靳开川 何金环
摘要:油菜素内酯(brassinosteroid,BR)在植物生长发育过程中起着非常重要的调节作用。近几年,研究人员结合遗传学、基因与蛋白质组学、细胞生物学等多学科方法和手段,使油菜素内酯的研究取得了显著进展。介绍油菜素内酯在植物的抗逆性(干旱、高盐、高温、低温、重金属)过程中的作用及信号转导机制等,以期为植物分子育种提供借鉴。
关键词:植物;油菜素内酯;抗逆;信号转导;机制;调节作用
中图分类号: Q945.78文献标志码: A
文章编号:1002-1302(2017)14-0004-04
油菜素内酯(brassinosteroid,BR)是一种类固醇类植物激素,与其他植物激素协同作用参与植物的生长发育过程,如细胞的伸长与分裂、叶片衰老、微管分化、开花、光形态建成等生长发育过程,而且在植物抗逆方面也具有重要的作用。目前,在许多物种(如拟南芥、水稻、番茄、大麦、玉米等)中,都鉴定到了BR相关的突变体,并克隆得到相关的基因,通过研究,不仅了解了植物中BR的合成、修饰与信号转导的分子途径,而且还发现其在植物抗逆方面也具有重要的作用[1]。本文综述了植物中BR在植物抗逆中的作用(干旱、低温、高温等)及信号转导的分子机制,为农作物育种研究提供理论依据。
1BR在植物抗逆中的作用
1.1干旱胁迫
干旱可降低植物中的水含量与叶片的水势,导致气孔关闭,影响植物生长,甚至可导致植物死亡。但是在菜用大豆中预先施加24-表油菜素内酯(24-epibrassinolide,EBL)或 28-高油菜素内酯(28-homobrassinolide,HBL)能够提高根的生长能力、玉米素的含量、固氮酶的活性,并能够减缓干旱诱导的相关参数的降低[2]。把生长在含有1 μmol/L EBL培养基上的拟南芥或油菜的幼苗转移到沙子上,然后进行干旱处理 96 h(拟南芥)或60 h(油菜),结果表明,EBL处理能够增强2种幼苗在干旱条件下的成活率,EBL能够诱导干旱响应相关基因表达的上调,进一步说明EBL在植物抗旱过程中起重要作用[3]。在干旱条件下,EBL还能够诱导植物中抗氧化物质含量的升高,从而促进植物生长[4]。在干旱条件下,BR能够提高大豆光合效率、细胞水势、可溶性糖与脯氨酸的含量、过氧化物酶(POD)与超氧化物歧化酶(SOD)的活性,BR还能够降低丙二醛的含量、叶片的电渗透率,促进植物生长[5]。在芥菜的研究中还表明,HBL和干旱胁迫都能够提高过氧化氢酶(CAT)、POD、SOD的活性以及脯氨酸的含量;在干旱条件下,BR能够促进芥菜的生长[6]。但是,BR提高植物抗旱能力的分子作用机制还需要进一步研究。
1.2高鹽胁迫
高盐胁迫影响植物的生长与发育,是一个主要的环境胁迫因子,可导致渗透胁迫、离子毒害,甚至影响植物对营养元素的吸收与转运过程[7]。在高盐胁迫下,脯氨酸作为渗透调节物质或一个信号分子影响植物对逆境胁迫的反应过程,其积累依赖于1-吡咯啉-5-羧酸合成酶(P5CS)和脯氨酸脱氢酶(PDH)的活性,前者是脯氨酸合成过程中的一个限速酶,后者催化脯氨酸的降解[8]。研究表明,在盐胁迫下,EBL能够促进水稻(cv.IR-28)幼苗的生长,缓解质膜受到的损伤,降低脯氨酸的积累,提高抗坏血酸过氧化物酶(aseorbateperoxidase,APX)的活性[9]。在鹰嘴豆与绿豆中的研究表明,BRs能够促进脯氨酸的积累,提高抗氧化酶的活性[10]。EBL能够缓解高盐胁迫对茄子生长与小麦产量的抑制[11-12]。
1.3高温胁迫
[CM(24]高温能够对葡萄的叶肉细胞造成伤害,增加质膜透[CM)][LM]性[13]。在高温胁迫下,EBL能够诱导线粒体热激蛋白(MT-sHSP)的积累及光合效率的提高,进而提高番茄的抗性[14]。对番茄的研究表明,在高温胁迫下,EBL能够提高SOD的活性[15],保护光合系统中酶的活性,提高光合效率[16]。在拟南芥中的研究表明,EBL能够提高植物对高温胁迫的抗性,拟南芥幼苗在有或者没有EBL的情况下,43 ℃分别处理1、2、3、4 h后,移到22 ℃恢复7 h,发现高温胁迫2 h就可以让拟南芥幼苗的叶片白化,而在EBL处理下的拟南芥幼苗在高温处理4 h后才会出现叶片的白化现象[17]。
1.4低温胁迫
低温是一个主要的环境胁迫因子,其可限制物种的分布与作物的产量[18]。低温胁迫通过影响电子传递、碳同化及二氧化碳的吸收来降低光合效率,还可以导致植物中糖分的积累、质膜的过氧化以及细胞的脱水[19]。研究表明,EBL能够提高17种低温胁迫相关蛋白的表达量,提高绿豆对低温胁迫的抗性[20],在油菜与拟南芥中也得到了验证[17],EBL还能够减小低温诱导的质膜渗透性的增加幅度,提高叶片中色素的含量[21]。
1.5重金属胁迫
BRs能够通过增加外排的方式,减少植物对重金属与放射性元素的吸收[22]。镉是植物生长发育所必需的微量元素,当土壤中的镉含量过高时会对植物造成毒害,影响水分平衡,降低酶的活性与光合效率[23]。研究表明,EBL能够降低高浓度的镉对油菜光合作用的影响[24]。BRs能够降低高浓度镉对植物生长的抑制,增加脯氨酸的积累,提高CAT、APX、GPX、SOD的活性,但是对镉诱导的质膜过氧化没有太大的影响[25]。在酸性土壤中,铝的毒害主要是抑制农作物的生长,研究表明,BRs能够提高高铝条件下绿豆植物中SOD、CAT和POD的活性及脯氨酸的含量,促进幼苗的生长[12]。近年来,土壤中的铜对农作物的影响越来越严重,高浓度的铜能对植物造成毒害,影响植物生长,甚至导致植物死亡。研究表明,EBL能够降低高浓度的铜对荠菜种子萌发与植株生长的抑制作用,并能减少对铜的吸收与积累[26]。另外,HBL还能提高高浓度铜条件下植物中SOD、CAT、POD的活性及脯氨酸的含量。镍是植物生长所必需的微量元素,但在荠菜中的研究表明,高浓度镍影响植物的光合作用、呼吸效率,降低酶的活性与脯氨酸的含量,对植物造成毒害[27]。endprint
2BR的信号传导途径
通过对拟南芥BR的大量试验研究发现,植物中位于膜上的激酶受体BRI1(brassinosteroid insensitive 1)能感受BR的信号,胞质部分具有激酶活性[28]。在没有BR的情况下,受体BRI1以同源二聚体的形式存在,由于其胞质部分与抑制子BKI1(BRI1 kinase inhibitor 1)结合,处于失活状态[29]。在有BR存在的情况下,BR的结合激活了受体BRI1的激酶活性,通过联合受体BAK1/SERK3(BRI1-associated receptor kinase 1/somatic embryogenesis receptor kinase 3)磷酸化抑制子BKI1,使其从膜上解离下来,磷酸化的BKI1能与磷酸多肽结合蛋白14-3-3s结合,并且解除对BZR1(brassinazole-resistant 1)和BES1(BRI1-EMS-suppressor 1)的抑制作用,Ser270、Ser274和Tyr211在BKI1的磷酸化过程中起着重要的作用[30]。因此,该磷酸化过程为BR首先激活受体BRI1的激酶活性,接着磷酸化并激活联合受体BAK1,最后磷酸化抑制子BKI1解除其抑制作用。除BAK1/SERK3外,由于SERK4在功能上与BAK1的相似被认为是BKK1(BAK1-like 1)[31]。最近的研究表明,SERK1、SERK2和SERK4都有可能参与了BR的信号转导过程[32]。激活的受体BRI1磷酸化BSKs(BR signaling kinases)和CDG1(constitutive differential growth 1),进而激活磷酸酶BSU1(BRI1-suppressor 1);CDG1与BSKs的功能类似,受体BRI1磷酸化BSK1和CDG1,进而激活BSU1,接着BSU1通过去磷酸化作用抑制负调控子BIN2(brassinosteroid-insensitive 2)/GSK3(glycogen synthase kinase 1)的激酶活性,研究表明,BSU1通过BIN2的Tyr200去磷酸化影响其活性[33-34]。BIN2与蛋白磷酸酶2A(PP2A)通过去磷酸化激活2个同源的转录因子BES1、BZR1,研究表明,PP2A可与BZR1直接结合使其去磷酸化[35]。去磷酸化激活的BES1和BZR1从胞质转运到细胞核,进而调节BR响应基因的表达。在缺少BR的情况下,BIN2可使BES1和BZR1磷酸化,影响其功能,如干扰其与DNA的结合,在胞质中与14-3-3s结合而被降解等[36](图1)。通过基因芯片等方法的研究已经鉴定了许多转录因子BES1和BZR1的下游基因,早期的研究认为BZR1可与BRRE(BR-response element,CGTGT/CG)结合,抑制启动子区含有BRRE的基因表达,BES1可与E-box元件(CANNTG)结合,促进启动子区含有E-box元件的基因表达,最近的研究表明,它们都可以相互结合,因此须要更加深入的研究转录因子BES1和BZR1的作用机制[37]。BES1可与其他转录因子相互作用促进启动子区含有该转录因子的基因表达,如BIMI(bKLH factor BES1-interacting MYC-like 1)、ELF6(early flowering 6)、REF6(relative of early flowering 6)、IWS1(interacting-with-SPT6-1)等转录因子[38]。BES1可与MYBL2(myeloblastosis family factor like-2)结合抑制启动子区含有MYBL2的基因表达[39]。研究还发现,BES1/BZR1还可与其他蛋白相互作用,如与DELLA蛋白结合负调控对赤霉素的反应过程,与PIF(phytochrome-interacting factor)结合调节植物的生长与发育[40-42]。
(phyB activation tagged suppressor1)编码细胞色素P450蛋白,研究表明,该蛋白也参与BR的失活过程[47]。DWF4和CPD通过参与BR合成的限速步骤,即类固醇c-22a和c-23a的羟基化作用过程控制内源BR的稳态[48]。最新的研究表明,拟南芥中的BAHD(benzylalcohol O-acetyltransferase,anthocyanin O-hydroxycinnamoyltransferase,anthranilate N-hydroxycinnamoyl/benoyltransferase,deacetylvindoline 4-O-acetyltransferase)乙酰转移酶家族参与内源BR稳态的调控过程,如BAHD乙酰转移酶家族基因BIA1与ABS1通过乙酰化作用使BR失活[49]。另外,PP2A通过甲基化作用使BRI1去磷酸化,导致BRI1的降解,終止BR的信号传递过程,BRI1的Ser891的自磷酸化是主要的失活机制,导致BRI1降解,BR信号终止[50]。通过内吞作用降解BR与BRI1结合的复合物也可导致BR信号传递的终止[51]。
在拟南芥和水稻等物种中的研究表明,BR在植物的抗逆过程中具有重要的作用,但是目前对其信号传递的分子机制了解得还非常有限。例如,尽管知道BR影响逆境条件下植物的光合反应过程,但是具体影响位点还不清楚,因此,进一步鉴定其在抗逆过程中的关键基因至关重要,也为通过生物工程的方法提高农作物的抗逆能力、产量与品质提供理论基础。
参考文献:
[1]Clouse S D,Langford M,McMorris T C. A brassinosteroid insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development[J]. Plant Physiol,1996,111(3):671-678.endprint
[2]Upreti K K,Murti G S R. Effects of brassinosteroids on growth,nodulation,phytohormone content and nitrogenase activity in French bean under water stress[J]. Biol Plant,2004,48(3):407-411.
[3]Kagale S,Divi U K,Krochko J E,et al. Brassinosteroids confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses[J]. Planta,2007,225(2):353-364.
[4]Li Y H,Liu Y J,Xu X L,et al. Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana[J]. Biol Plant,2012,56:192-196.
[5]Zhang M C,Zhai Z X,Tian X L,et al. Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.)[J]. Plant Growth Regul,2008,56(3):257-264.
[6]Fariduddin Q,Khanam S,Hasan S A,et al. Effect of 28-homobrassinolide on drought stress induced changes in photosynthesis and antioxidant system of Brassica juncea L.[J]. Acta Physiol Plant,2009,31(5):889-897.
[7]Turkan I,Demiral T. Recent developments in understanding salinity tolerance[J]. Environ Exp Bot,2009,67(1):2-9.
[8]Lin Y C,Kao C H. Proline accumulation induced by excess nickel in detached rice leaves[J]. Biol Plant,2007,51(2):351-354.
[9]zdemir F,Bor M,Demiral T,et al. Effects of 24-epibrassinolide on seed germination,seedling growth,lipid peroxidation,proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress[J]. Plant Growth Regul,2004,42(3):203-211.
[10]Hayat S,Hasan S A,Yusuf M,et al. Effect of 28-homobrassinolide on photosynthesis,fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata[J]. Environ Exp Bot,2010,69(2):105-112.
[11]Ding H D,Zhu X H,Zhu Z W,et al. Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide[J]. Biol Plant,2012,56(4):767-770.
[12]Ali Q,Athar H U R,Ashraf M. Modulation of growth,photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide[J]. Plant Growth Regulation,2008,56(2):107-116.
[13]Zhang J H,Huang W D,Liu Y P,et al. Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses[J]. Journal of Integrative Plant Biology,2005,47(8):959-970.
[14]Singh I,Shono M. Physiological and molecular effects of 24-epibrassinolide,a brassinosteroid on thermotolerance of tomato[J]. Plant Growth Regulation,2005,47(2):111-119.endprint
[15]Mazorra L M,Nunez M,Hechavarria M,et al. Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures[J]. Biologia Plantarum,2002,45(4):593-596.
[16]Ogweno J O,Song X S,Shi K,et al. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum[J]. Journal of Plant Growth Regulation,2008,27(1):49-57.
[17]Kagale S,Divi U K,Krochko J E,et al. Brassinosteroids confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses[J]. Planta,2007,2252:353-364.
[18]Salveit M E. Chilling injury is reduced in cucumber and riceseedlings in tomato pericarp discs by heat-shocks appliedafter chilling[J]. Postharvest Biology and Technology,2001,21(2):169-177.
[19]Allen D J,Ort D R. Impacts of chilling temperatures on photosynthesis in warm-climate plants[J]. Trends in Plant Science,2001,6(1):36-42.
[20]Huang L F,Zheng J H,Zhang Y Y,et al. Diurnal variations in gas exchange,chlorophyll fluorescence quenching and light allocation in soybean leaves:the cause for midday depression in CO2 assimilation[J]. Scientia Horticulturae,2006,110(2):214-218.
[21]Janeczko A,Gullner G,Skoczowski A,et al. Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves[J]. Biologia Plantarum,2007,51(2):355-358.
[22]Bajguz A,Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses[J]. Plant Physiology and Biochemistry:PPB/Societe Francaise de Physiologie Vegetale,2009,47(1):1-8.
[23]Vassilev A,Yordanov I. Reductive analysis of factors limiting growth of cadmium-treated plants:a review[J]. Bulg J Plant Physiol,1997,23(3/4):114-133.
[24]Janeckzo A,Koscielniak J,Pilipowicz M,et al. Protection of winter rapephotosystem 2 by 24-epibrassinolide under Cadmium stress[J]. Photosynthetica,2005,43(2):293-298.
[25]Anuradha S,Rao S . The effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under Cadmium stress[J]. Plant Soil and Environment,2007,53(11):465-472.
[26]Sharma P,Bhardwaj R. Effects of 24-epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress[J]. Acta Physiologiae Plantarum,2007,29(3):259-263.
[27]Alam M M,Hayat S,Ali B,et al. Effect of 28-homobrassinolide treatment on nickel toxicity in Brassica juncea[J]. Photosynthetica,2007,45(1):139-142.endprint
[28]She J,Han Z F,Kim T W,et al. Structural insight into brassinosteroid perception by BRI1[J]. Nature,2011,474:472-476.
[29]Wang X E,Chory J. Brassinosteroids regulate dissociation of BKI1,a negative regulator of BRI1 signaling,from the plasma membrane[J]. Science,2006,313(5790):1118-1122.
[30]Russinova E,Borst J W,Kwaaitaal M,et al. Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1)[J]. Plant Cell,2004,16(12):3216-3229.
[31]Roux M,Schwessinger B,Albrecht C A,et al. The Arabidopsis Leucine-Rich repeat Receptor-Like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens[J]. Plant Cell,2011,23(6):2440-2455.
[32]Gou X P,Yin H J,He K,et al. Genetic evidence for an indispensable role of somatic embryogenesis receptor kinases in brassinosteroid signaling[J]. PLoS Genetics,2012,8(1):71-76.
[33]Kim T W,Guan S H,Burlingame A L,et al. The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2[J]. Molecular Cell,2011,43(4):561-571.
[34]Yan Z Y,Zhao J,Peng P,et al. BIN2 functions redundantly with other Arabidopsis GSK3-Like kinases to regulate brassinosteroid signaling[J]. Plant Physiology,2009,150(2):710-721.
[35]Tang W Q,Yuan M,Wang R J,et al. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1[J]. Nature Cell Biology,2011,13(2):U49-124.
[36]Ye H X,Li L,Yin Y H. Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways[J]. Journal of Integrative Plant Biology,2011,53(6):455-468.
[37]Yu X,Li L,Zola J,et al. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana[J]. Plant Journal,2011,65(4):634-646.
[38]Li L,Ye H X,Guo H Q,et al. Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(8):3918-3923.
[39]Ye H X,Li L,Guo H Q,et al. MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(49):20142-20147.
[40]Bai M Y,Shang J X,Oh E,et al. Brassinosteroid,gibberellin and phytochrome impinge on a common transcription module in Arabidopsis[J]. Nature Cell Biology,2012,14(8):U78-810.endprint
[41]Gallego-Bartolome J,Minguet E G,Grau-Enguix F,et al. Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(33):13446-13451.
[42]Oh E,Zhu J Y,Wang Z Y. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses[J]. Nature Cell Biology,2012,14(8):U64-802.
[43]Symons G M,Reid J B. Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels[J]. Plant Physiology,2004,135(4):2196-2206.
[44]Zhao B L,Li J. Regulation of brassinosteroid biosynthesis and inactivation[J]. Journal of Integrative Plant Biology,2012,54(10,SI):746-759.
[45]Kim G T,Fujioka S,Kozuka T,et al. CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana[J]. Plant Journal,2005,41(5):710-721.
[46]Mussig C,Fischer S,Altmann T. Brassinosteroid-regulated gene expression[J]. Plant Physiology,2002,129(3):1241-1251.
[47]Turk E M,Fujioka S,Seto H,et al. BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms[J]. Plant Journal,2005,42(1):23-34.
[48]Kim H B,Kwon M,Ryu H,et al. The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis[J]. Plant Physiology,2006,140(2):548-557.
[49]Wang M J,Liu X Y,Wang R,et al. Overexpression of a putative Arabidopsis BAHD acyltransferase causes dwarfism that can be rescued by brassinosteroid[J]. Journal of Experimental Botany,2012,63(16):5787-5801.
[50]Oh M H,Wang X F,Clouse S D,et al. Deactivation of the Arabidopsis BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase by autophosphorylation within the glycine-rich loop[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(1):327-332.
[51]Irani N G,Rubbo S D,Mylle E,et al. Fluorescent castasterone reveals BRI1 signaling from the plasma membrane[J]. Nature Chemical Biology,2012,8(6):583-589.endprint