袁瑞研+王许安+刘颖斌
摘 要: CXC受体2(CXC receptor 2,CXCR2)是多种趋化因子受体,与机体的炎症免疫过程密切相关。近年来,随着炎症免疫在肿瘤中的研究进一步深入,发现CXCR2与其配体相互作用形成多种信号轴,共同在胰腺癌、乳腺癌、结直肠癌等多种恶性肿瘤的肿瘤微环境构建与调控中发挥重要作用,对肿瘤的血管生成、肿瘤细胞的增殖、转移、侵袭以及上皮细胞间质转化等方面均有明显影响与调控作用。
关键词 肿瘤;炎症;免疫;CXCR2;趋化因子
中图分类号:R73 文献标志码:A 文章编号:1006-1533(2017)20-0003-05
Research progress of relationship between cancer and CXCR2 along with its ligands
YUAN Ruiyan, WANG Xuan, LIU Yingbin
(Department of General Surgery, Xinhua Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China)
ABSTRACT: CXC receptor 2(CXCR2 )is the receptor of various chemokines, which is closely connected with bodys inflammation and immunity. Recently, with the further research of inflammation and immunity in cancer, it is shown that the interaction of CXCR2 and its ligands works like all kinds of signaling axes and that plays an important role in both construction and modification of tumor microenvironment in many malignant cancers, such as pancreatic cancer, breast cancer, colorectal cancer and so on. CXCR2 axis has obvious impact and regulation on tumor angiogenesis, proliferation, metastasis, invasion and epithelial-mesenchymal transition of tumor cells.
KEY WORDS neoplasms; inflammation; immunity; CXCR2; chemokines
CXC受體2(CXC receptor 2,CXCR2)属于G蛋白偶联受体家族,其配体为CXCL1(C-X-C motif chemokine ligand 1)、CXCL2、CXCL3、CXCL5、CXCL6、CXCL7、CXCL8等多种CXC类趋化因子[1]。早期研究发现,CXCR2可募集中性粒细胞向炎症区域转移[2-3],认为与炎症免疫相关。近年发现,CXCR2参与多种肿瘤的发生、发展、治疗过程,CXCR2轴在肿瘤微环境中的作用越来越得到重视。
CXCR2家族可促进结肠癌[4]、鳞状细胞癌[5]的发生,能调节胰腺导管腺癌髓源性抑制细胞(myeloidderived suppressor cells,MDSC)的转移[1],促进乳腺癌细胞转移和侵袭[6-7],以及上皮细胞间质转化(epithelialmesenchymal transition,EMT)[8],对肿瘤微环境的构建发挥着重要作用。同时,在乳腺肿瘤、胰腺癌中具有促血管生成作用[9]。治疗方面,研究发现CXCR2在胰腺导管腺癌[1]以及化疗耐药乳腺癌[6]治疗中可能是重要的切入点。
1 CXCR2及其配体的结构与功能
1.1 CXCR2的结构
CXCR2是CXC类趋化因子所对应受体家族的一员,常分布于中性粒细胞,亦可见于肥大细胞、巨噬细胞、内皮细胞及多种肿瘤细胞,因其能与白细胞介素(IL)-8高亲和力特异结合,故又称IL8Rβ(interleukin 8 receptor,beta)。CXCR2编码基因位于染色体2q33-q36,受体蛋白约由350个氨基酸组成[10]。类似于其他趋化因子受体,CXCR2属于7次跨膜的G蛋白偶联受体,胞内、胞外各有3个结构域。位于胞外的N末端结构域与趋化因子配体的结合相关,同时通过1个酪氨酸磷酸化模体激活受体[11];受体C末端片段位于胞内,邻近C末端的LLKIL模体与位于胞外第2段肽环内的1个天冬氨酸残基对于受体结合后的快速内化具有重要作用;G蛋白结合位点位于胞内第2段肽环内,由DRY模体组成,与胞内下游信号通路转导相关。此外,该段肽环内包含1段由10个氨基酸组成的保守肽段,并且每个胞外结构域均含1个特有的半胱氨酸残基[12-13]。
1.2 CXCR2配体
趋化因子是一种小分子量细胞因子,可使白细胞发生定向趋化运动。根据半胱氨酸残基的数目及位置,可将趋化因子分为4大类:CXC类、CC类、C类及CX3C类。其中,CXC类趋化因子通常可根据是否含ELR模体,分为ELR+趋化因子及ELR-趋化因子,ELR模体位于N末端,是含3个氨基酸片段(glu-leu-arg)、8~14 KD的多肽。CXCR2配体均为ELR+趋化因子,主要有CXCL1-2-3-5-6-7-8,且其配体编码基因均位于4号染色体。以下对CXCR2配体作一分述。endprint
CXCL1又称生长调节致癌基因α(growth-regulated oncogene α,GRO α),编码CXCL1基因,最先由Anisowicz等[14]在中国仓鼠胚胎成纤维细胞中发现,人CXCL1基因位于4号染色体上。Richmond等[15-16]最先在人黑色素瘤细胞系培养基悬液中提取出CXCL1,认为其是肿瘤细胞自分泌的一种生长因子,CXCL1在黑色素瘤及多种急、慢性炎症中表达量显著升高。此外,该因子还与Kaposi肉瘤、非小细胞肺癌,结直肠癌等肿瘤血管生成相关。CXCL2的氨基酸序列与CXCL1有90%的相似度,其编码基因亦位于4号染色体上,对多形核白细胞及造血干细胞具有趋化作用[17-18]。CXCL3编码基因同样位于4号染色体,可调控单核细胞的转移及粘附,与小脑形态发生具有一定相关性,在成神经管细胞瘤[19]、乳腺癌[20]当中具有一定的研究。CXCL5又称上皮细胞源性中性粒细胞活化肽(epithelial cell-derived neutrophil-activating peptide),人CXCL5基因定位于4号染色体q13-q21部位,包含4個外显子和3个内显子,其cDNA共编码114个氨基酸,与CXCL8基因结构类似。越来越多的研究表明,CXCL5不仅与免疫炎症相关,更与许多肿瘤有着密切关联。CXCL6可与CXCR1、CXCR2结合发挥炎症因子趋化功能。CXCL7在血小板激活后会大量释放,参与有丝分裂发生、细胞外基质合成、糖代谢多个过程[21-22]。近年来,亦有研究发现CXCR2/ CXCL7轴在结肠癌等肿瘤性疾病中发挥作用[23]。CXCL8即IL-8,是一种强烈的促炎因子,巨噬细胞、上皮细胞、气管平滑肌细胞等都可以分泌,CXCR1与CXCR2均为CXCL8受体。人CXCL8蛋白由位于4号染色体上的CXCL8基因编码,最初以99个氨基酸长的前体肽形式存在,巨噬细胞培养时可分泌72个氨基酸长的IL-8活性肽[24]。CXCL8对多种炎症细胞具有趋化作用,并且有很强的促血管生成作用。除了在机体固有免疫中发挥重要作用,对CXCL8其他功能的研究还涉及支气管炎、齿龈炎等炎症性疾病、肥胖相关性疾病[25]、精神分裂症[26]、结肠癌、胰腺癌、黑色素瘤、恶性间皮瘤、肺癌、Kaposi肉瘤等肿瘤疾病[27]。
2 CXCR2与肿瘤关系研究进展
2.1 CXCR2在乳腺癌中的研究
CXCR2主要通过与CXCL8、CXCL5、GRO α等作用影响乳腺癌的进展,但具体的作用机制目前仍未明晰。研究发现,乳腺癌骨转移的肿瘤细胞相关性成骨细胞(tumor-associated osteoblasts,TAOBs)源性CXCL5结合其特异性受体CXCR2与Raf/MEK/ERK激活相关,通过MSK1、Elk-1磷酸化,进而促进组蛋白H3乙酰化以及snail启动子磷酸化,引起snail上调,E-cadherin下调,影响乳腺癌肿瘤细胞系MCF-7及MDA-MB-231的转移、侵袭以及EMT,而细胞增殖情况未见改变[8]。稍所不同的是,Xu等[28]发现过表达CXCR2对乳腺癌细胞的增殖、转移、侵袭、抗凋亡、肿瘤形成等均有促进,并且通过提高环氧合酶2表达,减少AKT表达,进而促进肿瘤转移及耐药。Sharma等[6]还观察到耐药乳腺癌细胞Cl66细胞的CXCR2表达下调,而其配体表达量增高,进一步研究发现这些耐药细胞的干性标志及间质细胞标志表达增多,表明两者之间存在一定的相关性,靶向治疗CXCR2信号通路可能在耐药乳腺癌的治疗中发挥作用。
2.2 CXCR2在胰腺肿瘤中的研究
CXCR2在胰腺肿瘤分子生物学机制的研究可能为胰腺癌的诊断与治疗提供更优的策略选择。Steele等[1]发现CXCR2表达在人胰腺癌中性粒细胞/骨髓来源抑制细胞中有明显上调,中性粒细胞/骨髓来源抑制细胞在胰腺癌转移微环境的构建中发挥重要作用,而CXCR2在该过程中扮演了重要角色,抑制CXCR2还可以促进T细胞渗入,提高了抗肿瘤治疗的敏感性,CXCR2靶向治疗可能成为减少胰腺导管腺癌的进展与转移的有效措施。同样,前期有研究表明人胰腺癌中也有明显的CXCL5过表达,CXCL5表达量与肿瘤分化、临床分期、患者生存率呈明显的负相关。CXCL5诱导AKT、ERK磷酸化促进内皮细胞生长及血管生成,同时还通过MAPK、JAK/STAT等通路对肿瘤产生影响[29]。
2.3 CXCR2在结直肠癌中的研究
CXCR2配体通过与CXCR2作用影响结直肠癌患者的预后以及肿瘤发展与转移。Kawamura等[4]对250例结直肠癌患者及30名正常人的血清样本进行CXCL5浓度测定,发现与正常人相比,结直肠癌患者术前血清CXCL5浓度明显较高,同时结合其临床病理结果和生存调查,发现CXCL5高血清浓度与性别为女(P=0.0098)以及肝转移具有明显的相关性。单变量分析表明,CXCL5升高与总体生存率低相关;多变量分析表明,CXCL5升高在所有结直肠癌患者中是重要且独立的生存预后影响因素。CXCL5很可能可以作为一种新的结直肠癌肿瘤标志,且其与CXCR2所形成的信号轴可能参与了结直肠癌的发生和发展。Wang等[30]分析139例人结直肠癌样本的免疫组化结果,发现整合素αvβ6表达量与IL-8呈明显相关性,IL-8与其受体CXCR1/2作用,剂量依赖性激活ERK及Ets-1信号通路,从而上调整合素αvβ6表达,促进结直肠癌转移。
2.4 CXCR2在肺癌中的研究
早期报道在非小细胞肺癌中,CXCR2具有明显促进肿瘤炎症反应以及血管生成作用。在体外使用CXCR2抑制剂或敲减肺癌细胞CXCR2基因,均可降低肿瘤细胞侵袭能力。在对262例无术前化疗的非小细胞肺癌切除术患者组织的探针分析中,发现所表达CXCR2主要存在于肿瘤细胞胞质中,且表达量与患者吸烟及不良预后密切相关。同时,对52株非小细胞肺癌细胞系及442例早期切除的肺腺癌肿瘤细胞CXCR2轴基因表达模式的分析发现,其基因表达模式与人吸烟相关肺腺癌及不利临床特征(如KRAS突变、表皮生长因子受体突变)相关。此外,在70株人非小细胞肺癌细胞系有确定的CXCR2轴启动子甲基化,进而调节CXCL5表达[31]。Khan等[32]用CXCL8的一种突变蛋白G31P特异性抑制CXCR1/2,使cleaved PARP、Caspase-8、Bax表达升高,Bcl-2表达降低,促进肿瘤细胞凋亡,并且对H460、A549细胞的增殖、转移能力呈剂量依赖性抑制,提示CXCR2轴为非小细胞肺癌潜在的治疗靶点。endprint
2.5 CXCR2在其他肿瘤中的研究
Begley等[33]在前列腺癌的研究中发现,CXCL5在前列腺上皮细胞中同时激活了MAPK和PI3K信号通路,从而促进上皮细胞的增殖和侵袭;CXCL5还促进了EGR1基因的转录,EGR1可编码一种C2H2型锌指蛋白,该蛋白可促进肿瘤生长与血管生成,并提高肿瘤细胞的生存能力,揭示了CXCL5/CXCR2轴在前列腺癌中可能发挥着重要作用。Bayo等[34]在肝细胞癌培养基中发现,肝癌细胞分泌了大量CXCL8、CXCL1-2-3、CCL2,这些细胞因子募集骨髓来源间充质干细胞进入肿瘤细胞微环境,进而通过间充质干细胞促进肿瘤细胞转移并且对肿瘤微环境其他细胞组成进行调控,对上述细胞因子的受体CXCR1/CXCR2进行中和,50%间充质干细胞的转移受到抑制。该发现可为靶向抑制间充质干细胞治疗肝细胞癌提供很好的治疗策略。此外,CXCR2轴在肾细胞癌、膀胱癌、食管癌、胃癌等肿瘤的进程中也发挥着潜在的作用。近几年胆囊癌发病率逐年升高,相关研究越来越受到关注[35-39],根据临床上关注到的膽囊炎与胆囊癌之间的密切关系,有理由相信炎症损伤在胆囊癌肿的发生、发展过程中扮演着不可忽视的作用。
3 小结
随着人们对炎症免疫在肿瘤研究中作用认识程度的增高,趋化因子及其受体在人体内所扮演的角色不再是一种构成机体免疫系统的简单的蛋白分子,在肿瘤分子生物层面,一个个细胞因子穿插于调控肿瘤发生、转移、侵袭、血管形成等方面的巨大网络之中。目前,CXCR2及其配体所形成的信号轴在乳腺癌、结直肠癌、胰腺癌等疾病中的作用有了广泛研究,CXCR2轴对肿瘤细胞的增殖、转移、侵袭、EMT以及肿瘤的血管生成、患者生成预后均有不同程度的影响,但具体的分子机制、相关信号通路的调控、深层次表观调节方面的影响尚需更加深入的探讨。CXCR2轴在肿瘤性疾病中扮演的角色,有为肿瘤临床早期诊断、患者预后提供更可靠预判标志的潜能;CXCR2及其配体的靶向治疗,更为恶性肿瘤治疗提供了更广阔的思路与更开明的前景。
参考文献
[1] Steele CW, Karim SA, Leach JD, et al. CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma[J]. Cancer cell, 2016, 29(6): 832-845.
[2] Cacalano G, Lee J, Kikly K, et al. Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog[J]. Science, 1994, 265(5172): 682-684.
[3] Eash KJ, Greenbaum AM, Gopalan PK, et al. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow[J]. J Clin Invest, 2010, 120(7): 2423-2431.
[4] Kawamura M, Toiyama Y, Tanaka K, et al. CXCL5, a promoter of cell proliferation, migration and invasion, is a novel serum prognostic marker in patients with colorectal cancer[J]. Eur J Cancer, 2012, 48(14): 2244-2251.
[5] Jamieson T, Clarke M, Steele CW, et al. Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis[J]. J Clin Invest, 2012, 122(9): 3127-3144.
[6] Sharma B, Varney ML, Saxena S, et al. Induction of CXCR2 ligands, stem cell-like phenotype, and metastasis in chemotherapy-resistant breast cancer cells[J]. Cancer Lett, 2016, 372(2): 192-200.
[7] Yu PF, Huang Y, Han YY, et al. TNFalpha-activated mesenchymal stromal cells promote breast cancer metastasis by recruiting CXCR2+ neutrophils[J]. Oncogene, 2016, doi: 10.1038/onc.2016.217
[8] Hsu YL, Hou MF, Kuo PL, et al. Breast tumor-associated osteoblast-derived CXCL5 increases cancer progression by ERK/MSK1/Elk-1/snail signaling pathway[J].Oncogene, 2013, 32(37): 4436-4447.
[9] Lau WH, Pandey V, Kong X, et al. Trefoil Factor-3 (TFF3) Stimulates De Novo Angiogenesis in Mammary Carcinoma both Directly and Indirectly via IL-8/CXCR2[J]. PloS one, 2015, 10(11): e0141947.endprint
[10] Olson TS, Ley K. Chemokines and chemokine receptors in leukocyte trafficking[J]. Am J Physiol Regul Integr Comp Physiol, 2002, 283(1): R7-28.
[11] Murphy PM, Baggiolini M, Charo IF, et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors[J]. Pharmacol Rev, 2000, 52(1): 145-176.
[12] Allen SJ, Crown SE, Handel TM. Chemokine: receptor structure, interactions, and antagonism[J]. Annu Rev Immunol, 2007, (25): 787-820.
[13] Nasser MW, Raghuwanshi SK, Malloy KM, et al. CXCR1 and CXCR2 activation and regulation. Role of aspartate 199 of the second extracellular loop of CXCR2 in CXCL8- mediated rapid receptor internalization[J]. J Biol Chem, 2007, 282(9): 6906-6915.
[14] Anisowicz A, Bardwell L, Sager R. Constitutive overexpression of a growth-regulated gene in transformed Chinese hamster and human cells[J]. Proc Natl Acad Sci USA, 1987, 84(20): 7188-7192.
[15] Richmond A, Balentien E, Thomas HG, et al. Molecular characterization and chromosomal mapping of melanoma growth stimulatory activity, a growth factor structurally related to beta-thromboglobulin[J]. EMBO J, 1988, 7(7): 2025-2033.
[16] Richmond A, Lawson DH, Nixon DW, et al. Characterization of autostimulatory and transforming growth factors from human melanoma cells[J]. Cancer Res, 1985, 45(12 Pt 1): 6390-6394.
[17] Iida N, Grotendorst GR. Cloning and sequencing of a new gro transcript from activated human monocytes: expression in leukocytes and wound tissue[J]. Mol Cell Biol, 1990, 10(10): 5596-5599.
[18] Pelus LM, Fukuda S. Peripheral blood stem cell mobilization: the CXCR2 ligand GRObeta rapidly mobilizes hematopoietic stem cells with enhanced engraftment properties[J]. Exp Hematol, 2006, 34(8): 1010-1020.
[19] Farioli-Vecchioli S, Cina I, Ceccarelli M, et al. Tis21 knockout enhances the frequency of medulloblastoma in Patched1 heterozygous mice by inhibiting the Cxcl3-dependent migration of cerebellar neurons[J]. J Neurosci, 2012, 32(44): 15547-15564.
[20] See AL, Chong PK, Lu SY, et al. CXCL3 is a potential target for breast cancer metastasis[J]. Curr Cancer Drug Targets, 2014, 14(3): 294-309.
[21] Castor CW, Miller JW, Walz DA. Structural and biological characteristics of connective tissue activating peptide (CTAPIII), a major human platelet-derived growth factor[J]. Proc Natl Acad Sci USA, 1983, 80(3): 765-769.
[22] Castor CW, Furlong AM, Carter-Su C. Connective tissue activation: stimulation of glucose transport by connective tissue activating peptide III[J]. Biochemistry, 1985, 24(7): 1762-1767.endprint
[23] Desurmont T, Skrypek N, Duhamel A, et al. Overexpression of chemokine receptor CXCR2 and ligand CXCL7 in liver metastases from colon cancer is correlated to shorter diseasefree and overall survival[J]. Cancer Sci, 2015, 106(3): 262-269.
[24] Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis[J]. Neuro Oncol, 2005, 7(2): 122-133.
[25] Sharabiani MT, Vermeulen R, Scoccianti C, et al. Immunologic profile of excessive body weight[J]. Biomarkers, 2011, 16(3): 243-251.
[26] Brown AS, Hooton J, Schaefer CA, et al. Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring[J]. Am J Psychiatry, 2004, 161(5): 889-895.
[27] Zhu YM, Webster SJ, Flower D, et al. Interleukin-8/CXCL8 is a growth factor for human lung cancer cells[J]. Br J Cancer, 2004, 91(11): 1970-1976.
[28] Xu H, Lin F, Wang Z, et al. CXCR2 controls breast cancer metastasis and chemoresistance through PI3K/AKT and COX-2 signalings[J]. Cancer Res, 2013, 73(8 Supplement): 548.
[29] Li A, King J, Moro A, et al. Overexpression of CXCL5 is associated with poor survival in patients with pancreatic cancer[J]. Am J Pathol, 2011, 178(3): 1340-1349.
[30] Sun Q, Sun F, Wang B, et al. Interleukin-8 promotes cell migration through integrin alphavbeta6 upregulation in colorectal cancer[J]. Cancer Letters, 2014, 354(2): 245-253.
[31] Saintigny P, Massarelli E, Lin S, et al. CXCR2 expression in tumor cells is a poor prognostic factor and promotes invasion and metastasis in lung adenocarcinoma[J]. Cancer Res, 2013, 73(2): 571-582.
[32] Khan M, Wang B, Wei J, et al. CXCR1/2 antagonism with CXCL8/Interleukin-8 analogue CXCL8(3-72)K11R/ G31P restricts lung cancer growth by inhibiting tumor cell proliferation and suppressing angiogenesis[J]. Oncotarget, 2015, 6(25): 21315-21327.
[33] Begley LA, Kasina S, Mehra R, et al. CXCL5 promotes prostate cancer progression[J]. Neoplasia, 2008, 10(3): 244-254.
[34] Bayo J, Real A, Fiore EJ, et al. IL-8, GRO and MCP-1 produced by hepatocellular carcinoma microenvironment determine the migratory capacity of human bone marrowderived mesenchymal stromal cells without affecting tumor aggressiveness[J]. Oncotarget, 2016, doi: 10.18632/ oncotarget.10288
[35] Li M, Zhang Z, Li X, et al. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway[J]. Nat Genet, 2014, 46(8): 872-876.
[36] Quan Z, Gu J, Dong P, et al. Reactive oxygen speciesmediated endoplasmic reticulum stress and mitochondrial dysfunction contribute to cirsimaritin-induced apoptosis in human gallbladder carcinoma GBC-SD cells[J]. Cancer Lett, 2010, 295(2): 252-259.
[37] Tan Z, Li M, Wu W, et al. NLK is a key regulator of proliferation and migration in gallbladder carcinoma cells[J]. Mol Cell Biochem, 2012, 369(1-2): 27-33.
[38] Wu XS, Shi LB, Li ML, et al. Evaluation of two inflammation-based prognostic scores in patients with resectable gallbladder carcinoma[J]. Ann Surg Oncol, 2014, 21(2): 449-457.
[39] Li M, Lu J, Zhang F, et al. Yes-associated protein 1 (YAP1) promotes human gallbladder tumor growth via activation of the AXL/MAPK pathway[J]. Cancer Lett, 2014, 355(2): 201-209.endprint