大数据与公共管理变革

2017-11-21 09:12胡键
社会观察 2017年1期
关键词:预测思维管理

文/胡键

大数据与公共管理变革

文/胡键

大数据具有数量大、数据多样化、价值密度低、速度快的特征,通过技术提供独特的也是全新的思维,奠定了我们的学习创新(深度学习)、科技创新和管理创新。大数据科学与管理科学的结合从而产生大数据的管理,大数据独特的收集功能、储存功能、分析功能、价值挖掘功能和预测功能,促使公共管理从封闭性的管理结构转向开放性的管理结构;从官僚科层制转向扁平化结构;从公共管理与政治管理边界模糊的结构转向公共管理与政治管理边界清晰的结构;从专注于对人的管理转变为对数据的管理并借助于大数据来为人服务的模式;从被动应对性的公共决策转向基于大数据之上的主动性的优化决策。当然,这些变革也就意味着风险,其中包括导致公共管理中的不确定性风险和不可靠性风险。

大数据的内涵和特征

“大数据”是近年来的一个技术热词,也是一个学术热词,同时也是一个政府施政的热词。大数据究竟是什么?有学者把大数据视为一种统计工具,并将大数据解释为“不是基于人工设计、借助传统方法而获得的有限、固定、不连续、不可扩充的结构型数据,而是基于现代信息技术与工具可以自动记录、储存和连续扩充的、大大超出传统统计记录与储存能力的一切类型的数据”。在这些学者看来,大数据对人类思维的影响也仅仅是表现在“认识数据思维的变化”“收集数据思维的变化”和“分析数据思维的变化”。即使有学者对大数据比前者有更深入的理解,认为“大数据将深刻影响人类的决策模式和社会经济的运行模式”,但也仍然是从统计学的角度来思考大数据的意义。从技术上来看,大数据可以归入统计工具之内,但大数据与统计工具是存在巨大差别的。传统统计工具是以传统统计方法为代表的“以算法为中心”的,而大数据是以数据挖掘为核心的“以数据为中心”的统计。前者通常需要提前对数据分布和误差结构等做出假设,其结果只是人工拟合的近似世界而非真实世界,而后者基于总体数据可以给出更加精确的描述和预测。由此可见,大数据虽然可以归入统计工具之内,但已不是一般意义上的统计,一般的统计只是基于既有数据的分析,而大数据透过既有的数据可以挖掘出隐藏着的数据和价值。尤其是大数据中的非结构性数据本身就隐藏着巨大的价值,这是战略预测的重要依据;相反,传统统计工具一般不会对非结构性数据产生兴趣。也有学者认为,大数据既是数据,也是一种技术和能力。持这种观点的学者认为,大数据实际上是用来精准决策的工具。但是,大数据的特点在于它的全数据、混杂性和相关性,其本身无法提供精准决策的工具,不过大数据却能够提供一种独特的思维。还有学者认为,大数据就是指人们借助于云技术运用数据的能力,当然这种数据不是一般的数据,而是海量数据包括结构性数据和非结构性数据。也即是人们借助于云技术使用结构型数据和非结构性数据的能力,而这种能力体现在国家治理、隐私保护、公共服务、医疗卫生等。这方面的成果不少,但基本上都是从具体的领域来分析的,这里不一一列举。

大数据固然是数据,也是技术、能力和价值,也正因为如此,人们都是从这些方面来认识大数据特征的,即通常用4个V(Vplume,Variety,Vclue,Velocity)来概括大数据的特征。

1.数据体量巨大(Vplume)。据估计,人类生产的所有印刷材料的数据量是200PB (1 PB=210TB ),而历史上全人类说过的所有的话的数据量大约是5EB(1EB=210PB)。当前,典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。

2.数据类型繁多(Variety)。这种类型的多样性也让数据被分为结构化数据和非结构化数据。相对于以往便于存储的以文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等。

3.价值密度低(Value)。价值密度的高低与数据总量的大小成反比。以视频为例,一部1小时的视频,在连续不间断的监控中,有用数据可能仅有一两秒。如何通过强大的机器算法更迅速地完成数据的价值“提纯”,成为目前大数据背景下亟待解决的难题。

4.速度快(Velocity)。大数据框架内的速度包括两个方面:一方面,指如何加快数据的导入;另一方面,指如何加快分析和利用新导入的数据。前者的一个重要原因是大数据时代数据产生迅速,而大数据本身要求的是全数据,如果没有快速导入数据的技术,那么就很难做到全数据。后者则是由大数据的目标所决定的。大数据的目标是利用大数据进行科学分析和科学预测,新数据不断产生,那就意味着新问题、新情况也迅速产生。没有快速分析和利用新数据的能力,那么,所有的预测都是滞后的。滞后的预测会导致大数据丧失其预测功能。

除了上述四个特征,大数据更重要的还是提供一种独特的思维,即大数据思维。什么是大数据思维呢?

(1)开放性思维。由于大数据的来源是多源性、多路径的,也就是说,数据本身是开放性的。因此,在分析数据和基于大数据进行预测的时候也需要一种开放性的思维来进行分析和预测。(2)非线性思维。这种思维要求我们在分析问题的时候不能仅仅凭几个要素来进行决策,而是要把所有相关性因素都要纳入分析框架。尤其是不能用简单的因果关系来进行决策,要充分考虑问题的复杂性。(3)价值思维。不能把数据仅仅看作数据,要认识到数据背后的巨大价值。传统的数据思维是数理统计思维,认为数据的本质在于统计,统计的目的是揭示历史过往中的基本特征和基本规律,根本没有通过数据来获得价值的思维。大数据思维就是通过数据的导入、分析,挖掘出巨大的价值。这种思维是完全不同于传统思维的全新思维。这种思维奠定了我们的学习创新(深度学习)、科技创新和管理创新的基础。

大数据与公共管理的结合

公共管理是公权力的行使者决定公共资源在公共领域配置的过程。公权力配置公共资源并不是随意性的,科学配置公共资源必须建立在对公共领域详细了解的基础上。传统的公共管理是借助于历史经验的反复比较,正所谓“以史为鉴,可知兴替”。今天虽然历史纵向的比较仍然可以获得经验,但这并非唯一的方法,甚至可以说是一种陈旧的方法论。新的方法是基于大数据的公共管理,大数据将带来公共管理的重大革命。那么,公共管理所依赖的大数据来自何处呢?这些数据主要来自以下四个方面:

1.来自互联网的大数据。这些数据大多分散在不同储存系统。此外,云应用和社交网站如新浪微博等上也产生大量的数据。当然,来自互联网的大数据必须基于搜集技术和保护技术。这种技术的发展是惊人的,例如对用户在网站上行为的记录在20世纪90年代中期,其保存率仅有1%,而在21世纪的第一个十年中的发展已经可以达到100%的保存率。这些数据虽然并非都可以用于公共管理,但公共管理已经越来越离不开来自互联网的数据。以新浪微博的数据为例,新浪微博中产生大量的关于政治参与、反腐倡廉、社会安全、社会问题、公共卫生事件、社会突发事件等的数据,而这些恰恰就是公共管理最重要的数据源之一,甚至这些数据在很大程度上影响公共决策。

2.来自公权力运行过程中的大数据。根据社会过程论的观点,政治过程包括政治系统从输入到输出的全部活动,是二者一系列互动行为构成的动态系统。政治系统的输入和输出,最重要的就是由话语、文件、口号、音频、视频等数据构成的信息输入和输出。这些数据是权力输入和输出的实际表现,因而也就是公共管理所依赖的大数据。政府数据的构成,从公开程度来看,可分为三层:第一层是免费公开、惠及民生的数据;第二层是有价值、有偿公开的数据;第三层是不能公开的数据。目前,中国有用信息的80%由政府掌握,长期以来,这些信息大多处于不对外公开状态,严重地制约经济发展;同时,部门之间、上下级之间的政府信息相互割裂、数据之间无法有效共享,形成一个个信息孤岛,难以发挥应有的作用。从数据的性质来看,政府手里的大数据可以分为:(1)资产性数据,也就是直接表现为财产的数据,如国民收入、国债、对外贸易和投资等数据;(2)资源性数据,如自然资源、环境资源、政治资源、人口资源、教育与科研资源等数据;(3)互动性数据,也就是政府施政过程中与社会互动产生的数据,以及政府与市场主体互动产生的数据,包括宏观经济形势、居民健康状况、居民收入和社会保障等方面的数据。

3.来自企业的大数据。企业是大数据最重要的来源,几乎每时每刻都在产生数据。公共管理并非只是针对社会成员的,同样也针对企业主体。所以,企业的数据积累也是公共管理大数据的重要来源。

4.来自个人的大数据。个人的基本数据包括涉及个人隐私的所有数据,如健康状况、电话号码、银行账号等既是公共管理的依据,也是公共管理的对象。个人在日常生活中的活动行程数据包括上网、电子邮件、短信,以及博客、微博、微信等自媒体数据。此外,还有个人在其职业活动中形成的各种数据,如写作、科研、发明等,同样是公共管理数据的重要来源。

大数据客观上为公共管理提供处理公权力内部的权力运作问题、公权力对公共资源的配置问题,以及为我们维护社会安全、应对社会问题提供全新的思路和技术。这也是大数据时代公共管理与传统公共管理的最大区别。大数据公共管理更多的是处理数据,而对于不同来源的数据和不同性质的数据,公共管理的处理方式不一样。

大数据在促进公共管理变革中的重要功能

大数据能够促进公共管理的变革,是因为大数据有其特殊的功能。

1.大数据具有强大的数据收集功能。当今时代,数据呈三维爆炸式增长,即同一类数据在快速增长、数据增长速度在加快、新的数据来源和新的数据种类在不断增加。在这种情形下,传统的数据收集方式根本无能为力,而云平台支撑下的大数据技术却能够把海量、快速、多样的数据实现软件化、智能化。因而,大数据也就能够为公共管理提供多元化、多源性的信息,这样就能够呈现更为真实的客观实际。大数据为民意辩论和协商共识提供足够的信息。公共管理的重要环节是民众参与和通过协商来达成共识。而参与和协商的前提是民众的信息充分知晓,信息不对称的协商是不平等的协商,这种协商是难以达成共识的。在这种情形下,大数据就发挥提供多样化、多源性信息的功能。因此,大数据和云计算实现了彻底的大多数决策的范式。

2.大数据本身具有数据管理的功能。大数据的数据管理是依托于云平台的智能化管理。大数据的管理功能既包括对大数据的管理,也包括使用大数据结果的管理。从公共管理来看,对大数据本身的管理体现在政府能够拥有对云硬件进行虚拟化的虚拟技术、对各种数据进行编程的编程技术和提供大数据使用服务的云服务平台技术;对大数据使用结果的管理功能则体现在适应大数据时代大数据使用的立法能力上,也就是通过有效立法来加强对大数据使用结果的管理。简言之,数据管理是大数据时代公共管理最重要的内容之一。

3.大数据具有强大的分析功能。数据没有经过分析就是一组没有生命力的数据,只有经过技术分析的数据才能够“发声”,才能够用于预测和进行公共决策。没有大数据思维就难以获得大数据的分析功能。大数据的分析功能不仅是分析已经“发声”的大数据,还要有能力重组各种已经存在且即将被挖掘出来的数据。由于大数据的核心是预测,因此,大数据结合传统的分析方法之后,就是要“(1)使用全部或更多的数据来建立预测模型;(2)组合多种分析模型和技术来改善结果;(3)创造一个闭环的环境,让新知识运用在生产模型中;(4)构建实时性的预测模型;(5)专注于应用预测模型技术。”在思维过程中对数据进行重组,从而挖掘出数据的新价值,是大数据分析功能的核心内容。

4.大数据具有数据挖掘和数据重组的功能。在公共管理过程中,我们往往重视重要数据和可以用二维表结构来逻辑表达实现的结构性数据,并依据这些数据来进行公共决策,从而忽视众多所谓的不重要的、非结构性数据,但这些数据客观上对公共决策是有重要影响的。不过,“孤立的数据是没有价值的”。非结构性数据不能被发现其价值,就是因为它们是孤立的,但大数据技术却能够通过挖掘和重组功能对非结构性数据进行充分利用,尤其是通过算法来构建数据的相关关系并挖掘数据价值,把分散的数据整合起来,并在云平台上通过云技术处理,使之成为有内在相关性的大数据,最终应用到公共管理过程中。

5.大数据具有强大的预测功能。大数据时代的预测与以往的预测有何不同呢?其最大的区别在于“一”与“多”的关系不同。传统的预测是从“一”来预测“多”的,而大数据时代预测则是相反,从“多”来预测“一”的。大数据预测不是以随机样本为前提而是全数据,不追求数据的精确性而是在混杂性的数据中寻找相关关系。虽然是混杂的数据,但预测的结果却不是多样性的,而是单一性的结果。也就是说,大数据的预测追求预测结果的唯一性。这对于公共管理的意义而言,在于大数据的预测功能规避公共决策结果的不可预知性和结果的多样性风险。

大数据促进公共管理内涵的重大变革

大数据推动公共管理的变革并不是因为大数据提供了数据服务,而是因为大数据带来管理思维的变革、管理结构的变革、管理边界的进一步明晰,以及公共管理对象的变化和管理效能的重大变化。大数据技术运用和相应的大数据服务,使公共管理彻底革新。

1.大数据促使公共管理从封闭性的管理结构转向开放性的管理结构。传统的公共管理受制于公权力,而公权力的运行在客观上存在封闭性的特点,如所谓的保密性、国家安全等,社会组织的参与、市场组织的参与度比较低。这种封闭性决定公权力在进行公共资源配置的过程中存在权力寻租的现象,即便没有权力寻租问题,但由于其封闭性也会导致社会的不信任,使公权力本身陷入“塔西佗陷阱”之中。相反,大数据完全不一样,大数据是在互联网和云平台上运行的,大数据时代的公共管理存在天然的开放性。市场组织与社会组织,甚至民众个体都可以在公共管理的框架中游走。在这个过程中,普通公众成为管理框架中的一员,管理者与需求者瞬时转换,实现全民参与管理,管理主体与客体对象的边缘变得模糊。这种开放性表明,原来的单一治理模式向多元治理模式的重大变革。

2.大数据使公共管理由官僚科层制转向扁平化结构。官僚科层制管理是一种金字塔型的治理结构,其结果导致资源配置形成与之相反的倒金字塔形结构,离金字塔塔尖越近的部门获得的公共资源越多。这样的公共管理结果最终是难以持续的。社会的不满情绪也大多源于此。公共资源的分配强调在程序化基础上的公平,而官僚科层制管理虽然有程序但缺乏公平。所以,官僚体制内部的层级在公共资源分配中发挥决定性的作用。然而,大数据就完全不一样,大数据把横向分工合作与纵向科层制的僵化结构打破,政府内部的数据共享与共同决策将最终消除官僚层级对公共资源分配的决定性作用,同时也会消除部门之间的公共资源鸿沟。

3.大数据公共管理与政治管理的边界进一步得到明晰。传统的公共管理更多的是基于政治意识形态的安全而实施的过程,把一切涉及经济利益诉求的集体行动和个人维权行为都纳入到与政府对抗甚至视之为颠覆政府的政治诉求行动,所以刚性维稳成为公共管理的常态。其结果往往是与实际目标相去甚远,进一步激化社会矛盾。实际上大多数的集体行动和维权行动都是以经济利益为目标的,与政治诉求根本就没有关系。大数据的监控会把这一切都明明白白地告诉公共管理者。关于这方面的监控过去都是采取人对人的监控,而人往往会对一切都进行主观判断,甚至为某种目的而故意隐瞒客观事实,把经济诉求的社会行动上报成为政治诉求的社会行动,其结果不言自明。大数据不一样,大数据采取的是技术监控和技术分析,包括对人的行为的监控。技术只会告诉你数据,不会做出主观判断,技术用数据说话。大数据的公共管理就是要去政治化的管理而转变为社会化的管理。

4.大数据促使公共管理从强化对人的管理转变为对数据的管理,并借助于大数据来为人服务。传统的公共管理是为社会秩序服务的,所以专注于对人的行为进行规范化,使之合秩序化。在这种管理框架中,人是公共管理的目标,而不是管理服务的对象。大数据的公共管理,一是数据管理,因为数据是最为关键的管理对象,数据在云平台上安全运行是大数据条件下公共管理的前提条件,因此,对数据的管理是第一位的,只有对数据有效管理,才能实现有效的公共管理。也就是说,对数据的管理是公共管理最重要的一部分。二是用数据服务公众,即大数据的公共管理从直接对人的管理转变为直接对人的服务。这是公共管理根本性的变革。

5.从公共管理的效能来看,尤其是针对社会问题,公共管理决策应该是一种预测性的决策,而不是被动应对性的决策。传统的公共管理往往是一种被动应对性的公共决策,这种决策相当于用先前付出的代价来购买新的公共决策。大数据技术条件下可以避免这种用历史代价来购买未来公共决策的现象,那就是用大数据进行预测式决策。这是因为,大数据不但构筑规模庞大、类型多样的数据,而且云计算的快速计算能力,能够实现“全样本”的数据支撑,从而能够使公共管理更好地做出预测性优化决策。

大数据条件下公共管理面临的新挑战

变革也就意味着风险,其中包括不确定性的风险和不可靠性的风险,都会给公共管理提出全新的挑战。

1.大数据真的是全数据吗?所谓全数据都是相对的,但大数据条件下的公共管理对全数据具有天然的依赖性。因此,对大数据实际上就是全数据的依赖会导致公共管理为收集数据而收集数据,或者说是为追求全数据而导致公共管理因数据动态而困惑。虽然公共管理的目标是提高服务质量,但数据的大爆炸会导致公共管理者更多地应对数据爆炸带来的收集困惑,为如何收集瞬间即逝的非结构性数据而费尽周折。而公共管理的服务内容很有可能被数据收集过程冲淡甚至被忽视。对数据的执迷是大数据时代公共管理面对的第一大挑战。

2.大数据如何保护个人隐私?保护个人隐私虽不是公共管理的目标,但是公共管理的内容之一。传统的公共管理也包括对隐私权保护的内容,即任何个人隐私都必须得到公共管理行为的保护,公共管理过程不得侵犯个人隐私。然而,大数据所收集的所有数据都存放在互联网之中和云平台之上。在巨大的利益诱惑下,某些人会通过攫取云平台之上的大数据特别是个人隐私方面的数据来谋取暴利,甚至是进行诈骗、勒索。近年来,网络诈骗、电信诈骗层出不穷,就是因为人追逐特殊利益的本性而导致大数据技术的异化。由此可见,大数据本是为了提高公共管理水平,但大数据技术的异化给公共管理带来新的难题。

3.大数据如何进行公共管理方面的立法?公共必须有法可依,但立法的原则不同,公共管理的内容是不一样的。例如,传统立法使用个人隐私数据必须征得个人同意。在大数据时代,大数据把个人隐私几乎完全暴露在互联网之中。因此,在立法管理上就要进行变革,即国家立法要从个人许可转变为让数据使用者承担责任。由于大数据的价值并不是从表面的数据直接体现出来的价值,而是通过挖掘之后而发现数据的价值进行二级使用,因此,个人许可的立法原则就难以获得全数据,但获得全数据之后,数据使用者是否主动要为使用数据负法律责任呢?这无疑是一个未知数。大数据的公共管理要促使数据使用者评估数据使用的风险、规避或减少潜在伤害,但数据使用者往往忽视法律的底线,从而使公共管理在大数据条件下存在数据使用者道德的不确定性风险。

(作者系上海社会科学院研究员;摘自《行政论坛》2016年第6期)

猜你喜欢
预测思维管理
枣前期管理再好,后期管不好,前功尽弃
思维跳跳糖
思维跳跳糖
思维跳跳糖
选修2—2期中考试预测卷(B卷)
选修2—2期中考试预测卷(A卷)
思维跳跳糖
采用C—NCAP 2006年版管理规则
“这下管理创新了!等7则
《福彩3D中奖公式》:提前一月预测号码的惊人技巧!