王经纬 王艳玲,† 姚 怡 徐江兵 樊剑波
(1 南京信息工程大学应用气象学院生态气象环境研究中心,南京 210044)
(2 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008)
长期施肥对旱地红壤团聚体磷素固持与释放能力的影响*
王经纬1王艳玲1,2†姚 怡1徐江兵1樊剑波2
(1 南京信息工程大学应用气象学院生态气象环境研究中心,南京 210044)
(2 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008)
在中国科学院红壤生态试验站26年的旱地红壤长期肥料定位试验中,选取无机肥试验区的NPK、NK处理,有机无机肥配施试验区的对照(CK)、CK + 稻秆(RS)、CK + 花生秸秆还田(PS)、CK +绿肥(FR)及CK + 猪厩肥(PM)等7个肥料处理土壤,采用湿筛法逐级提取并得到粒级依次为> 2 mm、2~1 mm、 1~0.25 mm与0.25~0.053 mm的团聚体土壤样品;通过室内分析获得了土壤及各粒级团聚体的全磷(TP)、有效磷(Available P)、水溶性磷(CaCl2-P)、土壤磷素吸持指数(PSI)及土壤磷素饱和度(DPS)等指标值,并探讨了上述测定指标间的相关关系。结果表明:长期施用磷肥可有效保持旱地红壤的供磷水平,配施猪厩肥可显著增加旱地红壤及大小团聚体的TP、有效磷及CaCl2-P含量、降低土壤PSI并显著增大旱地红壤DPS,加大了旱地红壤磷素的流失风险;随着土壤中> 1 mm粒级团聚体数量的增多,旱地红壤磷素储量显著增加,磷素固持能力显著下降,土壤磷释放潜能随之增大。由DPS、有效磷及CaCl2-P的分段线性拟合方程可以推断得出,当旱地红壤中有效磷为168~260 mg kg-1时或DPS< 28%,土壤磷素具有潜在流失风险;当有效磷≥260 mg kg-1或DPS≥28%,土壤磷素具有极高的流失风险,应立即停止施用磷肥尤其是有机磷肥,并重新调整施肥方案,以避免土壤磷素流失及其对水体环境的污染。
旱地红壤;长期施肥;团聚体;磷素饱和度(DPS);土壤磷素吸持指数(PSI)
提高红壤磷素肥力及磷素的当季利用率一直是红壤区农业生产中主要的障碍问题。研究红壤磷素的固持与释放能力,对高效利用红壤磷素资源具有重要意义。通常认为被铁铝氧化物含量丰富的红壤吸附固定的磷素不易释放或移动[1]。然而,长期大量施用畜禽粪肥极易增加土壤中水溶性或胶体态磷的数量,进而导致土壤磷流失进入水体、污染环境[2-3],尤其是在降雨量丰沛的红壤区,土壤磷素的大量累积及因其流失所引起的水体污染、资源浪费等问题日益严重[4]。土壤磷素流失不仅导致了磷素资源的浪费,而且威胁了生态环境安全[5-6]。
因土壤磷素流失、水体富营养化等环境问题日益突出,如何简单快速、准确有效地评估土壤磷素的流失潜能及环境风险显得尤为重要[7]。因此,用于估算土壤磷素有效供应能力的土壤全磷(TP)、有效磷(Available P)及水溶性磷(CaCl2-P)等土壤测试磷指标还被用来预测土壤磷素流失的环境风险[8]。Hesketh等[9]的研究中以0.01mol L-1CaCl2溶液作为浸提剂从土壤提取得到的磷浓度(CaCl2-P)与径流水或淋溶水中生物可直接利用的磷呈显著正相关关系,即当土壤有效磷(Olsen-P)含量>60 mg kg-1,径流水中CaCl2-P > 0.01 mg L-1时,土壤磷素流失风险加大或已经进入水体污染环境。然而,由于不同土壤的物理化学性质差异较大,仅由土壤测试磷指标来表征土壤磷素的流失风险极易产生错误的评估结果[10]。因此,为了更好的预测土壤磷素的流失风险,土壤磷素吸持指数(Phosphate sorption index,PSI)[11]、磷素饱和度(Degree of phosphate saturation,DPS)[10]先后被提出并广泛应用。PSI用以表征土壤固相磷向液相释放的可能性大小[11],且与土壤最大吸磷量(Xm)呈显著线性正相关关系[12]。DPS既可表征土壤已经吸附的磷量,又可以预测土壤磷素的流失潜能[13]。
土壤团聚体的粒级大小及其分布比例是调控土壤水肥供应与养分存储的重要物质基础[14],施肥又是影响土壤团聚结构及其养分供应效能的重要措施[15]。因此,本文将以长期施肥的旱地红壤(1988—2014年)为研究材料,以不同粒级的团聚体为载体,通过分析土壤TP、有效磷、CaCl2-P、DPS及PSI等指标,探讨长期施肥影响下的红壤团聚体对磷素的存储与供应、固定与释放的作用差异及各指标间的相关关系。研究结果将为红壤磷素肥力的提高、土壤磷素供应效率评估及及红壤区磷素资源的环境友好与高效管理提供理论依据。
长期肥料定位试验于1988年建在江西省鹰潭农田生态系统国家野外研究站内(28°04′~28°37′N,116°41′~117°09′E)。1995年以前进行花生和油菜轮作,后改为一季花生,冬季休田。供试土壤为第四纪红黏土发育的典型红壤。有机无机肥配施试验区设:对照(CK)、CK+稻秆(RS)、CK+花生秸秆本田还田(PS)、CK+鲜萝卜菜(FR)、CK+猪厩肥(PM)共5个处理,小区面积34.6 m2;无机肥试验区设:NPK、NK、NP、PK、NPKCa、NPKCaS共6个处理(Ca代表施用石膏,S代表施用微量元素),每个小区肥料用量见表1。小区面积35.1 m2,每个施肥处理重复3次,随机排列。
土壤样品来自于NPK、NK及CK、PS、RS、FR、PM共7个小区的耕层(0~15 cm)土壤。2014年秋季(花生收获2个月后),在每个小区内按“S”形用钢质土钻采集15点耕层样品,并放于硬质密封盒中,带回室内风干。
表1 长期定位试验地各施肥小区肥料总用量(1988—2014年)Table 1 Total amounts of fertilizers applied in each treatment of the long-term field experiment from 1988 to 2014(kg hm-2)
在土壤样品风干过程中,沿土壤自然结构面用手轻轻剥成直径约10~12 mm大小的样块,风干后,称取土壤样品20 g,放入套筛(从上至下筛孔直径依次为2 mm、1 mm、0.25 mm和0.053 mm)最上面的筛子上,然后将套筛放入DX-100团聚体分析仪中,加水至淹没最上面筛子中土壤2 cm,浸泡10 min后,打开仪器开关,在筛分频率为60次/min条件下,上下筛分30 min后,取出套筛,至上而下地将留在各筛子上的土壤颗粒转移至已知重量的铝盒中,放于40℃的烘箱中烘干、称重,收集得到粒级为> 2 mm、2~1 mm、1~0.25 mm与0.25~0.053 mm的团聚体样本。
称取1.00 g过2 mm筛的风干土壤样品,置于50 ml离心管中,加入20 ml磷浓度为75 mg L-1的稀电解质溶液(磷的加入量相当于1.5 g kg-1土)0.01 mol L-1CaCl2溶液,同时加入数滴甲苯防止微生物活动[11]。将离心管加盖后,于25℃±2℃的室温下,用往复振荡仪振荡18h后,离心、过滤,用钼蓝比色法测定滤液中磷的量。PSI(mg kg-1)的计算公式如下:
式中,X为土壤磷吸附量(P mg kg-1soil);C为平衡溶液中磷浓度(P mg L-1)。
称取过2 mm筛的风干土壤样品1.00 g,置于100 ml三角瓶中,加入50 ml 0.2 mol L-1的草酸铵提取液(pH=3.0),用橡胶塞将瓶口塞紧后、装入里红外黑布袋防止光化学反应,在室温(25℃±2℃)条件下振荡2 h后,离心、过0.45 μm滤膜。使用电感耦合等离子光谱仪(Inductive Coupled Plasma Emission Spectrometer,ICP)测定提取液中的铁、铝及磷的含量。DPS(%)的计算公式如下:
式中,Pox为草酸铵提取液中的磷浓度(mg L-1);Feox、Alox为草酸铵提取液中的铁、铝浓度(mg L-1);31为磷元素的分子量;56为铁元素的分子量;27为铝元素的分子量;0.5为调整系数[16]。
土壤全磷TP采用硫酸-高氯酸消煮,钼蓝比色法测定;有效磷采用盐酸氟化铵法(Bray-I)测定;CaCl2-P采用0.01 mol L-1的CaCl2溶液浸提,液土比为10∶1,用ICP(电感耦合等离子光谱仪)测定溶液中的磷含量。有机质(OM)采用高温外热重铬酸钾氧化-容量法测定;pH采用电位法测定,液土比为2.5∶1。上述分析项目具体操作步骤详见文献[17]。供试土壤基本理化性质见表2。
表2 供试土壤基本理化性质Table 2 Basic physical and chemical properties of the red soil in the experiment
式中,Er为土壤磷素富集系数,TPaggregate为某一粒级团聚体全磷含量(g kg-1),TPsoil为对应土壤的全磷含量(g kg-1)。将1作为判断某一粒级团聚体是否具有磷素富集作用的临界值,当Er<1时,没有磷素富集作用;Er>1时,具有磷素富集作用;Er值越大,某一粒级团聚体对磷素的富集作用就越强[18]。
数据统计分析采用Excel与SPSS 22软件;绘图采用Origin 2015软件。
土壤TP含量是评价土壤磷素储存能力大小的一个重要指标,长期不施磷肥的NK处理土壤TP仅0.27 g kg-1,与NPK处理相比显著降低了58%(表2)。且NK处理中各粒级团聚体TP含量显著低于NPK处理同等粒级的40%~54%,但大小粒级团聚体间的TP含量差异不显著(图1)。与CK处理相比,仅PM处理可使土壤TP在施化肥的基础上显著增加164%,大小粒级团聚体的TP含量增加显著且呈现出随着团聚体粒级减小逐渐降低的趋势(图1)。
图1 长期施肥对旱地红壤各粒级团聚体内全磷含量的影响Fig. 1 Effect of long-term fertilization on content of total P in aggregates in the upland red soil relative to particle size
无机肥区,NPK处理中仅> 2 mm粒级团聚体对磷素有显著的富集作用;而NK处理中各粒级团聚体均表现出磷素的富集作用(表3)。有机无机肥配施区,所有肥料处理的大小粒级团聚体(PM处理中0.25~0.053 mm的粒级除外)均对磷素有显著的富集作用,且大团聚体(> 0.25 mm)的富磷作用显著高于0.25~0.053 mm粒级微团聚体(表3)。
长期不施磷肥的NK处理土壤有效磷仅6.4 mg kg-1,显著低于NPK处理(表2);且各粒级团聚体中有效磷均显著低于NPK处理中同等粒级团聚体的含量的80%~88%(图2)。与CK处理相比,PM处理可使旱地红壤中有效磷显著增加9倍,其他处理影响不显著(表2);PM处理各粒级间有效磷含量大小依次为:2~1 mm >(> 2 mm)>1~0.25 mm > 0.25~0.053 mm,且依次增加11.3倍、13.8倍、11.7倍与 9.2倍,粒级间差异显著(图2)。
长期不施磷肥的NK处理土壤DPS仅为2.1%,均衡施肥的NPK处理土壤DPS为9.6%,约为NK处理的5倍(表2);NPK处理中各粒级团聚体的DPS大小依次为:(> 2 mm)> 0.25~0.053 mm > 1~0.25 mm > 2~1 mm,且1~0.25 mm与0.25~0.053 mm间的差异不显著(图3)。与CK处理相比,仅PM处理可使土壤DPS显著提高了396%,高达49%,且各粒级团聚体的DPS均显著增加了361%~427%,但粒级间的DPS变化差异不显著(图3)。
表3 长期施肥对旱地红壤各粒级团聚体磷素富集系数的影响Table 3 Effects of long-term fertilization on P enrichment factor of aggregates of various particle size fractions in the upland red soil
图2 长期施肥对旱地红壤各粒级团聚体有效磷含量的影响Fig. 2 Effect of long-term fertilization on available P in aggregates in the upland red soil relative to particle size
与NPK处理相比,NK处理PSI可显著提高2.5倍,高达2093 mg kg-1(表2);且各粒级团聚体的PSI增加显著,大小依次为:2~1 mm > 1~0.25 mm >(> 2 mm)> 0.25~0.053 mm(图4)。与CK处理相比,RS与PM处理可显著降低旱地红壤PSI15%与55%,PS与FR处理影响差异不显著(表2);只有PM处理土壤中各粒级团聚体的PSI显著降低了35%~48%,但各粒级间的PSI变化差异不显著(图4);PS与FR处理只对0.25~0.053 mm与> 2 mm粒级团聚体的PSI有显著影响(图4)。
图3 长期施肥对旱地红壤各粒级团聚体磷素饱和度的影响Fig. 3 Effect of long-term fertilization on degree of phosphorus saturation(DPS)in aggregates in the upland red soil relative to particle size
图4 长期施肥对旱地红壤团聚体磷素吸持指数的影响Fig. 4 Effect of long-term fertilization on phosphate sorption index(PSI)of aggregate in the upland red soil relative to particle size
相关分析表明(表4),随着旱地红壤中>2 mm与2~1 mm粒级团聚体比例的增多,土壤TP与有效磷分别呈显著(p<0.05)与极显著(p< 0.01)增大趋势(表4);但随着0.25~0.053 mm粒级团聚体数量的增多,土壤有效磷呈显著降低趋势(r= - 0.362,p< 0.05)。> 2 mm与2~1 mm粒级团聚体数量与CaCl2-P分别呈显著(r= 0.430,p< 0.05)与极显著(r= 0.459,p< 0.01)正相关关系,其他粒级团聚体数量与CaCl2-P均呈负相关关系,其中0.25~0.053 mm粒级与CaCl2-P的相关性显著(r= - 0.387,p<0.05)。土壤TP含量越大,有效磷与CaCl2-P的数量也越多(r= 0.937,0.903;p< 0.01),这也是导致有效磷、CaCl2-P与> 1 mm团聚体数量呈现显著正相关关系的主要原因(表4)。
由表4可以看出随着土壤TP数量的增加,土壤DPS显著增加(r= 0.939,p< 0.01)、PSI却显著降低(r= - 0.583,p< 0.01)。土壤DPS分别与> 1 mm与1~0.053 mm粒级团聚体数量呈极显著正相关关系(p< 0.01)与显著负相关系(p<0.05),而PSI与上面两个粒级团聚体数量的相关关系正好相反(表4)。
表4 长期施肥的旱地红壤团聚体组成比例与土壤TP、有效磷、CaCl2-P、DPS及PSI的相关关系Table 4 Relationship of aggregate composition with TP,available P,CaCl2-P,DPS and PSI in the upland red soil under long-term fertilization
土壤团聚体是碳、氮、磷等养分赋存与转化的主要场所,其粒径大小与分布直接影响着土壤各种养分的供应效率[14]。长期施用磷肥可以显著提高旱地红壤中>1 mm粒级团聚体比例(数据未列出),促进旱地红壤中小粒级团聚体向>1 mm粒级团聚体转化。
长期施用磷肥及配施猪厩肥可以显著增加旱地红壤及各粒级团聚体内的TP含量(表2、图1),尤其是PM处理可显著增加各粒级团聚体磷的富集系数(Er),且随着团聚体粒级的减小,Er呈降低趋势(表3)。随着旱地红壤中0.25~0.053 mm粒级团聚体数量的增多,土壤TP及有效磷呈显著下降趋势(表4),这与王双磊等[19]的研究结果相似。长期施用磷肥或配施有机肥在提高旱地红壤磷素肥力、增加土壤磷素累积量的同时,也显著降低了旱地红壤的固磷能力、增大了土壤的磷素饱和度、增加了土壤磷素的流失潜能与流失风险;尤其是PM处理显著增加了土壤及各粒级团聚体内的TP、有效磷与CaCl2-P的含量(表2、图1、图2),显著降低了土壤PSI,土壤DPS显著增加了3倍~4倍,高达44%~53%(表2、图3),远远超过了土壤磷素流失的临界值(DPS≥28.6%)(图5)。
土壤磷素累积变化是一个缓慢的过程,只有长期大量施磷肥或不施磷肥才会导致土壤磷素累积量的变化[20]。本研究中,NK处理由于长期没有外源磷肥的输入且土壤磷素处于自然耗竭状态,所以土壤TP累积量最低;而平衡施用磷肥及RS、PS、FR处理均可有效保持旱地红壤的TP储量,但各处理间对土壤TP影响差异不显著,这主要是由于各种作物秸秆输入磷的总量差异不大所导致的(表1);而配施猪厩肥可以显著增加旱地红壤TP储量与有效磷供应量,主要是由于有机肥的施用量往往是依据作物对氮素的需求量而确定的,这样就导致了磷素的过量施用而富集在土壤中[21],此外,猪粪在腐解、矿化过程中可以释放大量有机酸,有机酸可以活土壤中积累态磷,进而提高土壤有效磷的数量[22]。
土壤PSI与DPS可以很好地反映土壤的固磷能力及土壤中磷素吸附点位的饱和程度[23],且DPS与径流水中磷的浓度呈显著正相关关系[24]。有研究发现,当DPS>25%时,径流水中磷的浓度出现变化“拐点”,即径流液中磷浓度随土壤DPS值的增大而急剧增加,因此,将DPS = 25%作为土壤磷素流失的临界值[24]。但土壤磷素流失的DPS临界值的确定受土壤性质的影响较大[25],也有研究将DPS为15%或20%~25%作为判定土壤磷素流失的临界值[26-27]。本研究发现随着旱地红壤DPS的增大,土壤有效磷与CaCl2-P均呈现出“缓慢增加”与“急剧增加”的两个分段过程(图5),当土壤DPS每增加1个单位时,“急剧增加”阶段内的土壤有效磷与CaCl2-P的增加量分别是“缓慢增加”阶段的2.9倍与14倍(图5)。由DPS、CaCl2-P及有效磷间的分段拟合方程可以计算得出各拟合曲线间的交点坐标为:DPS = 28.6%,CaCl2-P = 0.96 mg kg-1(相当于径流中CaCl2-P = 0.01 mg L-1)与有效磷=260 mg kg-1或168 mg kg-1(图5),由交点坐标值可以判断当旱地红壤有效磷为168 mg kg-1~260 mg kg-1或DPS< 28.6%时,土壤磷素存在潜在流失风险;当土壤有效磷≥260 mg kg-1或DPS≥28.6%时,土壤磷素具有极高的流失风险,应立即停止施磷或减少施磷量,尤其是要重新调整猪厩肥的配施比例并制定新的施肥方案,以避免因土壤磷素流失而导致的环境污染,并减少磷素资源的无效使用与浪费。
图5 长期施肥的旱地红壤DPS、有效磷与CaCl2-P的相关关系分段拟合Fig. 5 Fitting of relationships between DPS,available P and CaCl2-P in the upland red soil under long-term fertilization
长期施用磷肥可以有效保持旱地红壤供磷水平;配施猪厩肥可显著增加旱地红壤及大小团聚体的TP、有效磷与CaCl2-P含量、降低土壤PSI、增大土壤DPS,提高土壤磷素的流失风险。当旱地红壤中有效磷为168~260 mg kg-1或DPS <28.6%时,土壤磷素具有潜在流失风险;当有效磷≥260 mg kg-1或DPS≥28.6%时,土壤磷素具有极高的流失风险,应立即停止磷肥尤其是有机磷肥的施用,并重新调整施肥方案,以避免土壤磷素流失及其对水体环境的污染。
[1] Lyngsie G,Penn C J,Hansen H C,et al. Phosphate sorption by three potential filter materials as assessed by isothermal titration calorimetry. Journal of Environmental Management,2014,143:26—33
[2] 赵牧秋,陈欣,史云峰.磷肥施用对红壤有效磷含量和易流失磷含量的影响.安徽农业科学,2012,40(6):3335—3338 Zhao M Q,Chen X,Shi Y F. Influence of phosphorus fertilizer application on available phosphorus and easyloss phosphorus content in red soil(In Chinese).Journal of Anhui Agricultural Sciences,2012,40(6):3335—3338
[3] 许小伟,樊剑波,陈晏,等. 有机无机肥配施对红壤旱地花生生理特性、产量及品质的影响. 土壤学报,2015,52(1):174—182 Xu X W,Fan J B,Chen Y,et al. Effect of manure combined with chemical fertilizer application on yield,kernel quality and physiological characteristics of peanut to red soil in subtropical China(In Chinese).Acta Pedologica Sinica,2015,52(1):174—182
[4] Crews T E,Brookes P C. Changes in soil phosphorus forms through time in perennial versus annual agroecosystems.Agriculture Ecosystems & Environment,2014,184(2):168—181
[5] Abdala DB,Da S I,Vergütz L,et al. Long-term manure application effects on phosphorus speciation,kinetics and distribution in highly weathered agricultural soils. Chemosphere,2014,119:504—514
[6] Campos M D,Antonangelo J A,Alleoni L R F.Phosphorus sorption index in humid tropical soils. Soil& Tillage Research,2016,156:110—118
[7] Sharpley A N,Kleinman P J,Flaten D N,et al. Critical source area management of agricultural phosphorus:Experiences,challenges and opportunities. Water Science & Technology,2011,64(4):945—952
[8] Mcdowell R W,Sharpley A N. Phosphorus losses in subsurface flow before and after manure application to intensively farmed land. Science of the Total Environment,2001,278(1/3):113—125
[9] Hesketh N,Brookes P C,Sharpley A N. Development of an indicator for risk of phosphorus leaching. Journal of Environmental Quality,2000,29(1):105—110
[10] Sharpley A N. Dependence of runoff phosphorus on extractable soil phosphorus. Journal of Environmental Quality,1995,24(5):920—926
[11] Bache B W,Williams E G. A phosphate sorption index for soils. Soil Science,1971,22(3):288—301
[12] Buczko U,Kuchenbuch R O. Phosphorus indices as riskassessmenttools in the USA and Europe-A review.Journal of Plant Nutritionand Soil Science,2007,170(4):445—460
[13] Kleinman P J,Sharpley A N,Moyer B G,et al. Effect of mineral and manure phosphorus sources on runoff phosphorus. Journal of Environmental Quality,2002,31(6):2026—2033
[14] 陈恩凤,关连珠,汪景宽,等. 土壤特征微团聚体的组成比例与肥力评价. 土壤学报,2001,38(1):49—53 Chen E F,Guan L Z,Wang J K,et al. Compositional proportion of soil characteristic microaggregates and soil fertility evaluation(In Chinese). Acta Pedologica Sinica,2001,38(1):49—53
[15] 张章. 不同施肥方式对红壤团聚体稳定性及层级结构的影响. 武汉:华中农业大学,2016 Zhang Z. The effect of different fertilization on red soil aggregate stability and hierarch structure(In Chinese).Wuhan:Huazhong Agricultural University,2016
[16] Breeuwsma A. Impact of manure on accumulation and leaching of phosphate in areas of intensive livestock farming//Steele K. Animal waste and the land-water interface. New York:CRC Press,1995
[17] 鲁如坤. 土壤农业化学分析方法. 北京:中国农业科技出版社,2000 Lu R K. Analytical methods for soil and agro-chemistry(In Chinese). Beijing:China Agricultural Science and Technology Press,2000
[18] Young R A,Onstad C A,Bosch D D,et al. AGNPS:A nonpoint source pollution model for evaluating agricultural watersheds.Journal of Soil and Water Conservation,1989,44(2):168—173
[19] 王双磊,刘艳慧,宋宪亮,等. 棉花秸秆还田对土壤团聚体有机碳及氮磷钾含量的影响. 应用生态学报,2016,27(12):3944—3952 Wang S L,Liu Y H,Song X L,et al. Effects of cotton straw returning on soil organic carbon,nitrogen,phosphorus and potassium contents insoil aggregates(In Chinese).Chinese Journal of Applied Ecology,2016,27(12):3944—3952
[20] Shen P,Xu M G,Zhang H M,et al. Long-term response of soil Olsen-P and organic C to thedepletion or addition of chemical and organic fertilizers. Catena,2014,118:20—27
[21] 马晓焉,刘明,李忠佩. 不同猪粪施用量下红壤水稻土表层水氮磷动态. 土壤,2015,47(2):289—296 Ma X Y,Liu M,Li Z P. Dynamics of N and P in surface water of paddy soil in subtropical China under different rates of swine manure application(In Chinese). Soils,2015,47(2):289—296
[22] 肖辉,潘洁,程文娟,等. 不同有机肥对设施土壤有效磷累积与淋溶的影响. 土壤通报,2012,43(5):1195—1200 Xiao H,Pan J,Cheng W J,et al. Effect of different organic manures on accumulation and leaching of Olsen-P in greenhouse soil(in Chinese). Chinese Journal of Soil Science,2012,43(5):1195—1200
[23] 席雪琴. 土壤磷素环境阈值与农学阈值研究. 陕西杨凌:西北农林科技大学,2015 Xi X Q. The critical value of soil P leave for crop and environmental safety in different soil types(In Chinese). Yangling,Shaanxi:Northwest A&F University,2015
[24] Leinweber P,Meissner R,Eckhardt K U,et al.Management effects on forms of phosphorus in soil and leaching losses. European Journal of Soil Science,1999,50(3):413—424
[25] 薛巧云. 农艺措施和环境条件对土壤磷素转化和淋失的影响及其机理研究. 杭州:浙江大学,2013 Xue Q Y. Effects of agronomic practices and environmental factors on soilphosphorus transformation and loss and correspondingmechanism(In Chinese).Hangzhou:Zhejiang University,2013
[26] Mcdowell R W,Sharpley A N. Approximating phosphorus release from soils to surface runoff and subsurface drainage. Journal of Environmental Quality,2001,30(2):508—520
[27] Mashal K,Aldegs Y S,Alqinna M,et al. Elucidation of phosphorous sorption by calcareous soils using principal component analysis. Chemistry and Ecology,2014,30(2):133—146
Effects of Long-term Fertilization on Phosphorus Retention and Release of Soil Aggregates in Upland Red Soils
WANG Jingwei1WANG Yanling1,2†YAO Yi1XU Jiangbing1FAN Jianbo2
(1International Center for Ecology,Meteorology and Environment,College of Applied Meteorology,Nanjing University of Information Sciences and Technology,Nanjing210044,China)
(2State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing210008,China)
【Objective】Soil aggregates in the soil are important media capable of storing,transforming and activating soil phosphorus(P),and distribution and stability of soil aggregates is influenced by longterm fertilization. However,little has been reported on release pattern and adsorption capacity of P across various soil aggregates and their relationships in red soils as affected by long-term fertilization,which are essential to sustainable management of P sources in agricultural fields. The objectives of this study are to:(i)investigate changes in TP,available P,CaCl2-P,PSI and DPS,in soil aggregates of different particlesize fractions in a red soil under long-term fertilization;(ii)to explore relationships between CaCl2-P,available P,DPS;and(iii)to study how DPS andAvailable P affect P loss potential.【Method】A longterm fertilization experiment was established in 1988 and soil samples were collected from the 7 fertilization treatments,designed in the experiment as follows:NPK,NK,Control(CK),CK + peanut straw(PS),CK + rice straw(RS),CK + fresh radish(FR)and CK + pig manure(PM). The soil samples were fractionated,using the wet sieving method,into aggregates of different particle sizes(> 2.0 mm,2.0~1.0 mm,1.0~0.25 mm and 0.25~0.053 mm). Then the various fractions of aggregateswere analyzed for total P(TP),available P,CaCl2-P,P sorption index(PSI)and degree of P saturation(DPS)and relationships between the parameters.【Result】Results show that Treatment NK was the lowest in TP,and DPS but the highest in PSI in all the aggregates,regardless of particle size fraction in the red soil. Compared with Treatment CK,TreatmentsPS,RS and FR were quite similar in effect on soil TP,PSI,Available P and DPS;but Treatment PM significantlydecreased soil P retention capacity with the highest TP and lowest PSI,and increased P release or loss potential in all the fractions of aggregates with the highest DPS,Available P and CaCl2-P. All the fertilization treatments,irrespective of their pattern,significantly increased P content in the > 2.0 mm fraction of aggregates with PEC(P enrichment coefficient)>1,but in Treatment NPK +PM soil P was more easily enriched in macro-aggregates(> 0.25 mm). 【Conclusion】Correlation analysis indicates that the P accumulated in the soil may be subject to potential loss to the safety of water quality when available P was range in 168~260 mg kg-1or DPS < 28% in the red soil;otherwise P loss would be significant. Therefore,new strategies of using both commercial fertilizers and animal manures must be established and implemented to prevent P build up in the soil and to minimize P loss to water bodies in the red soil region.
Upland red soil;Long-term fertilization;Aggregates;Degree of phosphate saturation(DPS);Soil Phosphate sorption index(PSI)
S158.5;S152.4
A
10.11766/trxb201703070088
* 国家自然科学基金项目(41571286,41571130053)和土壤与农业可持续发展国家重点实验室开放基金项目(Y412201419)资助 Supported by the National Natural Science Foundation of China(Nos. 41571286,41571130053)and the Open Research Fund Program of State Key Laboratory of Soil and Sustainable Agriculture(No.Y412201419)
† 通讯作者 Corresponding author,E-mail:ylwang@nuist.edu.cn;wangyl2117@hotmail.com
王经纬(1992—),男,江苏南京人,硕士,主要从事土壤生态学研究。E-mail:wjwabandonee@163.com
2017-03-07;
2017-05-06;优先数字出版日期(www.cnki.net):2017-06-19
(责任编辑:卢 萍)