建筑施工中如何控制混凝土温升

2017-11-12 21:11贝洪强
农家科技下旬刊 2017年9期
关键词:建筑施工

贝洪强

摘 要: 大体积混凝土结构在降温阶段,由于降温和水分蒸发等原因产生收缩,再加上存在外约束不能自由变形而产生温度应力。因此,控制水泥水化热引起的温升,即减小了降温温差,这对降低温度应力、防止产生温度裂缝能起釜底抽薪的作用。下面对如何控制混凝土温升加以分析。

关键词:建筑施工;混凝土温升;分析的

一、选用中低热的水泥品种

泥凝土升温的热源是水泥水化热,选用中低热的水泥品种,可减少水化热,使混凝土减少升温。为此,施工大体积混凝土结构多用32.5级矿渣硅酸盐水泥。

二、利用混凝土的后期强度

试验数据证明,每立方米的混凝土水泥用量,每增减10kg,水泥水化热将使混凝土的温度相应升降1℃。因此,为控制混凝土温升,降低温度应力,减少产生温度裂缝的可能性,可根据结构实际承受荷载情况,对结构的刚度和强度进行复算。由于高层建筑与大型工业设施等的施工工期很长,其基础等大体积混凝土结构承受的设计荷载,要在较长时间之后才施加其上,所以只要能保证混凝土的强度在28d之后继续增长,且在预计的时间(45d、60d或90d)能达到或超过设计强度即可。利用混凝土后期强度,要专门进行混凝土配合比设计,并通过试验证明28d之后混凝土强度能继续增长。

三、掺加咸水剂本质素磺酸钙

本质素磺酸钙属阴离子表面活性剂,对水泥颗粒有明显的分散效應,并能使水的表面张力降低而引起加气作用。因此,在混凝土中掺入水泥重量0.25%的木钙减水剂(即木质宗磺酸钙),它不仅能使混凝土和易性有明显的改善,同时又减少了10%左右的拌合水,节约10%左右的水泥,从而降低了水化热。混凝土中掺入木钙减水剂后,7d的水化热略有增大,但可减少水泥用量10%左右,因此水化热还是降低的。同时可明显延迟水化热释放的速度,放热速度也较不掺者推迟。这样不但可减小温度应力.且可使初凝和终凝的时间相应延缓5—8h,可大大减少了在大体积混凝土施工过程中出现温度裂缝的可能性。

四、掺加粉煤灰外掺料

试验资料表明,在混凝土内掺入一定数量的粉煤灰,由于粉煤灰具有一定活性,不但可代替部分水泥,而且粉煤灰颗粒呈球形,具有“滚珠效应”而起润滑作用,能改善混凝土的汤塑性,并可增加泵送混凝土(大体积混凝土多用泵送施工)要求的0.315mm以下细粒的含量,改善混凝土可泵性,降低温凝土的水化热。另外根据大体积混凝土的强度特性,初期处于高温条件下,强度增长较快、较高,但后期强度就增长缓慢,这是由于高温条件下水化作用迅速,随着混凝土的龄期增长,水化作用慢慢停止的缘故。掺加粉煤灰后可改善混凝土的后期强度,但其早期抗拉强度及早期极限拉伸值均有少量降低。因此对早期抗裂要求较高的工程,粉煤灰掺入量应少一些,否则表面易出现细微裂缝。

五、粗细骨料选择

为了达到预定的要求,同时又要发挥水泥最有效的作用,粗骨料有一个最佳的最大粒径。对于土建工程的大体积混凝土,粗骨料的规格往往与结构物的配筋间距、模板形状以及混凝土浇筑工艺等因素有关。宜优先采用以自然连续级配的粗骨料配制混凝土。因为用连续级配粗骨料配制的混凝土具有较好的和易性、较少的用水量和水泥用量以及较高的抗压强度。在规格上可根据施工条件,尽量选用粒径较大、级配良好的石子。因为增大骨料粒径,可减少用水量,而使混凝土的收缩和泌水随之减少。同时亦可减少水泥用量,从而使水泥的水化热减小,最终降低了混凝土的温升。当然骨料粒径增大后,容易引起混凝土的离析,因此必须优化级配设计,施工时加强搅拌、浇筑和振捣等工作。粗骨料颗粒的形状对混凝土的和易性和用水量也有较大的影响。因此,粗骨料中的针、片状颗粒按重量计应不大于15%。

细骨料以采用中、粗砂为宜。根据有关试验资料表明,当采用细度模数为2.79、平均粒径为0.38的中、粗砂,它比采用细度模数为2.12、平均粒径为0.336的细砂,每立方米混凝土可减少用水量20—25kg,水泥用量可相应减少28—35kg。这样就降低了混凝土的温升和减小了混凝土的收缩。

泵送混凝土的输送管道除直管外,还有锥形管、弯管和软管等。当混凝土通过锥形管和弯管时,混凝土颗粒间的相对位置就会发生变化,此时如混凝土的砂浆量不足,便会产生堵管现象。所以在级配设计时适当提高一些砂率是完全必要的,但是砂率过大,将对混凝土的强度产生不利影响。因此在满足可泵性的前提下,应尽可能使砂率降低。

另外,砂、石的含泥量必须严格控制。根据国内经验,砂、石的含泥量超过规定,不仅会增加混凝土的收缩,同时也会引起混凝土抗拉强度的降低,对混凝土的抗裂是十分不利的。因此在大体积混凝土施工中,建议将石子的含泥量控制在小于1%,砂的含泥量控制在小于2%。

六、结论

关于浇筑温度的控制,我国有些规范提出不得超过25℃,否则必须采取特殊的技术措施的规定。美国AcI施工手册中规定不得超过32℃;日本土木学会施工规程中规定不得超过30℃;日本建筑学会钢筋混凝土施工规程中规定不得超过35℃。在土建工程的大体积钢筋混凝土施工中,浇筑温度对结构物的内外温差影响不大,因此对主要受早期温度应力影响的结构物,没有必要对浇筑温度控制过严。但是考虑到温度过高会引起较大的干缩以及给混凝土的浇筑带来不利影响,适当限制浇筑温度是合理的。建议最高浇筑温度控制在40℃以下为宜,这就要求我们在常规施工情况下合理选择浇筑时间,完善浇筑工艺以及加强养护工作。

参考文献:

[1]梁寿兴.高层建筑控制混凝土温升施工技术[J].科技创新导报, 2008 (22) :47.

[2] 葛建华 , 高雪平.大体积混凝土施工的温升控制措施[J].交通科技, 2002 (5) :9-11.

[3] 邹建文 , 徐伟.超大体积承台混凝土温升形变影响因素应用研究[J].结构工程师, 2009 , 25 (6) :133-137.endprint

猜你喜欢
建筑施工
建筑施工及加强建筑施工安全管理
土木工程建筑施工技术创新
绿色建筑施工管理在建筑施工中的应用
建筑施工管理工作探讨
土木工程建筑施工技术创新初探
建筑施工管理及在建筑施工管理中的应用
土木工程建筑施工技术与创新思考
建筑施工项目管理
建筑施工技术探讨
土木工程建筑施工技术创新探究