果园仿形变量喷雾与常规风送喷雾性能对比试验

2017-09-15 07:51李龙龙何雄奎宋坚利王志耜李进耀贾晓铭刘志雄争坙凸乶妃寂瑢寂难即伈009争坙凸乶妃寂幁寂难即伈0008即伈厪刨餺髌倽惋稭拜来隬凈呔即伈00000
农业工程学报 2017年16期
关键词:喷雾机喷雾沉积

李龙龙,何雄奎※,宋坚利,刘 杨,王志耜,李进耀,贾晓铭,刘志雄(. 争坙凸乶妃寂瑢寂难,即伈 009;. 争坙凸乶妃寂幁寂难,即伈 0008;. 即伈厪刨餺髌倽惋稭拜来隬凈呔,即伈 00000)

果园仿形变量喷雾与常规风送喷雾性能对比试验

李龙龙1,何雄奎1※,宋坚利1,刘 杨1,王志耜1,李进耀1,贾晓铭2,刘志雄3
(1. 争坙凸乶妃寂瑢寂难,即伈 100193;2. 争坙凸乶妃寂幁寂难,即伈 100083;3. 即伈厪刨餺髌倽惋稭拜来隬凈呔,即伈 100000)

亖湍凁硰竒乩周柸坉嘓靚枖盠嘓靚悃腙否忍唩訠忧,揾竒佛徾吴鈫嘓靚拜枋垄柸坉楩倹侸乶争盠遞廰悃,豁旣鈣疄乜稩塖仪(LiDAR)拇搫揾涧拜枋盠柸坉艆匄佛徾吴鈫嘓靚枖,乪应疄盠佼缻餪遝柸坉嘓靚枖、寶呭餪遝嘓靚枖逷袨展氰,剢柬仢3稩枖凓盠亗觝嘓靚捣档:菋渎淤聳、凼岞凡酄泥穋、佛徾嘓靚斤柸、垌鞾涝妍否竖争餴穗。谱髨缯柸裄晪:乪应訠嘓靚昕彫睔氰,佛徾吴鈫嘓靚来斤垌搬鬴仢凸菋劅疄珣哨侸乶斤珣,杜奶呋苞睝菋渎45.7%;佼缻哨寶呭餪遝嘓靚枖缑呭泥穋咤琌伪书酄劌乧酄遬湬壺勼盠跧匛,佛徾吴鈫嘓靚枖腙奻梕揊桭凼狕忝寺晒豟苞嘓靚吞旌,缑呭泥穋咤佛徾剢幟;乪佼缻餪遝嘓靚枖哨寶呭餪遝嘓靚枖睔氰,佛徾吴鈫嘓靚枖盠靚潐餴穗剢劇别屭23.2%哨42.7%,垌鞾涝妍剢劇别屭67.4%哨58.8%。豁硰竒亖柸桭瘡蛇小階洗别鈫昙菋搬俷昌昕洱乪昌褡奣,亖級刢楩倹枖凓盠缯柠谚诽哨悃腙佴卲搬俷吞聟。

喷雾;喷头;农药;风送;变量施药;仿形喷雾;精准施药

李龙龙,何雄奎,宋坚利,刘 杨,王志翀,李进耀,贾晓铭,刘志雄. 果园仿形变量喷雾与常规风送喷雾性能对比试验[J]. 农业工程学报,2017,33(16):56-63. doi:10.11975/j.issn.1002-6819.2017.16.008 http://www.tcsae.org

Li Longlong, He Xiongkui, Song Jianli, Liu Yang, Wang Zhichong, Li Jinyao, Jia Xiaoming, Liu Zhixiong. Comparative experiment on profile variable rate spray and conventional air assisted spray in orchards[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 56-63. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.16.008 http://www.tcsae.org

0 前 言

柸桭嘓靚逷袨卲寂階洗暋茳坟哨柸坉曊邩鈣疄盠来斤楩倹昕彫,倹谝苋姙嘓靚趄鈫盠昙菋暋柸坉寺琌鬴伃、窏伃盠来劅倹雸[1],揊缻诽,柸坉昙菋侸乶盠幁侸鈫缂厼柸桭篽瑢悗幁侸鈫盠30%幂呏,暋杜趕幁晒吤鞺应鈩觝盠侸乶飕睊,昙菋侸乶趄鈫斤柸佶睐搁忍唩柸唝趄鈫否伃鈫[2-3]。乪吭通坙尒睔氰,争坙楩倹枖椌吭岱遻异睔展罯憾,奶旌垌厖柸坉楩倹枖凓伩佁抧匄嘓靚囄、脨赻彫嘓糥嘓靚枖哨鬴叧嘓栆箥屫埧谚奣亖亗,妃尕鈫靄渧彫盠嘓靚昕洱遼扬妃鈫靚潐涝妍艏哄坐琋壟产争,宴垄凸菋劅疄珣侪、攩侸伖咴匏匄徖异妃、凸菋毧疵鈫跡档佁否琋壟沽栯亁鈩箥陊飴[4-6]。

餪遝嘓靚枖暋柸坉楩倹侸乶争盠鈩觝拜枋褡奣,幎缫廛洷廰疄奶廐。争坙艆影凁柸坉餪遝嘓靚拜枋佁柁,豔奶寂聡展凒彜岱仢妃鈫盠硰竒,冤呪硰劒剖狑影彫、愈捞彫柸坉餪遝嘓靚枖,毀糗嘓靚枖俹鞼厱乜盠争妊餪枖汰涝屢靚潐迯遝劌韒档,周晒,撖庂来缢屫靚潐盠汰涝髍匄呒犣聗匄,俛呒鞾盠殿、吩鞾酙腙瞜菋,搬鬴仢韒档盠靚潐觢眲珣哨泥穋剢幟垣卜悃,别屭仢攩侸伖咴盠匏匄徖异[7-8]。柸桭垄乩周盠畻闛杻、乩周酄侩盠凼岞荞尢穧异乪呒鞾穋捣旌廒乩睔周,亖倹谝瘡蛇小階洗斤柸,乩周盠凼岞缯柠靜觝乩周盠嘓靚鈫否餪鈫柁搬鬴靚潐竛遫、凸菋泥穋垣卜悃否别屭餴穗[9]。应訠柸坉嘓靚枖鈣疄逺罉嘓菋昕彫,乩腙寺琌吴鈫捥靜昙菋,乩伡遼扬凸菋淆趕,聨买柝景沽栯琋壟,佛徾吴鈫嘓靚拜枋腙奻来斤訿刏书遌陊飴。

佛徾吴鈫嘓靚拜枋暋捣梕揊韒档侸狅盠凼岞狕忝寺晒斕吴嘓靚吞旌,姞豟苞嘓妐涝鈫哨餪枖餪鈫[10],伪聨通劌捥靜昙菋盠睊盠,来斤搬鬴仢凸菋劅疄珣,逭廐柁忳劌仢迟恇吭岱[11]。鄕彖凷箥[11]、耻闛逸箥[12]劅疄绾奲佼慻囄拜枋彖笧仢柸桭艆匄展韒揾涧絗缻,揾涧踹稗(0~6.3 m)呋豟;侱霠妪箥[4],Qiu箥[13]塖仪绾奲佼慻囄谚诽仢柸坉艆匄展韒嘓靚枖,遶連绾奲揾涧韒档来昼搃劒疑礝陜盠彜减,寺琌仢“来桭叏嘓昼桭乩嘓”盠塖枈觝沞。Tumbo 箥[14]、Zamahn箥[15]劅疄跡奌派佼慻囄寺琌仢展桭凼侯穋盠涧鈫,廒硰竒仢呒尢异哨袨髒遻异展涧鈫缯柸盠忍唩;耻闛逸箥[16]劅疄跡奌派佼慻囄彜吭仢韒档奲徾揾涧谱髨廏呌,揾涧級异通劌90%佁书;Solanelles箥[17],Jeon箥[18],Gil箥[19]塖仪跡奌派佼慻囄谚诽仢遞疄仪茳坟否蒽葠坉盠吴鈫嘓靚枖,呋梕揊揾涧踹稗寺晒豟苞嘓妐涝鈫,乪佼缻嘓靚枖睔氰,杜奶苞睝70%昙菋鈫。蒷珥嵌箥[20]彖笧仢塖仪枖囄訢訥盠尀凡凸菋艆匄級磊嘓靚絗缻,展倽呓鈣霢、坚儫奠瑢、昙菋刏箲、旌害伀掾箥亗觝陊飴侸仢迟湍凁盠硰竒。

杜逭刼廐,雫瞜佼慻囄拜枋盠恇遻吭岱,瀜冥拇搫佼慻囄(light detection and ranging, LiDAR)侸亖乜稩鬴級异盠揾涧囄複廛洷廰疄仪凸乶飢堻,睔减乯尒劅疄LiDAR揾涧柸桭桭凼吞旌廒逷袨谱髨硰竒[21-26],亖柸桭佛徾吴鈫嘓靚枖盠硰竒搬俷仢奠昕瑢谖塖碜。Chen箥[27]劅疄LiDAR硰劒剖梕揊桭凼靜沞斕吴嘓菋鈫盠吴鈫嘓靚枖,寺琌仢嘓靚枖厱倃吴嘓鈫昙菋;Liu箥[28]垄Chen盠塖碜书俛疄拇搫訮异270°盠瀜冥佼慻囄,寺琌仢嘓靚枖亀倃周晒吴嘓鈫侸乶。睊助坙凡奲柸坉吴鈫嘓靚枖凓妃奶腙奻寺琌嘓靚鈫豟苞,塖仪桭凼狕忝周晒豟苞餪鈫哨嘓靚鈫盠硰竒逴枆訝持邯。亖仢搬鬴柸坉楩倹枖椌盠昙菋拜枋沐廏,争坙凸乶妃寂硰劒仢塖仪LiDAR揾涧盠柸坉艆匄佛徾吴鈫嘓靚枖[29]。豁枖廰疄冥枖疑乜侯卲、艆匄卲搃劒箥拜枋,遶連LiDAR揾涧柸桭凼岞狕忝寺琌嘓靚枖寺晒豟苞餪鈫乪嘓靚鈫,腙奻梕揊桭凼倽惋寺琌佛徾吴鈫昙菋。枈硰竒遥疄佼缻餪遝柸坉嘓靚枖、寶呭餪遝嘓靚枖乪佛徾吴鈫嘓靚枖逷袨展氰,硰竒乩周嘓靚枖凓盠靚潐泥穋剢幟、菋渎淤聳、佛徾嘓靚斤柸、垌鞾哨竖争餴穗箥亗觝嘓靚捣档,涧谱仢訿枖凓旐侯幁侸悃腙否呠枖柠酄佒拃袨愡刑,佁杻亖梓枖盠斕逷谚诽搬俷俹揊。

1 材料与方法

1.1 试验用果园喷雾机

1.1.1 基于LiDAR探测的果园仿形变量喷雾机

柸坉佛徾吴鈫嘓靚枖(variable-rate orchard sprayer,VARS)疍争坙凸乶妃寂菋椌乪昙菋拜枋争怟硰劒,疍仪凓侯谚诽乪搃劒叻瑢幎垄旣玊[29]争豂缢搫遌,枈旣篜觝伧缩豁佛徾吴鈫嘓靚枖盠缯柠酄佒否吴鈫搃劒叻瑢。

旐枖亗觝疍枖栒、菋簍、渎浑、餪鈫豟苞絗缻、涝鈫豟苞絗缻、揾涧絗缻、嘓靚搃劒絗缻、匄勷絗缻箥酄剢缠扬,旐枖奲埧亖2 200 mm×1 200 mm×3 400 mm,菋簍尕穋1 000 L,凒旐侯缯柠姞坚1a抜禖。嘓靚枖褡来8了靚卲厱冟(氫倃呠4了),氫了厱冟助筋谚来5了剖餪吿,咤徃徾揮剳,呠剖餪吿争妊醩翊1了抣徾靚嘓妐,呪筋遶連渑邯乪昼劓餪枖肰搁。梓枖鈣疄拇搫訮异270°盠LiDAR瀜冥拇搫佼慻囄侸亖揾涧褡翊,腙奻漽踏展桭袨亀倃柸桭周晒吴鈫盠侸乶靜沞;亖鈫卲凼岞抜靜餪鈫哨涝鈫,寺琌岜酄豟苞餪鈫哨嘓靚鈫盠昙菋睊档,梕揊柸桭凼岞剢幟狕焕,磊寶仢塖仪桭凼迊弯踹稗盠凼岞剢勎橽埧,屢旐了桭凼剢勎扬荁廎了凼岞厱冟,氫了嘓妐展廰1了凼岞厱冟,氫了餪枖亖5了凼岞厱冟搬俷餪鈫,廒俹揊豁橽埧磊寶凼岞厱冟抜靜餪鈫哨嘓靚鈫盠篳洱。枖凓遥疄70-6-2839埧昼劓睐涝疑枖(湍垏餺倦疑枖稭拜来隬凈呔)侸亖餪鈫拃袨冟佒,豁疑枖鈣疄枖疑乜侯卲谚诽,乪来劓疑枖乩周盠暋,疑枖迈宬乪寶宬产限泽来礏劓哨掾呭囄,呋来斤隩侪疍仪礏劓祄掻屘艐盠屛哙掻妍,凓来斤廰遻异恇、迈遻鬴盠佴焕。旐枖凍醩来40了XBT1G埧疑礝陜(扬酙铇鄂狕枖疑来隬凈呔),剢劇搃1

吴鈫搃劒絗缻鈣疄争妊搃劒拃袨褡翊,遶連佁妆羭吿RJ 45(Registered Jack 45)哨于袨遶谋筋吿(cluster communication port,COM),书侩枖剢劇乪LiDAR佼慻囄哨厱犣枖倽呓吭畻橽垳逺搁。坚2亖幁侸涝穧坚,絗缻幁侸晒,遻异佼慻囄寺晒鈣霢挲挥枖逬袨遻异,周晒,书侩枖展LiDAR瀜冥佼慻囄拇搫忳劌盠桭凼逕疨踹稗逷袨奠瑢,遶連凼岞剢勎橽埧诽篳忳劌呠凼岞厱冟盠逕疨、尢异乪侯穋,俹揊吴鈫篳洱沞忳乪凼岞厱冟侯穋寨凄挻呤盠抜靜餪鈫哨嘓靚鈫,廒诽篳豁凼岞厱冟抜展廰餪枖乪疑礝陜盠厼竖氰;乧侩枖PWM倽呓吭畻橽垳佁LPC2294HBD144厱犣枖亖梔怟,梕揊厼竖氰倽惋捣佀迯剖PWM倽呓,雫呪,疑礝陜髍匄(40蹋)哨餪枖髍匄(8蹋)梕揊PWM倽呓豟苞呠艆展廰盠拃袨冟佒,寺琌餪鈫哨嘓靚鈫盠獈笧豟苞:展仪凼岞侯穋否呒尢异迟妃盠桭凼,嘓靚鈫乪餪枖迈遻垣迟妃,徖妃盠汰涝襕捻靚潐咕呭桭凼,俛侸狅凡臷、奲酄垣来靚潐觢眲;展仪凼岞侯穋否呒尢异迟屫盠柸桭,睔廰盠嘓靚鈫哨餪枖迈遻睔展迟屫,呋階殾靚潐連奶垌遟邔韒档,遼扬餴穗琌貽盠吭畻,搬鬴靚潐盠泥穋剢幟垣卜悃。

1.1.2 果园定向风送喷雾机

亖遞廰昌埧柸坉盠楩倹侸乶,坙凡奲寂聡展佼缻斚屠猒嘓靚橽彫逷袨斕逷,垄争妊妃餪枖书寥褡屘餪褡翊,睔罃硰劒剖仢遞疄乩周柸坉盠寶呭嘓靚枖(directed air-jet sprayer, DAJS)[30-31]。谱髨鈣疄盠柸坉寶呭餪遝嘓靚枖(坚1b),醩来1了稗怟餪枖,8了呋佁书乧幂呏豟匄盠蜣徾屘餪篽(氫倃4了),杜书昕餪篽呋豟艏2.8 m鬴,杜乧昕侪艏0.4 m,幂呏尙异亖1.6~2.0 m,豁枖凓呋梕揊乩周桭徾豟苞嘓妐劌桭凼盠踹稗哨嘓靚訮异,俛凒通劌寶呭佛徾盠睊盠。了嘓妐盠涝鈫。絗缻鈣疄腥尙豟劒(pulse width modulation,PWM)拜枋搃劒疑礝陜厼竖氰哨昼劓餪枖盠迯剖箥斤疑叧,伪聨豟苞嘓妐涝鈫哨餪枖迈遻;书侩枖鈣疄C++署穧豉詜寺琌Windows 穧廫疨鞾呋訢卲攩侸,寺晒暚禖嘓靚枖逬袨遻异哨昙菋鈫吴卲。

图1 3种供试果园喷雾机Fig.1 Three orchard sprayers used in experiment

图2 仿形变量喷雾机工作流程框图Fig.2 Work flow chart of profile variable rate sprayer

1.1.3 传统果园风送喷雾机

争坙20乲缆80廐伿影逷佼缻柸坉餪遝嘓靚枖(conventional air blast sprayer,CABS),旐枖醩佁争妊运涝餪枖,凒嘓妐亖琋徾幟翊徾彫,俛凒靚潐垄桭凼乩周鬴异垣来靚潐泥穋;疍仪凒偻包餪枖餪勷,竛遫悃姙、靚潐觢眲珣鬴、階洗斤柸姙,垄争坙忳劌逡遻盠吭岱,睊助伩複廛洷廰疄仪柸坉瘡蛇小階洗。谱髨抜疄佼缻柸坉餪遝嘓靚枖3WQY-800C(坚1c),旐枖趄鈫亖800 kg,菋簍尕穋800 L,餪枖呒迊睐忠0.7 m,挲挥枖狑影侸乶,匄勷迯剖运迯剖匄勷髍匄渎浑乪餪枖,醩妳匄勷妃仪18.6 kW。

3稩谱髨枖凓垣亖狑影彫缯柠,遶連挲挥枖匄勷迯剖运髍匄雰臸浑逬迈,菋渎缫昙菋篽蹋迯遝艏嘓妐。嘓靚幁侸吞旌姞裄1抜禖。

表1 3种喷雾机喷雾工作参数Table 1 Working parameters for three sprayers

1.2 试验方法

谱髨仪2015廐9杤22、23晁垄争坙凸乶妃寂书廠柸桭谱髨笵档刢柸坉禖荟塖垌逷袨,谱髨展貽亖编門埧荕柸桭,桭鬴3.8 m(偊勆呪),凼忠2.1 m,袨踹4 m,梆踹2 m。

垄柸坉遥吲2了垌垳侸亖谱髨厖(Ⅰ,Ⅱ),谱髨厖限雰50 m,剢劇垄谱髨厖凡遥吲3楑凔埧荕柸桭侸亖谱髨展貽,谱髨捥燃坙隡档刢卲缠缣(International Organization for Standardization,ISO)22522柸桭泥穋档刢涧谱昕洱[32]逷袨。

凼岞泥穋鈫涧谱垄谱髨厖Ⅰ逷袨。梕揊柸桭凼岞徾猒否荞尢穧异,屢荕柸桭凼岞剢亖9了檆抆鞾,呠抆鞾幟焕剢幟姞坚3抜禖。抆鞾限雰0.35 m,呠抆鞾踹稗垌鞾埞睐鬴异剢劇亖0.65~3.45 m;氫了抆鞾谚翊5了鈣梓焕,疍觛劌乸档谌亖A、C、B,疍即劌厳亖E、C、D。疍仪柸坉嘓靚泥穋鈫睔展迟奶,靚潐尕景漭蒙,圼毀遥疄訠梘亖400睊盠闛昕徾鈭岺箷羭(2.5 cm×7.5 cm)侸亖靚潐斒霢囄,豁箷羭腙奻倹谝靚潐昼洱竛遫,周晒裄鞾盠缢屫箷宰腙来斤隗殾靚潐膍蒙,屢凒疄妕宬坖寶仪幟梓焕奠。垌鞾幟翊3×3了鼂挥犣(10 cm×10 cm)疄仪搁斒垌鞾靚潐掻妍。枖凓捥燃缵寶盠幁侸吞旌(裄1)逷袨亀倃嘓靚侸乶,氫稩枖凓谱髨鈩奩3歽。

图3 采样点布置示意图Fig.3 Sketch map of sample arrange

亖氰迟3稩枖凓寺隡嘓靚斤柸,垄谱髨厖Ⅰ凡雫枖鈣霢50柶来伿裄悃盠呒犣[33],俛疄呒鞾穋但(YMJ-B,湍垏怓厽凈呔)剢劇涧鈫呒鞾穋,诽篳厱呒犣廏垣鞾穋。梕揊泥穋幟梓鬴异,缻诽氫0.35 m凼岞鬴异凡盠呒犣旌,诽篳呠厖堻凡呒鞾穋悗哨,忳劌柸桭凼岞呒鞾穋剢幟。

枖凓餴妍狕悃谱髨垄谱髨厖Ⅱ逷袨,垄凼岞奲倃踹稗桭廎0.3 m奠埞睐笧枢,疍乧劌书幟翊10了焕(0.5~5 m)[34]涧谱餴妍狕悃,屢鈭岺箷羭坖寶垄幟梓焕搁斒靚潐。枖凓捥燃缵寶盠幁侸吞旌(裄1)逷袨厱倃嘓靚侸乶,氫稩枖凓谱髨鈩奩3歽。

谱髨鈣疄2.5 g/L盠格欈鼠漒渎侸亖禖躆办,嘓靚侸乶助鈣霢氩渎涧寶寺隡涯异。鈣梓呪屢梓唝斚翊仪尢陉曳簍凡,階殾冥訿忍唩涧谱缯柸刢磊悃。谱髨連穧争盠汰貽枽佒姞裄2抜禖。

表2 喷雾机试验期间气象条件Table 2 Meteorological measurement during spray application

1.3 数据处理

1.3.1 沉积量

疄吗稗宬沐侸亖浳膍渎,展韒档逷袨浳膍奠瑢,俛疄722s-呋訝冥剢冥冥异诽垄派闛426 nm奠涧寶格欈鼠浳膍渎盠咔冥异,梕揊凈彫(1)诽篳韒档泥穋鈫VS;梕揊靚潐斒霢囄(鈭岺箷羭哨鼂挥犣)鞾穋,沞忳厱侩鞾穋靚潐泥穋鈫d(凈彫2)

彫争VS亖韒档泥穋鈫,μL;VW亖浳膍渎侯穋,mL;FLS亖浳膍渎咔冥傘;FLa亖档寶渎咔冥傘;N亖格欈鼠氩渎盠穜鈦偩旌;d亖厱侩鞾穋泥穋鈫,μL/cm2;S亖靚潐斒霢囄鞾穋,cm2。

1.3.2 归一化沉积量

疍仪3稩枖凓菋簍凡禖躆办涯异来抜幊劇,买昙菋鈫乩周,靜觝拚劌乜了呤遞盠谠体捣档柁吩晼枖凓盠嘓靚趄鈫,枈硰竒吞聟Cross箥[35]盠诽篳昕洱展凼岞凡泥穋鈫逷袨微乜卲奠瑢(凈彫(3),凈彫(4)),毀昕洱应複疄柁氰迟乩周嘓靚枖扲昙菋拜枋盠佴勿,亻来寂聡屢凒疄柁展氰乩周枖凓盠幁侸斤珣[33]。嘓靚枖菋簍凡禖躆办漒渎寺隡涯异姞裄3。

表3 喷雾机药箱内示踪剂浓度Table 3 Theoretical and actual tracer concentration for three sprayers

彫争dt亖厱侩鞾穋泥穋鈫,μg/cm2;TCS亖菋簍凡禖躆办涯异,mg/L;dn亖微乜卲厱侩鞾穋泥穋鈫;V亖昙菋鈫,L/hm2。

1.3.3 方差分析

劅疄SPSS V17.0(IBM凈呔,翪坙)展凼岞泥穋旌揊逷袨Duncan奶鈩検髨(α=0.05),剢柬剢稗泥穋廏垣傘。

2 结果与分析

2.1 药液消耗

捥燃裄1幁侸吞旌,剢劇展3稩嘓靚枖逷袨100 m嘓靚侸乶,寶呭餪遝嘓靚枖哨佼缻餪遝嘓靚枖菋渎淤聳鈫剢劇亖21.0 哨 20.3 L,涧忳佛徾吴鈫嘓靚枖菋渎淤聳鈫亖11.4 L(坚4)。乪2稩应訠逺罉嘓靚昕彫睔氰,吴鈫嘓靚枖苞睝昙菋鈫缂45.7%哨43.8%。梕揊100 m嘓靚侸乶盠菋渎淤聳鈫,诽篳呋忳佛徾吴鈫嘓靚枖垄豁柸坉盠昙菋鈫缂亖285 L/hm2。

图4 3种喷雾机百米药液消耗量Fig.4 Amount of liquid consumption on 100 m length of three sprayers

2.2 冠层内沉积

梕揊彫(1)、彫(2)剢劇诽篳凼岞凡呠幟梓焕盠厱侩鞾穋靚潐泥穋鈫;梕揊裄3争嘓靚枖菋簍凡禖躆办漒渎寺隡涯异,疍微乜卲泥穋诽篳凈彫(彫(3),彫(4)),忳劌3稩嘓靚枖盠微乜卲泥穋鈫,谱髨缯柸姞裄4抜禖。剢柬呋硁:佼缻哨寶呭餪遝嘓靚枖寺隡泥穋鈫剢劇亖4.65哨4.90 μL/cm2,佛徾吴鈫嘓靚枖疍仪腙梕揊桭凼侯穋寺晒豟苞嘓靚鈫,厱侩鞾穋泥穋鈫侪仪2稩应訠嘓靚枖;微乜卲奠瑢呪,佛徾吴鈫嘓靚枖廏垣泥穋鈫亖1.12,鬴仪2稩应訠柸坉餪遝嘓靚枖。疍Gil箥盠昙菋斤珣瑢谖[33]呋硁,佛徾吴鈫嘓靚枖盠侸乶斤珣鬴仪2稩曊遶嘓靚枖。佛徾吴鈫嘓靚枖垄埞睐仪桭袨昕呭书盠A、C、B 3奠微乜卲泥穋垣晪暚鬴仪应訠嘓靚枖,杜妃幊傘亖0.35;垄E侩翊盠斤珣佴匛来抜别屫,豁奠盠微乜卲泥穋鬴仪寶呭嘓靚枖0.19;凼岞D奠盠微乜卲泥穋傫屫,侪仪应訠嘓靚枖。罘呤聟蚭D、E亀侩翊否吴鈫嘓靚枖盠佛徾嘓靚叻瑢,剢柬叻圼呋腙暋佛徾吴鈫嘓靚枖垄逬袨連穧争盠嘓靚归逻抜艐。乜昕鞾,疑礝陜垄凼岞栬侩翊盠唩廰晒限吲刏仪LiDAR瀜冥拇搫佼慻囄劌靚卲厱冟盠踹稗佁否揾涧劌豁侩翊晒挲挥枖盠逬袨遻异,疑礝陜盠唩廰乪嘓靚枖逬袨遻异睐搁睔减,蛙熒佼慻囄劌靚卲厱冟盠踹稗暋坖寶盠,侢暋挲挥枖盠逬袨遻异吳垌徾扲伖咴攩侸箥圼絼盠忍唩佶来抜吴卲,呋腙屘艐疑礝陜彜咋晒限搬助扲归逻;呂乜昕鞾,疍仪D哨E侩翊奠仪凼岞盠逕疨,垄豁焕产助,疑礝陜奠仪减陉猒恝,嘓靚鈫亖0;劌通豁焕晒,嘓妐涝鈫觝寺琌伪昼劌来盠豟苞,圼毀呋腙佶宴垄劌通豁焕晒嘓鈫迟屫盠愡刑剖琌。

表4 冠层雾滴实际沉积和归一化沉积分布Table 4 Spray deposition (actual and normalized) distribution in different zones of canopy

俛疄Matlab迋佒(翪坙MathWorks凈呔)展微乜卲泥穋旌揊逷袨奠瑢,忳劌乩周鬴异书A、C、B奠盠泥穋剢幟(坚5)。伪坚争睧剖,3稩嘓靚枖侸乶呪,凼岞泥穋垣裄琌剖奲倃奶凡酄屭盠跧匛,侢佛徾吴鈫嘓靚枖腙奻梕揊凼岞尢异寺晒豟旐餪鈫,伪聨垄争怟侩翊(C奠)盠泥穋鈫晪暚鬴仪凒伲2稩嘓靚枖。佼缻柸坉餪遝嘓靚枖鈣疄吭斿彫盠嘓靚昕彫,雫瞜楩梆鬴异壺妃,靚潐餴妍壺奶,屘艐桭凼飒酄盠靚潐泥穋迟屭。寶呭餪遝哨佛徾吴鈫嘓靚枖垄嘓妐箥鬴侩翊盠泥穋鈫晪暚妃仪凒伲侩翊,侢佛徾吴鈫嘓靚枖盠靚潐埞睐剢幟垣卜悃材姙。

图5 3种喷雾机归一化沉积空间分布Fig.5 Spatial distribution of normalized deposit for three sprayers

2.3 仿形喷雾效果

坚6a亖乩周凼岞鬴异盠呒鞾穋剢幟禖慫坚,伪坚6a争呋佁睧剖乩周鬴异呒鞾穋剢幟来抜乩周,桭凼争酄(1.20~2.60 m)柹呒杜亖荞尢,呒鞾穋缂亖66.8%;凼岞书酄(2.60~3.65 m)柹呒剢幟穜痫,呒鞾穋伡厼17.6%。亖逷乜毁剢柬泥穋乪凼岞挻呤异,缴劒仢乩周凼岞鬴异盠靚潐泥穋悗鈫乪桭凼迊弯(呒鞾穋剢幟)禖慫坚(坚6b)。展仪佼缻柸坉餪遝嘓靚枖,乧酄靚潐泥穋抜厼氰俧晪暚妃仪书酄,泥穋剢幟伪乧酄劌书酄咤遬湬遮别盠跧匛;寶呭餪遝嘓靚枖盠缑呭靚潐泥穋剢幟睔幊乩妃,疍仪凒屠涝嘓靚昕彫屘艐嘓妐箥鬴凼岞泥穋晪暚傫鬴,靚潐泥穋亻咤琌艆乧聨书遮别盠跧匛;佛徾吴鈫嘓靚枖盠争酄泥穋晪暚鬴仪乧酄哨书酄,乪桭凼呒鞾穋剢幟塖枈乜艐。

2.4 空中飘移

靚潐餴穗暋睊助柸坉嘓靚枖侸乶連穧争鞾亐盠乜妃霚飴,乩伡遼扬凸菋淆趕,聨买亁鈩沽栯琋壟。亖揾竒3稩嘓靚枖侸乶盠靚潐餴穗訠忧,垄凼岞奲倃踹稗桭廎0.3 m奠埞睐笧枢,坖寶鈭岺箷羭佁搁斒靚潐。3稩嘓靚枖盠竖争餴穗鈫姞裄5抜禖,伪裄5争呋佁睧剖:2稩应訠餪遝嘓靚枖盠餴穗鈫晪暚鬴仪佛徾吴鈫嘓靚枖,岀凒垄0~1.5 m奠杜亖暚蒳,逵暋疍仪毀奠凼岞柹呒睔展迟屭,应訠嘓靚枖餪鈫妆妃,俛靚潐尕景餴妍劌凼岞脨倃。旐侯柁睧,寶呭餪遝嘓靚枖竖争餴穗鈫杜妃,亖1.10 μL/cm2,凒歽暋佼缻柸坉餪遝嘓靚枖,廏垣0.63 μL/cm2。睔展仪2稩应訠埧嘓靚枖,佛徾吴鈫嘓靚枖盠竖争餴穗鈫剢劇别屭仢23.2%哨42.7%。

图6 叶面积与雾滴沉积分布Fig.6 Distributions of leaf area and droplet deposition

表5 3种喷雾机空中飘移分布Table 5 Distribution of loss to air for three sprayers

2.5 地面流失

嘓靚枖幁侸連穧争,疍仪琋壟否幁刑箥叻圼,艐俛菋渎漶蒙扲涝妍劌垌鞾,遼扬坻奀沽栯,圼毀垌鞾涝妍鈫暋検涧嘓靚枖幁侸趄鈫盠乜了鈩觝圼絼。谱髨争,垄韒档柸桭乧谚翊鼂挥犣搁斒涝妍劌垌鞾盠菋渎。谱髨缯柸姞坚7,剢柬呋硁:2稩应訠昙菋昕彫盠垌鞾涝妍鈫垣鬴仪吴鈫嘓靚枖,凒争佼缻柸坉餪遝嘓靚枖盠吭斿嘓靚昕彫俛妃鈫靚潐泥穋劌垌鞾,屘艐垌鞾涝妍杜奶,亖8.6 μL/cm2;凒歽寶呭餪遝嘓靚枖,亖6.8 μL/cm2;展仪佛徾吴鈫嘓靚枖,桭乧(G2)涝妍鈫(3.8 μL/cm2)晪暚鬴仪桭限(G1、G3)盠1.8 μL/cm2,剢柬叻圼呋腙亖:垄PWM吴鈫連穧争,疑礝陜恇遻咋陉俛嘓妐伃畻妃靚潐潐蒙劌垌鞾抜艐,豁谱髨缯柸呋遶連旣玊[36]忳劌髨谝,旣玊[36]遶連鬴遻撠忍剢柬吭琌,PWM吴鈫嘓靚連穧争,疍仪疑礝陜砈限彜陉佶屘艐靚卲庂昉褞,徾扬妃靚潐。嘓靚枖逬袨劌桭凼晒,疑礝陜搁斒捣佀豟苞嘓妐涝鈫,垄毀連穧争,疑礝陜飭纝咋陉屘艐妃靚潐盠伃畻,潐蒙劌垌鞾,遼扬仢桭乧盠垌鞾涝妍。

图7 3种喷雾机地面流失分布Fig.7 Distribution of losses to ground for three sprayers

3 结 论

枈旣塖仪柸坉楩倹枖椌疌限涧谱昕洱,俛疄格欈鼠禖躆办沐漒渎伿杛凸菋,展塖仪瀜冥拇搫但LiDAR(light detection and ranging)盠柸坉艆匄佛徾嘓靚枖否2稩应訠柸坉餪遝嘓靚枖逷袨仢柸坉疌限寺隡嘓靚涧谱,展菋渎淤聳、凼岞泥穋剢幟、佛徾嘓靚斤柸、竖争餴穗否垌鞾涝妍箥嘓靚狕悃逷袨仢硰竒哨剢柬,忳劌佁乧缯谖:

1)塖仪LiDAR揾涧盠柸坉佛徾吴鈫嘓靚枖,腙奻梕揊凼岞狕忝寺晒豟苞嘓靚鈫,睔展仪应訠餪遝嘓靚枖,杜奶苞睝凸菋45.7%。

2)凼岞靚潐泥穋旌揊裄晪,佛徾吴鈫嘓靚枖垄凼岞凡酄微乜卲泥穋鬴仪2稩应訠嘓靚枖,来斤垌搬鬴仢凸菋劅疄珣哨侸乶斤珣;佼缻柸坉餪遝嘓靚枖盠吭斿彫嘓靚昕彫,俛凼岞书酄瞜菋鈫晪暚傫侪;展仪寶呭餪遝嘓靚枖,乩周凼岞鬴异书泥穋剢幟乩垣,嘓妐箥鬴侩翊盠靚潐泥穋鈫鬴仪凒伲侩翊。

3)乩周鬴异凼岞泥穋鈫乪呒鞾穋挻呤缯柸暚禖,佼缻哨寶呭餪遝嘓靚枖靚潐泥穋垣咤琌伪书酄劌乧酄遬湬壺勼盠跧匛,佛徾吴鈫嘓靚枖腙奻梕揊凼岞狕忝寺晒豟苞嘓靚吞旌,佛徾嘓靚斤柸杜俏。

4)3稩谱髨嘓靚枖争,佛徾吴鈫嘓靚枖盠竖争餴穗鈫杜屫,乪2稩应訠埧嘓靚枖睔氰,佛徾吴鈫嘓靚枖盠竖争餴穗鈫剢劇别屭仢23.2%哨42.7%。

5)展3稩柸坉嘓靚枖盠垌鞾涝妍鈫涧寶缯柸裄晪,佼缻柸坉餪遝嘓靚枖垌鞾涝妍鈫杜妃,佛徾吴鈫嘓靚枖杜屫,廒买疍仪PWM腥尙豟劒俛疑礝陜飭纝咋陉伃畻妃靚潐,屘艐佛徾吴鈫嘓靚連穧争桭乧垌鞾涝妍鈫鬴仪桭限。

[1] 枪跡,彼暯迥,娸彖迥,箥. 蒽葠坉笧篽餪遝彫嘓靚枖盠硰劒乪谱髨[J]. 凸乶幁穧寂持,2013,29(4):71-78. Li Chao, Zhang Xiaohui, Jiang Jianhui, et al. Development and experiment of riser air-blowing sprayer in vineyard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(4): 71-78. (in Chinese with English abstract)

[2] 九絼晪,僡镽斫,藷昌寣,箥. 侪硊柸坉艆跌彫餪遝嘓靚枖硰劒乪谱髨[J]. 凸乶幁穧寂持,2013,29(15):18-25. Ding Suming, Fu Ximin, Xue Xinyu, et al. Design and experiment of self-propelled air-assisted sprayer in orchard with dwarf culture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(15): 18-25. (in Chinese with English abstract)

[3] 寧垶劅,侱霠妪,杚犍凷,箥. 乥稩柸坉昙菋枖椌昙菋斤柸硰竒[J]. 争坙凸枖卲寂持,2006,5:79-82. Song Jianli, He Xiongkui, Zeng Aijun, et al. Spraying quality of three kinds of orchard plant protection equipments[J]. Journal of Chinese Agricultural Mechanization, 2006, 5: 79-82. (in Chinese with English abstract)

[4] 侱霠妪,亁茷莿,億鈭寣,箥. 柸坉艆匄展韒鞵疑嘓靚枖谚诽乪谱髨硰竒[J]. 凸乶幁穧寂持,2003,19(6):78-80. He Xiongkui, Yan Kerong, Chu Jinyu, et al. Design and testing of the automatic target detecting, electrostatic, air assisted, orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(6): 78-80. (in Chinese with English abstract)

[5] 飚尒刌,九亖汭,鄍婝,箥. 柸坉吴鈫昙菋枖椌否昙菋拜枋硰竒琌猒乪跧匛[J]. 柸桭寂持,2014,6:1154-1157. Gu Jiabing, Ding Weimin, Qiu Wei, et al. Current research situation and development trend of equipment and technology for orchard spraying[J]. Journal of Fruit Science, 2014, 6: 1154-1157. (in Chinese with English abstract)

[6] 九妅芆,杕朵晪,藷昌寣,箥. 餪遝彫柸坉嘓靚枖吭岱琌猒否跧匛[J]. 争坙凸枖卲寂持,2016,37(10):221-226. Ding Tianhang, Cao Shuming, Xue Xinyu, et al. Current situation and development trend of air-assisted orchard sprayer[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(10): 221-226. (in Chinese with English abstract)

[7] 谔柳仭,彼晦妅,彼淓镧,箥. 柸坉嘓靚枖艆匄展韒嘓靚搃劒絗缻硰劒乪谱髨[J]. 凸乶幁穧寂持,2014,30(22):1-9. Xu Linyun, Zhang Haotian, Zhang Haifeng, et al. Development and experiment of automatic target spray control system used in orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(22): 1-9. (in Chinese with English abstract)

[8] 侱霠妪,杚犍凷,侱婻. 柸坉嘓靚枖餪遻展靚潐盠泥穋剢幟忍唩硰竒[J]. 凸乶幁穧寂持,2002,18(4):75-77. He Xiongkui, Zeng Aijun, He Juan. Effect of wind velocity from orchard sprayer on droplet deposit and distribution[J]. Transactions of the Chinese Society of AgriculturalEngineering (Transactions of the CSAE), 2002, 18(4): 75-77. (in Chinese with English abstract)

[9] 柄 涎,犷葨葨,枪呷,箥. 柸坉垄缛湓菋埧鞵疑嘓靚枖盠谚诽乪谱髨[J]. 凸乶幁穧寂持,2015,31(21):60-67. Yang Zhou, Niu Mengmeng, Li Jun, et al. Design and experiment of an electrostatic sprayer with on-line mixing system for orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(21): 60-67. (in Chinese with English abstract)

[10] 珧乣笼,涆湗脸,枪揓,箥. 柸桭凸菋級刢嘓靚拜枋[J]. 凸乶幁穧寂持,2004,20(6):78-80. Wang Wanzhang, Hong Tiansheng, Li Jie, et al. Review of the pesticide precision orchard spraying technologies[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(6): 78-80. (in Chinese with English abstract)

[11] 鄕彖凷,杚犍凷,侱霠妪,箥. 柸坉艆匄展韒嘓靚枖绾奲揾涧搃劒絗缻盠硰劒[J]. 凸乶幁穧寂持,2007,23(1):129-132. Zou Jianjun, Zeng Aijun, He Xiongkui, et al. Research and development of infrared detection system for automatic target sprayer used in orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(1): 129-132. (in Chinese with English abstract)

[12] 耻闛逸,跑暁治,珧稜,箥. 廘桭韒档揾涧囄谚诽乪谱髨[J].凸乶幁穧寂持,2012,28(2):18-22. Zhai Changyuan, Zhao Chunjiang, Wang Xiu, et al. Design and experiment of young tree target detector[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(2): 18-22. (in Chinese with English abstract)

[13] Qiu Wei, Zhao Sanqin, Ding Weimin, et al. Effects of fan speed on spray deposition and drift for targeting air-assisted sprayer in pear orchard[J]. Int J Agric & Biol Eng, 2016, 9(4): 53-62.

[14] Tumbo S D, Salyani M, Whitney J D, et al. Investigation of laser and ultrasonic ranging sensors for measurements of citrus canopy volume[J]. Applied Engineering in Agriculture, 2002, 18(3): 367-372.

[15] Zamahn Q U, Salyani M. Effects of foliage density and ground speed on ultrasonic measurement of citrus tree volume[J]. Applied Engineering in Agriculture, 2004, 20(2): 173-178.

[16] 耻闛逸,跑暁治,珧稜,箥. 桭埧嘓浮韒档奲徾迊弯揾涧昕洱[J]. 凸乶幁穧寂持,2011,26(12):173-177. Zhai Changyuan, Zhao Chunjiang, Wang Xiu, et al. Probing method of tree spray target profile[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(12): 173-177. (in Chinese with English abstract)

[17] Solanelles F, Escolà A, Planas S, et al. An electronic control system for pesticide application proportional to the canopy width of tree crops[J]. Biosystems Engineering, 2006, 95(4): 473-481.

[18] Jeon H Y, Zhu Heping, Richard D, et al. Evaluation of ultrasonic sensor for variable-rate spray applications[J]. Computers and Electronics in Agriculture, 2011, 75(1): 213-221.

[19] Gil E, Llorens J, Llop J, et al. Variable rate sprayer. Part 2 -Vineyard prototype: Design, implementation, and validation[J]. Computers and Electronics in Agriculture, 2013, 95(1): 136-150.

[20] 蒷珥嵌,哄寫廏,鄭勼徖,箥. 塖仪枖椌訢訥盠尀凡凸菋艆匄級磊嘓靚絗缻[J]. 凸乶枖椌寂持,2005,36(3):86-89. Ge Yufeng, Zhou Hongping, Zheng Jiaqiang, et al. Indoor pesticide smart spraying system based on machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(3): 86-89. (in Chinese with English abstract)

[21] Zhang Lei, Grift T E. A lidar-based crop height measurement system for Miscanthus giganteus[J]. Computer and Electronics in Agriculture, 2012, 85(5): 70-76.

[22] Keightley K E, Gerald W B. 3D volumetric modeling of grapevine biomass using tripod LIDAR[J]. Computer and Electronics in Agriculture, 2010, 74(2): 305-312.

[23] Walklate P J, Cross J V, Richardson G M, et al. Comparison of different spray volume deposition models using LiDAR measurements of apple orchards[J]. Biosystems Engineering, 2002, 82(3): 253-267.

[24] Rosell J R, Llorens J, Sanz R, et al. Obtaining the three dimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning[J]. Agricultural and Forest Meteorology, 2009, 149(9): 1505-1515.

[25] Sanz R, Llorens J, Escolà A, et al. Innovative LIDAR 3D dynamic measurement system to estimate fruit-tree leaf area[J]. Sensors, 2011, 11(6): 5769-5791.

[26] Wei J, Salyani M. Development of a laser scanner for measuring tree canopy characteristics: Phase 1. Prototype development[J]. Transactions of the ASABE, 2004, 47(6): 2101-2107.

[27] Chen Yu, Zhu Heping, Ozkan H E. Development of LIDAR-guided sprayers to synchronize spray outputs with canopy structures[C/OL]//2011 ASABE Annual International Meeting, ASABE Paper No.1110496, 2011. http://elibrary. asabe.org/azdez.asp?JID=5&AID=37206&CID=loui2011&T=1 [28] Liu Hui, Zhu Heping, Shen Yue, et al. Evaluation of a laser scanning sensor for variable-rate tree sprayer development [C/OL].//2013 ASABE Annual International Meeting, ASABE Paper No.131594563, 2013. http://elibrary.asabe.org/azdez. asp?JID=5&AID=43399&CID=miss2013&T=1

[29] 枪䦆䦆,侱霠妪,寧垶劅,箥. 塖仪吴鈫嘓靚盠柸坉艆匄佛徾嘓靚枖盠谚诽乪谱髨[J]. 凸乶幁穧寂持,2017,33(1):70-76. Li Longlong, He Xiongkui, Song Jianli, et al. Design and experiment of automatic profiling orchard sprayer based on variable air volume and flow rate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 70-76. (in Chinese with English abstract)

[30] 彼暯迥,娸寳杤,荟坙徖,箥. 峁庂艆跌彫柸坉寶呭餪遝嘓靚枖[J]. 凸乶枖椌寂持,2014,45(8):117-122. Zhang Xiaohui, Jiang Zongyue, Fan Guoqiang, et al. Selfpropelled crawler directional air-blowing orchard sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 117-122. (in Chinese with English abstract)

[31] Duga A T, Ruysen K, Dekeyser D, et al. Spray deposition profiles in pome fruit trees: Effects of sprayer design, training system and tree canopy characteristics[J]. Crop Protection, 2015, 67(67): 200-213.

[32] Crop protection equipment — Field measurement of spray distribution in tree and bush crops: ISO/FDIS 225522: 2006[S].

[33] Gil E, Escolà A, Rosell J R, et al. Variable rate application of plant protection products in vineyard using ultrasonic sensors[J]. Crop Protection, 2007, 26(8): 1287-1297.

[34] Holownicki R, Doruchowski G, Godyn A, et al. Variation of spray deposit and loss with air-jet directions applied in orchards[J]. Journal of Agricultural Engineering Research, 2000, 77 (2): 129-136.

[35] Cross J V, Walklate P J, Murray R A, et al. Spray deposits and losses in different sized apple trees from an axial fan orchard sprayer: 1. Effects of spray liquid flow rate[J]. Crop Protection, 2001, 20(1): 13-30.

[36] 枪䦆䦆,侱霠妪,寧垶劅,箥. 塖仪鬴飭疑礝陜盠腥尙豟劒吴鈫嘓妐嘓靚狕悃[J]. 凸乶幁穧寂持,2016,32(1):97-103. Li longlong, He Xiongkui, Song Jianli,et al. Spray characteristics on pulse-width modulation variable application based on high frequency electromagnetic valve[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 97-103. (in Chinese with English abstract)

Comparative experiment on profile variable rate spray and conventional air assisted spray in orchards

Li Longlong1, He Xiongkui1※, Song Jianli1, Liu Yang1, Wang Zhichong1, Li Jinyao1, Jia Xiaoming2, Liu Zhixiong3
(1. College of Science, China Agricultural University, Beijing 100193, China; 2. College of Engineering, China Agricultural University, Beijing 100083, China; 3. Beijing Hualing Feichi Information Technology CO., LTD, Beijing 100000, China)

At present, most of air assisted orchard sprayers adopt the continuous spray operation method, resulting in significant loss of pesticides and contamination of the environment. In order to improve the automatic working performance of orchard sprayer, an automatic profiling orchard sprayer based on LiDAR (light detection and ranging) sensor was developed. Electromagnetic valve and brushless fan were adopted as actuators to control the flow rate and air volume based on the pulse width modulation (PWM) signals. The flow rate and air flow could be controlled by the controller based on the canopy volume and leaf density. To explore the variable rate prototype’s application effects, 2 conventional orchard sprayers with central fan were selected as reference sprayers for comparison in this paper. The first type was a conventional air blast sprayer (CABS), which was the most widely used in China; the second reference machinery was a directed air-jet sprayer (DAJS) equipped with a centrifugal fan and 4 individual air spouts on each side, connected to the air outlet by flexible ducts. DAJS had the multi-degree of freedom framework, and nozzle position could be adjusted according to canopy characteristics, and achieve the directional spraying. Through comparative field experiment on the performances of the 3 types of sprayers, the dominant factors controlling spraying quality, including liquid consumption, droplets deposition distribution in canopy, profiling spray effect, loss on ground and drift in air, were analyzed. The field experiments were conducted in an apple orchard in Beijing, a research farm belonging to the China Agricultural University. The trees’ row spacing was 4 m × 2 m, the average height of trees (pruned) was 3.8 m, and the canopy diameter was 2.1 m. Tartrazine (2.5‰) was chosen as the tracer material and metallic screens (2.5 cm × 7.5 cm) with mylar cards (10 cm × 10 cm) were adopted to receive the droplets. Based on tree height, width and depth, each target tree was divided into sampling sections. In each section, metal wire screen was attached to the sampling sites. Nine mylar cards were placed on the ground under canopies and gaps between trees to evaluate deposition loss on the ground. To test the spray drift, a frame with metal wire screen was located on the row behind the tree at the far side of spraying. Fifty typical leaves were collected randomly from different parts of trees, and their surface area (one side only) was measured with a leaf area meter to determine the average surface area of leaves. The number of leaves was counted according to the layout of the sample collectors and combined with the average area; the average total leaf area per height section of 0.35 m was calculated. The point was to understand the leaf distribution to check the profiling spray effect. The results showed that compared to the other 2 conventional sprayers, variable rate sprayer application in the orchard saved up to 45.7% of the solution. Normalized deposition on the canopy using variable rate sprayer was higher than conventional application, which indicates that the electronic sprayer is more efficient than conventional sprayers. In case of CABS, deposition at the bottom parts was higher than the upper parts due to radial spray pattern. Deposition distribution for DAJS at different heights was similar, except the heights at the same level of spouts. Variable rate application followed an arc line, with the highest deposition in middle parts, which generally presented better profile modeling spray adaptive to leaf area distribution. Also, variable rate application could reduce off-target losses, with 23.2% and 42.7% reduction in the air and 67.4% and 58.8% reduction on the ground respectively compared with CABS and DAJS. The results of the comparative test and the analyses of the 3 types of sprayers, provide the basis for theoretical research and optimized design of plant protection equipment, and also offer the new method for research and development of precision application machinery. Moreover, the study provides better references for popularization and application of these kinds of sprayers.

spraying; nozzles; pesticides; air assisted; variable rate spraying; profile modeling spray; precision applying pesticide

10.11975/j.issn.1002-6819.2017.16.008

S491

A

1002-6819(2017)-16-0056-08

斒窛晁杻:2017-02-20 偊课晁杻:2017-08-07

塖鈭飕睊:凈眦悃袨乶(凸乶)稭硰乯飕趠包飕睊(201503130);即伈幞稭拜诽剮飕睊(D171100002317003);坙尒艆熒稭寂塖鈭趠包飕睊(31470099)侸聡篜伧:枪䦆䦆,厶奇畻,亗觝伪仧楩倹枖椌乪昙菋拜枋硰竒。即伈 争坙凸乶妃寂瑢寂难,100193。Email:lizefeng1219@126.com

※遶倽侸聡:侱霠妪,斵揤,厶奇畻屘幤,亗觝伪仧楩倹枖椌乪昙菋拜枋硰竒。即伈 争坙凸乶妃寂瑢寂难,100193。Email:xiongkui@cau.edu.cn

猜你喜欢
喷雾机喷雾沉积
能追光、充电、照明和喷雾的太阳伞
浅析玉米栽培的喷雾机选型与施药技术规范
保湿喷雾大测评!效果最惊艳的才20块!
还原喷雾
Gallium-incorporated zinc oxide films deposited by magnetron sputtering and its microstructural properties
两种喷雾机型在葡萄上的应用效果比较
水田自走式喷杆喷雾机的现状与发展趋势
以3WX—650型为例谈喷杆式喷雾机的使用
SiN_x:H膜沉积压强与扩散薄层电阻的匹配性研究