21] Zhang H, Zhang S, Yang J, et al. Postanthesis moderate wetting drying improves both quality and quantity of rice yield[J]. Agronomy Journal, 2008, 100(3): 726-734.

[22] Van der Vorm. Dry ashing of plant material and dissolution of the ash in HF for the colorimatric determination of silicon[J]. Communications in Soil science and Plant Analysis, 1987, 18(11): 1181-1189.

[23] 高俊凤. 植物生理学试验技术[M]. 西安:世界图书出版公司,2007

[24] 张连富,丁宵霖. 番茄红素简便测定方法的建立[J]. 食品与发酵工业,2002,27(3):51-54. Zhang Lianfu, Ding Xiaolin. Establishment of a new lycopene determination method[J]. Food and Fermentation Industies, 2002, 27(3): 51-54. (in Chinese with English abstract)

[25] 孙立,吴良欢,丁悌平等. 稻叶分段硅同位素组成及硅,钾,钠,钙,镁分布特征[J]. 中山大学学报:自然科学版,2008,47(4):94-99.

Sun Li, Wu Lianghuan, Ding Tiping, et al. Silicon isotope compositions and distribution patterns of Si, K, Na, Ca, Mg in different parts of rice leaf[J]. Acta Scientiarum Naturalium Universities Sunyatseni, 2008, 47(4): 94-99. (in Chinese with English abstract)

[26] Nikolic M, Nikolic N, Liang Y, et al. Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species[J]. Plant physiology, 2007, 143(1): 495-503.

[27] 梁永超,陈兴华,马同生,等. 硅对番茄生长,产量与品质的影响[J]. 江苏农业科学,1993(4):48-50.

Liang Yongchao, Chen Xinghua, Ma Tongsheng, et al. Effect of silicon on growth, yield and quality of tomato[J]. Jiangsu Agricultural Science, 1993(4): 48-50. (in Chinese with English abstract)

[28] Heine G, Tikum G, Horst W J. Silicon nutrition of tomato and bitter gourd with special emphasis on silicon distribution in root fractions[J]. Journal of Plant Nutrition and Soil Science, 2005, 168(4): 600-606.

[29] Jones L H P, Handreck K A. Silica in soils,plants and animals[J]. Aadvances in agronomy, 1967, 19(1): 107-149.

[30] McNaughton S J, Tarrants J L. Grass leaf silicification:Natural selection for an inducible defense against herbivores[J]. Proceedings of the National Academy of Sciences, 1983, 80(3): 790-791.

[31] 张国芹,徐坤,王兴翠,等. 硅对生姜叶片水,二氧化碳交换特性的影响[J]. 应用生态学报,2008,19(8):1702-1707.

Zhang Guoqin, Xu Kun, Wang Xingcui, et al. Effects of silicon on exchange characteristics of H2O and CO2in ginger leaves[J]. Chinese Journal of Applied Ecology, 2008, 19(8): 1702-1707. (in Chinese with English abstract)

[32] Zhang J, Davies W J. Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil[J]. Plant Cell & Environment, 1989, 12(1): 73-81.

[33] Zhang J, Davies W J. Sequential response of whole plant water relations to prolonged soil drying and the involvement of xylem sap ABA in the regulation of stomatal behaviour of sunflower plants[J]. New Phytologist, 2010, 113(2): 167-174.

[34] Davies W J, Zhang J. Root signals and the regulation of growth and development of plants in drying soil[J]. Annual review of plant biology, 1991, 42(1): 55-76.

[35] 曹逼力,李炜蔷,徐坤. 干旱胁迫下硅对番茄叶片光合荧光特性的影响[J]. 植物营养与肥料学报,2016,22(2):495-501.

Cao Bili, Li Weiqiang, Xu Kun. Effects of silicon on photosynthetic and fluorescence characteristics of tomato leaves under drought stress[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 495-501. (in Chinese with English abstract)

[36] 张国芹. 硅对生姜生长和某些生理特性的影响[D]. 泰安:山东农业大学,2008.

Zhang Guoqin. Effect of Silicon on the Growth and Some Physiological Characteristics of Ginger[D]. Tai’an: Shandong Agricultural University, 2008. (in Chinese with English abstract)

[37] 季明德,黄湘源,付美琴,等. 硅元素对甘蔗中蔗糖分积累的影响[J]. 江西化工,1994(1):13-15.

Ji Mingde, Huang Xiangyuan, Fu Meiqin, et al. The effect of silicon on sugar accumulation in sugar cane[J]. Jiangxi Chemical Industry, 1994(1): 13-15. (in Chinese with English abstract)

[38] Lee J W, Kim Y C, Yun H K et al. Influence of silicate application on the sucrose synthetic enzyme activity of tomato in perlite media culture[J]. Acta Horticulturae, 2002, 663: 259-262.

[39] Stamatakis A, Papadantonakis N, Savvas D, et al. Effects of silicon and salinity on fruit yield and quality of tomato grown hydroponically[J]. Acta Horticulturae, 2003, 609: 141-147.

[40] Toresano S F, Valverde G A, Camacho F F. Effect of the application of silicon hydroxide on yield and quality of cherry tomato[J]. Journal of Plant Nutrition, 2012, 35(4): 567-590.

[41] Raven J A. The transport and function of silicon in plants[J]. Biological Reviews, 1983, 58(2): 179-207.

[42] 王荔军,李敏,李铁津,等. 植物体内的纳米结构SiO2[J]. 科学通报,2001,46(8):625-632.

Wang Lijun, Li Min, Li Tiejin, et al. 2001 The nano structure of plants SiO2[J]. Chinese Science Bulletin, 2001, 46(8): 625-632. (in Chinese with English abstract)

曹逼力,张志焕,徐 坤. 施硅提高干湿交替条件下番茄节水性及产量和品质[J]. 农业工程学报,2017,33(22):127-134. doi:10.11975/j.issn.1002-6819.2017.22.016 http://www.tcsae.org

Cao Bili, Zhang Zhihuan, Xu Kun. Silicon improving water conservation, yield and quality of tomato under alternate wetting and drying condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 127-134. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.016 http://www.tcsae.org

Silicon improving water conservation, yield and quality of tomato under alternate wetting and drying condition

Cao Bili, Zhang Zhihuan, Xu Kun※

(,,271018,)

Silicon plays an important role in improving crop drought resistance. The irrigation of alternate wetting and drying condition is a method that can achieve the goal of saving water resources and increasing production, through the inducement of the drought regulation potential by exposure of the plant roots to drought stress. Signal feedback control in the root zone can be performed adequately under alternate wetting and drying condition, and therefore physiological water conservation can be achieved. However, the conclusions on the effects of water-saving irrigation on the physiological characteristics of crops are different. With regard to the research about applicability of alternative irrigation method on tomato (.) cultivation. In order to investigate the impacts of application of exogenous silicon on tomato under alternate wetting and drying condition, the effects of silicon on the silicon mass fraction in plant, plant growth, fruit yield and quality of tomato under alternate wetting and drying condition simulated. The simulation system was achieved by the use of a self-designed ebb-and-flow irrigation system. The results showed that the application of exogenous silicon in culture solution resulted in the increase of silicon mass fraction in tomato plants. The silicon mass fraction of tomato roots, stems, leaves and fruits increased by 494%, 444%, 246% and 631%, respectively. During the period of seedling stage and the period of flowering and fruit bearing stage of tomato, the irrigation of alternate wetting and drying condition can be used to control the growth and nurture strong seedlings. From the period of early fruiting stage to the period of later fruiting stage of tomato, especially fruit flourish stage, it is not appropriate to use the irrigation of alternate wetting and drying condition. Dry and wet alternation resulted in a serious decline in tomato production and a decline in lycopene mass fraction, vitamine C mass fraction, titratable acid mass fraction, but significantly improved other quality indicators of tomato fruit, such as soluble protein mass fraction, free amino acids mass fraction, soluble solid mass fraction, soluble sugar mass fraction, titratable acid mass fraction, fruit rigidity, sugar-acid ratio. Especially, sugar and acid ratio increased by 30%. The application of exogenous silicon can alleviate the adverse effects of alternate wetting and drying condition on fruit yield and quality in the late growth and development period of tomato. To this end, the combination of the irrigation of alternate wetting and drying condition and the application of exogenous silicon, in the promotion of stable production of tomatoes under the premise of high quality, can cause water conservation up to 23%. Based on this study, how exogenous silicon regulated the yield and quality of tomato under the condition of alternate wetting and drying was investigated, and the role of exogenous silicon in mediating changes of some physiological parameters of tomato planted under variable water conditions was made a thorough inquiry. The theoretical contents that refer to how exogenous silicon improved plant drought resistance were expanded. Irrigation method of alternate wetting and drying condition in tomato water-saving cultivation was further optimized. The result of this paper is of great significance to a reasonable water saving and to the improvement of the commodity rate of tomato.

silicates; irrigation; furits; dry and wet alternate conditions; yield; quality

10.11975/j.issn.1002-6819.2017.22.016

S641.2; S606+.2

A

1002-6819(2017)-22-0127-08

2017-06-20

2017-10-14

山东果蔬优质高效生产协同创新中心引导性课题;山东省现代农业产业技术创新体系专项资金(SDAIT05-05);“双一流”奖补资金资助(SYL2017YSTD06)。

曹逼力,讲师,主要从事蔬菜栽培生理生态研究。 Email:bilicao@sdau.edu.cn.通信作者:徐 坤,教授,主要从事蔬菜栽培生理生态研究。 Email:xukun@sdau.edu.cn.

猜你喜欢
营养液坐果节水
几种常用植物营养液及特点
节水公益广告
节水公益广告
CELSS中营养液循环利用应用实例
节水公益广告
苹果树坐果率提高六法
节水公益广告
不同营养液对香榧幼苗生长的影响
中华寿桃人工授粉提高坐果率
五招促枣树多坐果