钱佳赟, 万伟建, 钱丹蕾, 刘子玲, 庞 涛
(湖州师范学院 理学院, 浙江 湖州 313000)
KY3F10:Yb3+,Er3+纳米晶的上转换发光、温度传感及光致发热特性
钱佳赟, 万伟建, 钱丹蕾, 刘子玲, 庞 涛
(湖州师范学院 理学院, 浙江 湖州 313000)
在980 nm光波长的辐射下,四方相KY3F10:Yb3+,Er3+上转换纳米晶同时发射绿光和红光,色度计算表明主波长为575 nm,对应色调为绿黄色.通过拟合上转换发光的功率关系,证实Yb3+到Er3+的两步能量传递主导上转换发光.此外,通过研究绿光发射相对强度比与温度在300~500 K的关系,确定温度探测灵敏度的最大值约为0.002 4 K-1.基于这种温度传感特性,定量评价纳米晶的光热转换能力.结果发现,纳米晶在光加热器方面具有一定的应用潜力.
上转换发光; 光致发热; KY3F10:Yb3+,Er3+; 纳米晶
纳米粒子介导的肿瘤靶向光热治疗是指通过体外红外辐射使纳米加热器升温,进而加热消融肿瘤细胞的治疗方法[1].由于周围健康细胞的耐受温度比癌细胞高,这种治疗方法的侵害性非常小,被国际医药界称为“绿色疗法”.这种技术的关键在于高可靠性纳米加热器的开发.生物材料学家已开发了纳米金、硫化铜和碳纳米管等多种纳米加热器[2-4],但苛刻的制备条件、差的生物相容性和高的生物毒性限制了它们的临床应用.镧系掺杂的上转换纳米晶由于无光漂白、无自发荧光、生物毒性低、组织穿透深度大、制造成本低,非常适合于离体和活体生物研究[5-10].然而,当前的热点主要在于如何获得高效的上转换发光,很少关注光热效应.事实上,在上转换发光过程中总伴随热量的产生,因此上转换纳米晶可能是一种非常有前途的荧光自标识纳米加热器[11].
在众多的上转换发光用离子中,Er3+不但发射波长位于人眼的敏感波段,而且基于它的绿光强度比可以进行光热转换的非接触式定量评价[12].然而,由于其在980 nm的吸收截面小[13],Er3+单掺的低效率并不能满足实际应用的需要.为了获得高效的上转换发光,本文选取KY3F10作为基质晶格并引入Yb3+作为敏化剂,首先利用简单的水热工艺制备Yb3+、Er3+共掺KY3F10纳米晶,然后通过X射线衍射谱(XRD)、扫描电子显微镜(SEM)分析纳米晶的结构、形貌和尺寸,并基于上转换光谱研究纳米晶的上转换发光、温度传感及光致发热特性.
1.1KY3F10:Yb3+,Er3+纳米晶的合成
利用去离子水溶解适量的稀土硝酸盐晶体(99.99%)配置LnNO3(Ln=84 moL% Y,15 moL% Yb,1 moL% Er) 溶液.在磁力搅拌情况下将KF(分析纯)的水溶液迅速注入其中,并继续搅拌30 min.所得白色胶体置入50 mL反应釜并于200 ℃加热10 h.自然冷却到室温后,离心分离并用去离子水洗涤3遍,最后于40 ℃干燥过夜得到目标产物.
1.2表征
RINT2000 vertical goniometer型X射线衍射仪用于样品的结构分析.S-4800 型扫描电子显微镜用于样品的形貌和尺寸分析.F-4600荧光光谱仪用于检测样品的上转换光谱,所用激发源为外置的2W 980 nm光纤半导体激光器.自制的加热装置结合F-4600荧光光谱仪用于样品的温度传感特性研究.
2.1XRD分析与SEM观察
如图1所示,实验测量的结果与四方相KY3F10的标准数据(JCPDS No.27-0465)匹配良好.基于公式:
(a和c为晶格常数;h、k、l为晶面指数;d为晶面间距;θ为衍射角;k为衍射级数;λ为x射线波长),衍射角移向大角度,说明Yb3+(r=1.125 Å)和Er3+(r=1.144 Å)已经掺入KY3F10晶格,并占据Y3+(r=1.159 Å)格位[14].
在图2所示的SEM照片中随机选取100个粒子,发现纳米晶的最小颗粒尺寸为33 nm,最大颗粒尺寸为116 nm.将图1中对应(202)晶面的半峰宽B和衍射角θ带入谢乐公式:
估算纳米晶的晶粒尺寸约为27 nm.综合XRD和SEM的测量结果可知,所得产物是由单个小颗粒和两三个小颗粒团聚而成的大颗粒组成.
2.2上转换发光特性
进一步将X、Y、Z代入公式:
确定对应发射谱的色坐标为(0.440 1,0.465 3),在CIE 1931色度图上标记为F点,如图4所示.通过连接等能白点E和色点F并延长交光谱色轨迹线于M点,明确对应发射谱的主波长约为575 nm,色调为绿黄色.
2.3上转换发光机理
为了理解上转换发光的机理,分别计算2H11/2→4I15/2、4S3/2→4I15/2和4F9/2→4I15/2跃迁在不同泵浦功率下的积分强度,并利用公式[16]:
I=APn
(I为上转换发射的积分强度;A为拟合常数;P为泵浦激光功率;n为上转换发光的功率关系)进行拟合.根据Lei等[17]的报导,Er3+上转换发光的功率关系依赖于中间能级的衰减方式.当上转换过程优于线性衰减时,实验获得的n值将小于理论值.本文中Yb3+的掺杂浓度高达15 moL%.在这种情况下,Yb3+高效的敏化作用将以Er3+中间能级衰减以上转换过程为主,进而导致上转换发光的功率关系小于理论值.图5中所有上转换发射的功率关系均介于1~2,表明绿、红光发射皆为双光子过程.基于上述功率关系,上转换发光必定与Er3+的连续两步吸收和Yb3+到Er3+的连续两步能量传递有关.但考虑到Yb3+的吸收截面和掺杂浓度均远大于Er3+,推断Yb3+到Er3+的两步能量传递主导KY3F10:15%Yb3+,1%Er3+的上转换发光.
由图6可知,首先处于基态的Yb3+吸收980 nm光子跃迁到2F5/2能级,随后传递能量给临近的Er3+,使其由基态4I15/2跃迁到4I11/2能级,并经过多声子弛豫使部分处于4I11/2能级的Er3+衰减至4I13/2能级.位于4I11/2和4I13/2能级的Er3+再次接受Yb3+的能量传递作用,分别跃迁到2H11/2,4S3/2和4F9/2能级,最后辐射跃迁返回基态产生绿、红光发射.由于4S3/2到4F9/2的能隙与4I11/2和4I13/2之间的能隙大小相近,红光发射能级4F9/2还有另一条布居通道,即4S3/2到4F9/2的多声子弛豫.本文中红光强于绿光,表明上述多声子弛豫几率较大,其原因可能与纳米晶的表面态有关[18].
2.4光学温度传感特性
图7给出了KY3F10:15%Yb3+,1%Er3+纳米晶在不同温度下的绿光发射相对强度比.随着温度的升高,绿光发射的相对强度比呈单调递增的变化.利用公式[19]:
IH/IS=Cexp(-ΔE/kT)
(C为常数;ΔE为2H11/2和4S3/2能级的能隙;k为波尔兹曼常数;T为绝对温度),对所有数据进行拟合,结果显示实验测量结果与拟合结果的吻合度很好,表明该材料可用于光学温度测量研究.通过对图7中的拟合函数进行求导,得到相对灵敏度函数[20]:
令S(T)的一阶导数为零,推知Tmax=554.98 K,Smax=0.002 4 K-1.
2.5光致发热特性
图8给出了KY3F10:15%Yb3+,1%Er3+纳米晶在不同泵浦功率密度下的绿光相对强度比.如图8所示,随着泵浦功率的增加,绿光发射的相对强度比逐渐增强.基于公式:
IH/IS=4.88·exp(-1 109.95/T),
得到的样品温度也随着泵浦功率的增大单调递增.当泵浦功率密度由0.876 W/cm2增加到1.768 W/cm2时,样品温度由470.75 K提升到591.94 K,具有良好的光热转换能力[11,21],说明KY3F10:15%Yb3+,1%Er3+纳米晶是一种潜在的荧光自标识纳米加热器.
利用水热工艺制备了四方相KY3F10:Yb3+,Er3+上转换纳米晶.在980 nm光波长辐射下,该纳米晶同时发射绿光和红光,对应的主波长约为575 nm,色调为绿黄色.通过研究上转换发光的功率关系,确定Yb3+到Er3+的两步能量传递主导Er3+的上转换发光.光学温度传感特性的研究表明,KY3F10: Yb3+,Er3+上转换纳米晶可用于非接触的光学温度传感技术,最大相对灵敏度约为0.002 4 K-1.此外,光热转换性质的定量研究结果显示,KY3F10:15%Yb3+,1%Er3+上转换纳米晶是一种良好的荧光自标识纳米加热器.
[1] ZHOU Z J,WANG Y T,YAN Y,et al.Dendrimer-templated ultrasmall and multifunctional photothermal agents for efficient tumor ablation[J].Acs Nano,2016,10:4 863-4 872.
[2] LIN Y B,LU W,HUANG Q,et al.Copper sulfide nanoparticles for photothermal ablation of tumor cells[J].Nanomedicine,2010,5:1 161-1 171.
[3] KANG B,MACKEY M A,EI-Sayed M A.Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis[J].J Am Chem Soc,2010,132:1 517-1 519.
[4] BUEKE A,DING X F,SINGH R,et al.Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation[J].P Natl Acad Sci USA,2009,106:12 897-12 902.
[5] HU Y L,WU B Y,JIN Q,et al.Facile synthesis of 5 nm NaYF4:Yb/Er nanoparticles for targeted upconversion imaging of cancer cells[J].Talanta,2016,152:504-512.
[6] ZHANG Y H,HUANG L,LIU X G.Unraveling epitaxial habits in the NaLnF4system for color multiplexing at the single-particle level[J].Angew Chem,2016,128:5 812-5 816.
[7] HAN S Y,DENG R R,XIE X J,et al.Enhancing luminescence in lanthanide-doped upconversion nanoparticles[J].Angew Chem Int Edit,2014,53:11 702-11 715.
[8] CHEN B,SUN T Y,QIAO X S,et al.Directional light emission in a single NaYF4microcrystal via photon upconversion[J].Adv Opt Mater,2015,3:1 577-1 581.
[9] ZHAO J W,SUN Y J,KONG X G,et al.Controlled synthesis,formation mechanism,and great enhancement of red upconversion luminescence of NaYF4:Yb,Er nanocrystals/submicroplates at low doping level[J].J Phys Chem B,2008,112:15 666-15 672.
[10] HU H,YU M X,LI F Y,et al.Facile epoxidation strategy for producing amphiphilic upconverting rare-earth nanophosphors as biological labels[J].Chem Mater,2008,20:7 003-7 009.
[11] SUO H,GUO C F,YANG Z,et al.Thermometric and optical heating bi-functional properties of upconversion phosphor Ba5Gd8Zn4O21:Yb3+/Tm3+[J].J Mater Chem C,2015,3:7 379-7 385.
[12] PANG T,LU W H.The influence of thermal effect induced by Yb3+sensitization on color regulation in Gd2O3:Yb3+,Er3+upconversion phosphors[J].Ceram Int,2017,43:1 061-1 065.
[13] GEUSIC J E,OSTERMAYER F W,MARCOS H M,et al.Efficiency of red, green, and blue infrared-to-visible conversion sources[J].J Appl Phys,1971,42:1 958-1 960.
[14] PANG T,CAO W H,XING M M,et al.Design and achieving mechanism of upcovnersion white emission based on Yb3+/Tm3+/Er3+tri-doped KY3F10nanocrystals[J].Opt Mater,2011,33:485-489.
[15] WANG N Q,ZHAO X,LI C M,et al.Upconversion and color tenability in Tm3+/Ho3+/Yb3+doped low phonon energy bismuth tellurite glasses[J]. J Lumin,2010,130:1 044-1 047.
[16] PANG T,LU W H,SHEN W J.Chromaticity modulation of upconversion luminescence in CaSnO3:Yb3+,Er3+,Li+phosphors through Yb3+concentration, pumping power and temperature[J].Physica B,2016,502:11-15.
[17] LEI Y Q,SONG H W,YANG L M.Upconversion luminescence, intensity saturation effect, and thermal effect in Gd2O3:Er3+,Yb3+nanowires[J].J Chem Phys,2005,123:174 710-174 714.
[18] XING M M,CAO W H,ZHONG H Y,et al.Synthesis and upconversion luminescence properties of monodisperse Y2O3:Yb,Ho spherical particles[J].J Alloy Compd,2011,509:5 725-5 730.
[19] ZHENG H,CHEN B J,YU H Q,et al.Rod-shaped NaY(MoO4)2:Sm3+/Yb3+nanoheaters for photothermal conversion: influence of doping concentration and excitation power density[J].Sensor Actuat B -Chem,2016,234:286-293.
[20] LI X P,WANG X,ZHONG H,et al.Effects of Er3+concentration on down-/up-conversion luminescence and temperature sensing properties in NaGdTiO4:Er3+/Yb3+phosphors[J].Ceram Int,2016,42:14 710-14 715.
[21] DU P,LUO L H,PARK H K,et al.Citric-assisted sol-gel based Er3+/Yb3+-codoped Na0.5Gd0.5MoO4: a novel highly-efficient infrared-to-visible upcovnersion material for optical temperature sensors and optical heaters[J].Chem Eng J,2016,306:840-848.
Upconversionluminescence,TemperatureSensingandOpticalHeatingPropertiesofKY3F10:Yb3+,Er3+Nanocrystals
QIAN Jiayun, WAN Weijian, QIAN Danlei, LIU Ziling, PANG Tao
(School of Science, Huzhou University, Huzhou 313000, China)
Under 980 nm excitation, the tetragonal KY3F10:Yb3+,Er3+upconversion nanocrystals produce the green and red emissions. The results of chromaticity calculation reveal that the main wavelength of emission spectra is calculated to be about 575 nm with greenish yellow tone. The power dependence of upconversion emission indicates that the energy transfer from Yb3+to Er3+dominates the upconversion luminescence of Er3+. In addition, the relative intensity ratio of two green upconversion emissions is investigated as a function of temperature in the range of 300~500 K. The maximum sensitivity is determined to be around 0.002 4 K-1. Based on the temperature sensing properties, the optical heating ability is quantificationally evaluated. As a result, it is found that the KY3F10:Yb3+,Er3+upconversion nanocrystals may have potential applications in optical heaters.
upconversion luminescence; optical heating; KY3F10:Yb3+,Er3+; nanocrystals
2017-05-16
湖州师范学院科研项目(2016XJXM23);湖州师范学院求真学院“大学生创新创业科研训练”项目(2017-29)和湖州师范学院专业建设经费资助项目.
庞涛,讲师,研究方向:稀土发光及应用.E-mail:tpang@126.com
O482.31
A
1009-1734(2017)08-0015-07
[责任编辑高俊娥]