药用植物活性成分调控p65核转运总结与展望

2017-09-23 04:43袁丹王玉倩黄萍崔校基周欣雨梁盈
中国中药杂志 2017年17期

袁丹 王玉倩 黄萍 崔校基 周欣雨 梁盈

[摘要] NFκB作为细胞内最重要的核转录因子,参与许多细胞内信号通路的传导以及遗传信息的转录与调控,其信号传导通路主要包括IκB激酶的活化、IκB蛋白降解以及p65的核转运,其中p65核转运结合DNA是NFκB发挥作用的关键。NFκB的异常激活是诱发氧化应激、炎症、癌症等的主要因素,因此维持NFκB活性平衡和调控p65的核转运对相关课题的深入研究具有重要的参考意义。该文综述了药用植物中主要活性物质多酚类、皂苷类、生物碱等对p65核转运的调控作用并对NFκB上游通路进行了讨论,以期为天然活性物质开发成功能性食品的研究提供参考价值。

[关键词] NFκB; 抑制活化; p65核转运; 药用植物活性物质

Summary and prospect of medicinal plant active substances in regulation of

p65 nuclear translocation

YUAN Dan, WANG Yuqian, HUANG Ping, CUI Xiaoji, ZHOU Xinyu, LIANG Ying*

(National Engineering Laboratory for Rice and Byproduct Deep Processing, Central South University of

Forestry & Technology, Changsha 410004, China)

[Abstract] As the most important nuclear transcription factors in the cells, NFκB is involved in many intracellular signaling pathways and transcription and regulation of genetic information. The signal transduction pathways mainly include the activation of IκB kinase, degradation of IκB protein and the nuclear translocation of p65. p65 transnuclear binding with DNA is the key for NFκB to play a role. Abnormal activation of NFκB is a major factor in the induction of oxidative stress, inflammation, cancer and so on. Therefore, maintaining the balance of NFκB activity and regulating the nuclear translocation of p65 have great significance for further research on related subjects. In this paper, the regulation effects of the main active substances of medicinal plants (such as polyphenols, saponins, and alkaloids) on p65 nuclear translocation and the upstream pathway of NFκB were discussed, expecting to provide reference for the development of natural active substances for functional food.

[Key words] NFκB; inhibition of activation; p65 nuclear translocation; medicinal plant active substances

近年来,随着国际社会“回归大自然”的热潮以及天然活性物质在食品、医药领域的兴起,药用植物活性成分的研究受到了国际科研界的重视。药用植物活性成分是指从植物体内分离提取出来的具有一定医疗保健功效的有效成分,主要包括多酚类化合物[13]、生物碱[46]、萜类化合物[79]及醌类化合物[1012]等。药用植物来源的活性物质可通过体内细胞信号通路介导转录因子、生长因子等的表达而发挥特定生理作用,具有抗氧化[13]、预防心脑血管疾病[14]、抗菌[15]、抗癌[1617]等功效,能有效预防和控制疾病的发生。这些活性物质发挥生理作用并不都是被直接吸收利用的,而是通过调控机体中某些信号途径来发挥其生理功能。NFκB作为细胞内最重要的核转录因子,参与许多细胞内信号通路的传导以及遗传信息的转录与调控,当活性物质作用于NFκB通路中的多个靶点时便能参与对机体生理病理过程的调控。为使药用植物活性物质得到更广泛的认可及利用,本文从NFκB信号通路中关键靶点的特点及其激活途径出发,结合国内外近年来的研究成果对从药用植物中提取的活性成分调控p65核转运进行了概述,总结出药用植物活性物质在一定程度上对NFκB信号通路的干预机制,为药用植物的研究及开发提供一定的理论依据。

1 p65核转运研究现状

正常生理状态下,NFκB与抑制蛋白IκB结合处于失活状态存在于细胞质中,不影响细胞正常的生理活动,一旦受到外界刺激,NFκB静息状态则被打破而活化,导致下游基因的异常表达,持续的活性状态会使这种异常加剧,从而诱发疾病;此外,NFκB活性的降低也被证实与部分免疫性疾病相关。因此,维持NFκB活性的平衡对生理功能的稳定有重要作用。NFκB发挥作用主要由其亚基所调控,而亚基的功能作用取决于亚基结构中是否含有N端Rel同源区(Rel homology domain,RHD)和C端反式激活结构域(transactivation domain,TD),RHD负责与DNA结合、二聚体化以及核转运,TD则与转录活化相关。p65亚基结构中同时含有RHD和TD,p50和p52亚基只有RHD而缺乏TD,因此p50和p52同源二聚体无法激活基因转录,相比之下,异源二聚體p50/p65在细胞中含量高,有2~3个独立的活性转录区,此外,p65可直接与NFκB抑制蛋白IκB相偶联,因此p65的核转运对NFκB通路信号转导起到了决定性的作用(图1)[1820]。NFκB分布的广泛性使之成为疾病治疗中的重要靶点,调控p65核转运的研究也受到了国内外学者的广泛关注。endprint

目前国内外对于NFκB信号通路中p65核转运的研究主要集中于以下几方面:①其他信号通路与NFκB/p65核转运的交联作用,最常见的如:MAPK信号通路与NFκB/p65核转运之间存在的调控关系[2123];②根据其他活性因子或效应器与p65核转运之间的协同或拮抗作用,进一步探索这些活性因子或效应器作用机制中尚不明确或仍未知的靶点等,从而更好地了解其分子作用模式,如研究发现的肽基脯氨酰异构酶亲环蛋白A(peptidylprolyl isomerase cyclophilin A,CypA)促进NFκB/p65核定位,为抑制肿瘤细胞增殖提供了新思路——利用CypA的特异性抑制剂调控p65核转运活性[24]。此外,小泛素相关修饰因子1(small ubiquitinrelated modifier 1, SUMO1)与NFκB/p65核转运的拮抗作用也使SUMO1成为抑制肝癌细胞增殖和迁移的新靶点[25]等;③NFκB/p65核转運抑制因子的探索,除了普遍了解的抑制蛋白IκB,还有吴歌等[26]发现的SIP(steriod receptor coactivatorinteracting protein,类固醇受体协同激活因子相互作用蛋白)蛋白,Zhu J等[27]发现的TDP43(transactivation response element DNAbinding protein 43,TAR DNA结合蛋白43),都是NFκB信号传导途径中存在的抑制剂;④检测分析p65核转运的技术研究,目前已见报道的有成像流式细胞术,可同时评估NFκB/p65磷酸化和核定位[28]。在这些研究中,通过药用植物活性成分物质与NFκB/p65核转运的相互作用来例证上述结果不仅使研究成果更具说服力,也为其实际利用提供了可靠依据。

2 p65核转运的调控剂

NFκB/p65的入核与出核是维持细胞动态稳定的重要因素,作为体内蛋白降解[29]、细胞增殖[3032]、细胞凋亡[3334]的关键步骤,目前有关p65核转运的的调控因子已有一些报道。根据其来源不同,可归为以下4类:微生物源调控剂、化学合成物调控剂、蛋白质及多肽类调控剂、天然来源调控剂。

虽然这些调控剂对p65的核转运均有调节作用,但不同的调控剂其作用方式并不相同。Wu S等研究表明大肠杆菌中的Ⅲ型分泌系统(T3SS)效应蛋白可通过阻止NFκB途径中IκB的降解减少由肿瘤坏死因子α(TNFα)和白细胞介素1β(IL1β)刺激细胞引发的NFκB亚基p65核转运。在炎症环境中,强啡肽117(DYN 117)经过生物转化产生的阿片肽物质和非阿片肽物质片段通过膜受体作用而抑制NFκB/p65核转运发挥其抗炎作用[35]。Kastrati I等研究表明富马酸二甲酯可通过共价修饰NFκB转录因子p65,以阻断其核转运,降低其与DNA结合活性,对于乳腺癌细胞中NFκB的活性具有明显抑制作用[36]。

其中一些调控剂的作用已得到较全面的研究,但由于大多数经研究证实并生产使用的调控剂都属于非天然来源,其本身具有的毒性或可能诱发的持久性免疫抑制作用,使得它们的应用被限制,找寻研发长效安全的调控核转运的物质成了新的挑战。

药用植物活性物质的物理化学性质稳定,大多是药用植物自身免疫体系或防御体系的组成部分,都是可作为膳食的生物活性物质,对于人类健康的维持以及亚健康的预防都具有重要作用。药用植物活性成分物质的生理功能现已研究阐明的有抗氧化、降血压、降胆固醇、抗炎症、抗癌等[3738],对它们的作用机制的探索也不断深入。众多的体内外实验研究表明,许多活性物质都能通过抑制NFκB活性、调控p65的核转运来发挥其生理活性,有效抑制炎症、肿瘤等的产生或增殖作用[5,39]。

3 药用植物活性物质对p65核转运的调控

根据Gilmore T D等[40]统计的700多种NFκB调控剂,其作用机制主要为以下3类:①通过调控引起NFκB活性失衡的胞外刺激因子或与NFκB通路有交联作用的其他信号通路中的关键因子发挥作用;②通过调控IKK复合物、IκB蛋白磷酸化调控NFκB/p65转核运的数量与强度;③调控NFκB/p65入核后与DNA的特异性结合活性而调控NFκB/p65核转运的活性。

3.1 通过胞外或其他信号通路因子的间接调节 细胞内NFκB的调控是一个精细而又复杂的过程,除了TNFα、炎症因子、LPS以及紫外线等外界刺激因素可直接影响NFκB的活性,其他信号通路中的关键因子对它也有一定的调节作用。因此,在对NFκB/p65核转运的调控研究中,部分药用植物活性物质是通过调节胞外信号传导或与NFκB通路相关联的其他信号因子来间接调控NFκB/p65核转运的。

YouChang Oh等[41]研究发现白藜芦醇抵抗炎症是通过抑制细胞外部刺激诱导的IL8产生、MAPK/p38和ERK1/2磷酸化,以及NFκB活化和IκB蛋白的降解,从而减少细胞核内p65的表达而抑制促炎因子的转录表达;Dong WenPeng等[42]研究发现白藜芦醇预处理亚急性肠炎小鼠试验组中NFκB/p65从细胞质向细胞核的转运被大大抑制了,这一过程需要激活SIRT1(Sirtuin 1,依赖于烟酰胺腺嘌呤二核苷酸NAD+的组蛋白脱乙酰酶)NFκB途径;另外,Haigis M C等[43]提出SIRT1可以与NFκB的RelA/p65亚基相互作用并通过RelA/p65的去乙酰化来抑制其转录某些氨基酸;从而推测白藜芦醇保护亚急性肠炎的作用机制是通过激活SIRT1NFκB通路抑制p65核转运实现的。Tang F等[44]发现人参皂苷Rg1(ginsenoside Rg1)增加了炎症小鼠细胞质中p65的表达,降低了小鼠腹主动脉缩窄及中心肌细胞的核内p65的表达,结果表明Rg1通过抑制TNFα/NFκB信号通路减轻了患病小鼠的心脏肥大;Wong V K等[45]发现柴胡皂苷Ssd(saikosaponind)在癌细胞中通过NFκB增强TNFα的抗癌效力也存在相同的作用机制。Hwang Y P等[46]证明了抗侵入性二氢青蒿素DHA可通过抑制PKCa/Raf/ERK和JNK磷酸化与还原,阻断NFκB/p65转移到细胞核中,发挥DHA抑制纤维肉瘤细胞的侵袭及转移作用。Qian Z等[47]发现桑树果实二氯甲烷提取物(mulberry fruitdichloromethane extract,MBFDE,成分为亚油酸和亚麻酸乙酯)处理炎症细胞后其中的炎症反应被抑制,结果表明MBFDE对胞内NFκB/p65核转运调控是通过抑制MAPK/pERK活化来阻止NFκB信号传导的。综上,药用植物活性成分通过调节胞外信号及其他通路中关键信号因子对p65核转运的影响是显而易见的,这种从源头对NFκB的调控避免了活性失衡传导至细胞内部后引起复杂多变的生理反应,为寻求药物靶点等提供了更有针对性的方向。endprint

3.2 IKK,IκB調节 IKK激酶是NFκB通路活化的关键激酶,尽管上游信号途径各不相同,但最终都汇聚在IKK激酶,IKK激酶的激活,诱导IκB蛋白的磷酸化和泛素化,IκB蛋白被降解,使得p65亚基从二聚体中释放出来迅速从细胞质转移到细胞核,完成IKKIκBNFκB通路的活化,从而发挥一系列生理作用。因此,在NFκB/p65核转运的过程中,IKK激酶的活性强弱是决定NFκB/p65能否进行核转运的关键因素。病理状态下,NFκB活性失调,IKK激酶的高表达导致p65核转运失控,进一步加速了机体紊乱。在众多药用植物活性成分对NFκB/p65核转运的研究中,效应物所表现出来的调控作用很大一部分都与调节IKK激酶活性、IκB蛋白磷酰化及降解有关:Wang F等[48]发现二氢丹参酮能抑制TNFα诱导IκBα的磷酸化与降解,减少p65的磷酸化与核内p65的数量。Lee S G等[49]发现蓝莓、黑莓及黑醋栗的浆果花色素苷对炎症细胞中NFκB/p65向细胞核的转移都有显著的减弱作用,直接影响肿瘤坏死因子α的分泌,结果表明花色素苷可以通过抑制IKK激酶的活性及IκB蛋白的降解调控NFκB/p65的核转运发挥其抗肿瘤作用。Liu J等[50]研究发现来自犬瘟根的stauntoside B(甾体类化合物)通过将IKKα/β和IKK的磷酸化表达降低至正常水平,阻止NFκB的活化以及p65核转运,stauntoside B对NFκB信号通路的强抑制作用证明了其在与NFκB信号通路相关的炎症疾病中具有生物活性,这对将其研制成抗炎药物提供了新的方向。Jiang Q等[51]对Lunasin(大豆中具有ArgGlyAsp基序的活性肽)抑制乳腺癌细胞迁移及侵袭的研究、Goto H等[5]对冬叶青小檗皮层中小檗碱抗原发性淋巴瘤的研究、Buhrmann C等[52]对姜黄根茎中的姜黄素抗炎的研究、Kannaiyan R等[53]对雷公藤根茎中的雷公藤红素抑制骨髓瘤细胞增殖的研究中都证明了这些活性物质是通过抑制IKK激酶活性、IκB磷酰化和降解来抑制NFκB/p65核转运的活性,从而发挥各项生理作用。

3.3 NFκB/p65 DNA结合活性调节 经过激活后的NFκB/p65亚基进入细胞核后与DNA结合启动或抑制相关基因的转录表达,在这一过程中,新合成的IκB会进入细胞核内与NFκB结合并从细胞核转出至细胞质中,抑制p65的核转运。所以,对NFκB/p65与DNA结合活性的调节对p65核转运的调控也具有重要作用。药用植物活性成分对其结合活性的调节已有部分报道,Chow YuhLit等[54]证实来自山姜果实中的豆蔻明发挥抗炎作用是通过减弱NFκB与DNA结合活性而中断NFκB/p65核转运而实现的。Lu Yue等[11]研究表明虎杖根茎中的大黄素可抑制NFκB亚基p65的核转运及其转核后与同源DNA的结合活性,且这一过程与IKK激酶磷酸化、IκB的降解等有一定的相关性。然而,关于这之间更精准的作用关系或是否还存在其他因子使其有联系仍是未知。

迄今,初步探索出的对NFκB/p65核转运有调控作用的药用植物活性成分众多,但对其作用机制的揭示阐述却鲜有报道。综上,这些活性成分对NFκB/p65核转运的调控是作用于“上游信号IKK激酶IκB蛋白NFκB/p65”这一途径的不同靶点(表1)或不同阶段(图2)而实现的;不仅如此,不同的作用途径之间还存在着相互影响的关系,正因如此,调控p65核转运研究的复杂性与高效性推动着针对相应靶点药用植物活性成分的开发方兴未艾。

4 总结与展望

药用植物在全世界各地都有广泛的分布,而中国作为药用植物种类最丰富的国家之一,对于这一宝贵资源的开发利用也只是冰山一角,绝大部分药用植物并未物尽其用。随着病理及营养学的不断深入研究,这些药用植物中小分子活性物质的生物学活性逐渐被证实,在炎症、肿瘤等亟待攻克的世界生命科学难题中显示出了巨大的潜能。

营养学及医学界对干预NFκB信号通路调控p65核转运来治疗炎症、肿瘤等疾病及相关功能性食品、药品的开发愈发重视,其中药用植物活性物质所表现出来的效用使其具有更广阔的应用前景。但就现状而言,绝大部分药用植物活性成分病理作用机制并未研究清楚,对其调控NFκB/p65核转运上游信号通路传导机制仍不系统透彻。Fraser C C[68]提出G蛋白偶联受体(GPCR)亚基Gq介导了NFκB在炎症和癌症中的作用,分别通过磷脂肌醇(protein kinase C,PKC)信号途径(GqPKCIKKNFκB)和腺苷酸环化酶(adenylate cyclase,AC)作用下的蛋白激酶A(protein kinase A,PKA)途径(GqACPKANFκB)。之后Patial S等[69]研究表明在G蛋白偶联受体激酶5(GRK5)缺失的巨噬细胞中LPS诱导的NFκB/p65核转运被阻断,NFκB的活性被抑制,有效减少巨噬细胞中产生炎症因子;Yuki Ohba等[70]表明G蛋白偶联激酶6(GRK6)以激酶活性依赖性方式增强TNFα诱导的NFκB信号传导。推测G蛋白偶联受体(GPCRs)可能是NFκB/p65核转运的一个上游靶信号蛋白,但外源性的活性物质是否通过GPCRsNFκB通路发挥作用以及是否存在其他上游信号蛋白与NFκB活化相关还有待进一步研究探索。虽然药用植物活性成分对NFκB/p65核转运的调控有密切关系,但只有在分子水平上对其作用机制及介导这一过程的关键蛋白进行深入的研究,才能为促进药用植物活性成分的综合利用提供更有力的佐证。

[参考文献]

[1] Babu P V, Si H, Liu D. Epigallocatechin gallate reduces vascular inflammation in db/db mice possibly through an NFkappaBmediated mechanism [J]. Mol Nutr Food Res, 2012, 56(9): 1424.endprint

[2] EssafiBenkhadir K, Refai A, Riahi I, et al. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPSinduced inflammation in human THP1derived macrophages through NFkappaB, p38MAPK and Akt inhibition [J]. Biochem Biophys Res Commun, 2012, 418(1): 180.

[3] Bhaskar S, Shalini V, Helen A. Quercetin regulates oxidized LDL induced inflammatory changes in human PBMCs by modulating the TLRNFkappaB signaling pathway [J]. Immunobiology, 2011, 216(3): 367.

[4] Fu R H, Hran H J, Chu C L, et al. Lipopolysaccharidestimulated activation of murine DC2.4 cells is attenuated by nbutylidenephthalide through suppression of the NFkappaB pathway [J]. Biotechnol Lett, 2011, 33(5): 903.

[5] Goto H, Kariya R, Shimamoto M, et al. Antitumor effect of berberine against primary effusion lymphoma via inhibition of NFκB pathway [J]. Cancer Sci, 2012, 103(4): 775.

[6] Ershun Z, Yunhe F, Zhengkai W, et al. Cepharanthine attenuates lipopolysaccharideinduced mice mastitis by suppressing the NFkappaB signaling pathway [J]. Inflammation, 2014, 37(2): 331.

[7] Wang Y, Huang Z, Wang L, et al. The antimalarial artemisinin inhibits proinflammatory cytokines via the NFkappaB canonical signaling pathway in PMAinduced THP1 monocytes [J]. Int J Mol Med, 2011, 27(2): 233.

[8] Bi W Y, Fu B D, Shen H Q, et al. Sulfated derivative of 20(S)ginsenoside Rh2 inhibits inflammatory cytokines through MAPKs and NFkappa B pathways in LPSinduced RAW264.7 macrophages [J]. Inflammation, 2012, 35(5): 1659.

[9] Mathema V B, Koh Y S, Thakuri B C, et al. Parthenolide, a sesquiterpene lactone, expresses multiple anticancer and antiinflammatory activities [J]. Inflammation, 2012, 35(2): 560.

[10] Reuter S, Prasad S, Phromnoi K, et al. Embelin suppresses osteoclastogenesis induced by receptor activator of NFkappaB ligand and tumor cells in vitro through inhibition of the NFkappaB cell signaling pathway [J]. Mol Cancer Res: MCR, 2010, 8(10): 1425.

[11] Lu Y, Suh S J, Li X, et al. Citreorosein, a naturally occurring anthraquinone derivative isolated from Polygoni Cuspidati Radix, attenuates cyclooxygenase2dependent prostaglandin D2 generation by blocking Akt and JNK pathways in mouse bone marrowderived mast cells [J]. Food Chem Toxicol, 2012, 50(3/4): 913.

[12] Song S H, Min H Y, Han A R, et al. Suppression of inducible nitric oxide synthase by (-)isoeleutherin from the bulbs of Eleutherine americana through the regulation of NFkappaB activity [J]. Int Immunopharmacol, 2009, 9(3): 298.endprint

[13] Seiquer I, Rueda A, Olalla M, et al. Assessing the bioavailability of polyphenols and antioxidant properties of extra virgin argan oil by simulated digestion and Caco2 cell assays. Comparative study with extra virgin olive oil [J]. Food Chem, 2015, 188(2): 496.

[14] Andujar I, Recio M C, Giner R M, et al. Cocoa polyphenols and their potential benefits for human health [J]. Oxidat Med Cell Longev, 2012, 2012(9): 906252.

[15] Abdelwahab S I, Zaman F Q, Mariod A A, et al. Chemical composition, antioxidant and antibacterial properties of the essential oils of Etlingera elatior and Cinnamomum pubescens Kochummen [J]. J Sci Food Agr, 2010, 90(15): 2682.

[16] Abliz G, Mijit F, Hua L, et al. Anticarcinogenic effects of the phenolicrich extract from abnormal Savda Munziq in association with its cytotoxicity, apoptosisinducing properties and telomerase activity in human cervical cancer cells (SiHa) [J]. BMC Complement Alternat Med, 2015, 15(1): 23.

[17] Afzal M, Safer A M, Menon M. Green tea polyphenols and their potential role in health and disease [J]. Inflammopharmacology, 2015, 23(4): 151.

[18] Chen F E, Huang D B, Chen Y Q, et al. Crystal structure of p50/p65 heterodimer of transcription factor NFκB bound to DNA [J]. Nature, 1998, 391(6665): 410.

[19] Ghosh S, Gifford A M, Riviere L R, et al. Cloning of the ~50 DNA binding subunit of NκB: homology to rel and dorsal [J]. Cell, 1990, 62(5): 1019.

[20] Sen R B D. lnducibility of K lmmunoglobulin enhancerbingding protein NFκB by a posttranslational mechanism [J]. Cell, 1986, 47: 921.

[21] Fazal F, Bijli K M, Minhajuddin M, et al. Essential role of cofilin1 in regulating thrombininduced RelA/p65 nuclear translocation and intercellular adhesion molecule 1 (ICAM1) expression in endothelial cells [J]. J Biol Chem, 2009, 284(31): 21047.

[22] Chen J, Zhang J, Cao J, et al. Inflammatory MAPK and NFkappaB signaling pathways differentiated hepatitis potential of two agglomerated titanium dioxide particles [J]. J Hazard Mater, 2016, 304: 370.

[23] Kim H I, Hong S H, Ku J M, et al. Tonggyutang, a traditional Korean medicine, suppresses proinflammatory cytokine production through inhibition of MAPK and NFkappaB activation in human mast cells and keratinocytes [J]. BMC Complement Alternat Med, 2017, 17(1): 186.

[24] Sun S, Guo M, Zhang J B, et al. Cyclophilin A (CypA) interacts with NFκB subunit, p65/RelA, and contributes to NFκB activation signaling [J]. PLoS ONE, 2014, 9(8): 96211.endprint

[25] Liu J, Tao X, Zhang J, et al. Small ubiquitinrelated modifier 1 is involved in hepatocellular carcinoma progression via mediating p65 nuclear translocation [J]. Oncotarget, 2016, 7(16): 22206.

[26] 吳歌,王丹丹,孙露洋.SIP蛋白调节p65核转位的作用机制[J]. 中国生物化学与分子生物学报,2011,27(8): 728.

[27] Zhu J, Cynader M S, Jia W. TDP43 inhibits NFκB activity by blocking p65 nuclear translocation [J]. PLoS ONE, 2015, 10(11): e0142296.

[28] Maguire O, O′Loughlin K, Minderman H. Simultaneous assessment of NFkappaB/p65 phosphorylation and nuclear localization using imaging flow cytometry [J]. J Immunol Methods, 2015, 423: 3.

[29] Schakman O, Dehoux M, Bouchuari S, et al. Role of IGFI and the TNFalpha/NFkappaB pathway in the induction of muscle atrogenes by acute inflammation [J]. Am J Physiol Endocrinol Metab, 2012, 303(6): 729.

[30] Ye X, Yuan L, Zhang L, et al. Garcinol, an acetyltransferase inhibitor, suppresses proliferation of breast cancer cell line MCF7 promoted by 17betaestradiol [J]. Asian Pac J Cancer Preven, 2014, 15(12): 5001.

[31] Wang Y, Lu P, Zhang W, et al. GEN27, a newly synthetic isoflavonoid, inhibits the proliferation of colon cancer cells in inflammation microenvironment by suppressing NFκB pathway [J]. Med Inf, 2016, 2016: 1.

[32] Shimizu H, Bolati D, Adijiang A, et al. NFκB plays an important role in indoxyl sulfateinduced cellular senescence, fibrotic gene expression, and inhibition of proliferation in proximal tubular cells [J]. Ajp Cell Physiol, 2011, 301(301): C1201.

[33] Rui L X, Shu S Y, Jun W J, et al. The dual induction of apoptosis and autophagy by SZC014, a synthetic oleanolic acid derivative, in gastric cancer cells via NFkappaB pathway [J]. Tumour Bio, 2016, 37(4): 5133.

[34] Chen G, Chen Y, Chen H, et al. The effect of NFkappaB pathway on proliferation and apoptosis of human umbilical vein endothelial cells induced by intermittent high glucose [J]. Mol Cell Bioche, 2011, 347(1/2): 127.

[35] Rahiman S S F, Morgan M, Gray P, et al. Dynorphin 117 and its Nterminal biotransformation fragments modulate lipopolysaccharidestimulated nuclear factorkappa B nuclear translocation, interleukin1beta and tumor necrosis factoralpha in differentiated THP1 cells [J]. PLoS ONE, 2016, 11(4): e0153005.

[36] Kastrati I, Siklos M I, CalderonGierszal E L, et al. Dimethyl fumarate inhibits the nuclear factor kappaB pathway in breast cancer cells by covalent modification of p65 protein [J]. J Biol Chem, 2016, 291(7): 3639.endprint

[37] 趙芹, 吴修, 李效尊, 等. 莲(Nelumbo nucifera)不同部位活性物质及其药理作用研究进展[J]. 分子植物育种,2016,14(7): 1864.

[38] 赵文竹, 张瑞雪, 于志鹏, 等.食源性植物糖蛋白研究进展[J]. 食品工业科技,2016,37(16): 389.

[39] Liu S H, Lu T H, Su C C, et al. Lotus leaf (Nelumbo nucifera) and its active constituents prevent inflammatory responses in macrophages via JNK/NFkappaB signaling pathway [J]. Am J Chin Med, 2014, 42(4): 869.

[40] Gilmore T D, Herscovitch M. Inhibitors of NFκB signaling: 785 and counting [J]. Oncogene, 2006, 25(51): 6887.

[41] Oh Y C, Kang O H, Choi J G, et al. Antiinflammatory effect of resveratrol by inhibition of IL8 production in LPSinduced THP1 cells [J]. Am J Chin Med, 2009, 37(6): 1203.

[42] Dong W, Li F, Pan Z, et al. Resveratrol ameliorates subacute intestinal ischemiareperfusion injury [J]. J Surg Res, 2013, 185(1): 182.

[43] Haigis M C, Sinclair D A. Mammalian sirtuins: biological insights and disease relevance [J]. Ann Rev Pathol Mechan Dis, 2010, 5(1): 253.

[44] Tang F, Lu M, Yu L, et al. Inhibition of TNFαmediated NFκB activation by ginsenoside Rg1 contributes the attenuation of cardiac hypertrophy induced by abdominal aorta coarctation [J]. J Cardiovas Pharmacol, 2016, 68(4): 257.

[45] Wong V K W, Zhang M M, Zhou H, et al. Saikosaponind enhances the anticancer potency of TNFα via overcoming its undesirable response of activating NFKappa B signalling in cancer cells [J]. Evid Based Complement Alternat Med, 2013, 2013(4): 745295.

[46] Yong P H, Yun H J, Kim H G, et al. Suppression of PMAinduced tumor cell invasion by dihydroartemisinin via inhibition of PKCα/Raf/MAPKs and NFκB/AP1dependent mechanisms [J]. Bioche Pharmacol, 2010, 79(12): 1714.

[47] Qian Z, Wu Z, Huang L, et al. Mulberry fruit prevents LPSinduced NFκB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice [J]. Sci Rep, 2015, 5: 17348.

[48] Wang F, Ma J, Wang K S, et al. Blockade of TNFalphainduced NFkappaB signaling pathway and anticancer therapeutic response of dihydrotanshinone I [J]. Int Immunopharmacol, 2015, 28(1): 764.

[49] Lee S G, Kim B, Yang Y, et al. Berry anthocyanins suppress the expression and secretion of proinflammatory mediators in macrophages by inhibiting nuclear translocation of NFkappaB independent of NRF2mediated mechanism [J]. J Nutr Biochem, 2014, 25(4): 404.

[50] Liu J, Tang J, Zuo Y, et al. Stauntoside B inhibits macrophage activation by inhibiting NFκB and ERK MAPK signalling [J]. Pharmacol Res, 2016, 111: 303.endprint

[51] Jiang Q, Pan Y, Cheng Y, et al. Lunasin suppresses the migration and invasion of breast cancer cells by inhibiting matrix metalloproteinase2/9 via the FAK/Akt/ERK and NFκB signaling pathways [J]. Oncol Rep, 2016, 36(1): 253.

[52] Buhrmann C, Mobasheri A, Busch F, et al. Curcumin modulates nuclear factor kappaB (NFkappaB)mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3kinase/Akt pathway [J]. J Biol Chem, 2011, 286(32): 28556.

[53] Kannaiyan R, Hay H S, Rajendran P, et al. Celastrol inhibits proliferation and induces chemosensitization through downregulation of NFkappaB and STAT3 regulated gene products in multiple myeloma cells [J]. Bri J Pharmacol, 2011, 164(5): 1506.

[54] Chow Y L, Lee K H, Vidyadaran S, et al. Cardamonin from Alpinia rafflesiana inhibits inflammatory responses in IFNgamma/LPSstimulated BV2 microglia via NFkappaB signalling pathway [J]. Int Immunopharmacol, 2012, 12(4): 657.

[55] 宋來新,张长城,王婷,等. 淫羊藿总黄酮通过抑制 MAPK /NFκB 信号通路减轻自然衰老大鼠脑组织炎症反应[J]. 中国药理学通报, 2017, 33(1): 84.

[56] Yang J, Li Q, Zhou X D, et al. Naringenin attenuates mucous hypersecretion by modulating reactive oxygen species production and inhibiting NFkappaB activity via EGFRPI3KAkt/ERK MAPKinase signaling in human airway epithelial cells [J]. Mol Cell Biochem, 2011, 351(1/2): 29.

[57] Cui L, Feng L, Zhang Z H, et al. The antiinflammation effect of baicalin on experimental colitis through inhibiting TLR4/NFkappaB pathway activation [J]. Int Immunopharmacol, 2014, 23(1): 294.

[58] Yeh J L, Hsu J H, Hong Y S, et al. Eugenolol and glycerylisoeugenol suppress LPSinduced iNOS expression by downregulating NFkappaB AND AP1 through inhibition of MAPKS and AKT/IkappaBalpha signaling pathways in macrophages [J]. Pharmacology, 2011, 24(2): 345.

[59] Chai X, Guan Z, Yu S, et al. Design, synthesis and molecular docking studies of sinomenine derivatives [J]. Bioorg Med Chem Lett, 2012, 22(18): 5849.

[60] Sung B, Ahn K S, Aggarwal B B. Noscapine, a benzylisoquinoline alkaloid, sensitizes leukemic cells to chemotherapeutic agents and cytokines by modulating the NFkappaB signaling pathway [J]. Cancer Res, 2010, 70(8): 3259.

[61] Liu X H, Pan L L, Yang H B, et al. Leonurine attenuates lipopolysaccharideinduced inflammatory responses in human endothelial cells: involvement of reactive oxygen species and NFkappaB pathways [J]. Eur J Pharm, 2012, 680(1/3): 108.

[62] 周代星,占成业,何雪心. 甲基莲心碱对 Ang II诱导血管平滑肌细胞增殖及ERK/NFκB通路的影响 [J]. 中国新药杂志,2009,18(15): 1440.endprint

[63] Zhu T, Wang D X, Zhang W, et al. Andrographolide protects against LPSinduced acute lung injury by inactivation of NFkappaB [J]. PLoS ONE, 2013, 8(2): e56407.

[64] 王海燕,覃慧林,張永峰,等. 木瓜三萜对佐剂性关节炎大鼠关节滑膜组织中Akt,NFκB 和促炎因子的表达影响[J]. 中国实验方剂学杂志, 2017, 23(5): 141.

[65] Bento A F, Marcon R, Dutra R C, et al. βCaryophyllene inhibits dextran sulfate sodiuminduced colitis in mice through CB2 receptor activation and PPARgamma pathway [J]. Am J Pathol, 2011, 178(3): 1153.

[66] Hafeez B B, Jamal M S, Fischer J W, et al. Plumbagin, a plant derived natural agent inhibits the growth of pancreatic cancer cells in in vitro and in vivo via targeting EGFR, Stat3 and NFkappaB signaling pathways [J]. Int J Cancer, 2012, 131(9): 2175.

[67] Karki R, Park C H, Kim D W. Extract of buckwheat sprouts scavenges oxidation and inhibits proinflammatory mediators in lipopolysaccharidestimulated macrophages (RAW264.7) [J]. J Integr Med, 2013, 11(4): 246.

[68] Fraser C C. G proteincoupled receptor connectivity to NFkappaB in inflammation and cancer [J]. Int Rev Immunol, 2008, 27(5): 320.

[69] Patial S, Shahi S, Saini Y, et al. Gprotein coupled receptor kinase 5 mediates lipopolysaccharideinduced NFκB activation in primary macrophages and modulates inflammation in vivo in mice [J]. J Cell Physiol, 2011, 226(5): 1323.

[70] Ohba Y, Nakaya M, Watari K, et al. GRK6 phosphorylates IkappaBalpha at Ser(32)/Ser(36) and enhances TNFalphainduced inflammation [J]. Biochem Biophys Res Commun, 2015, 461(2): 307.

[责任编辑 张宁宁]endprint