计东海+高月洁
摘 要:為了研究实Banach空间中有界闭凸集有唯一完备化集的条件, 总结了这一方面的已知结果。 在此基础上, 给出了Banach空间中有界闭凸集有唯一完备化集的几个充要条件和一个充分条件。 拓展了(K,u)-完备集的定义, 并讨论在实Banach空间中此概念与唯一完备化集的关系。
关键词:(K,u)-完备集; 完备化集; 有界闭凸集
DOI:10.15938/j.jhust.2017.03.022
中图分类号: O189.11
文献标志码: A
文章编号: 1007-2683(2017)03-0121-06
Abstract:In order to study the conditions for bounded closed and convex sets to have a unique completion in real Banach spaces, known results in this direction are summarized. Based on this, a sufficient condition as well as some necessary and sufficient conditions for bounded closed and convex sets to have a unique completion are provided. The notion of (K, u)completeness is extended, and the relation of this notion to the uniqueness of completion in real Banach spaces is discussed.
Keywords:(K, u)completeness; completion of sets; bounded closed and convex sets
参 考 文 献:
[1] BLANCE. Les Ensembles Surconvexes Plans[J]. Annales Scientifiques de l′cole Normale Supérieure, 1943, 60: 215-246.
[2] MORENO J P, SCHNEIDER R. Diametrically Complete Sets in Minkowski Spaces[J]. Israel Journal of Mathematics, 2012, 191(2): 701-720.
[3] MALUTA E. Uniformly Normal Structure and Related Coefficients[J]. Pacific Journal of Mathematics, 1984, 111(2): 357-369.
[4] PAPINI P L. Completion and Balls in Banach Spaces[J]. Annals of Functional Analysis, 2015, 6(1): 24-33.
[5] MORENO J P, PAPINI P L, PHELPS R R. Diametrically Maximal and Constant Width Sets in Banach Space[J]. Canadian Journal of Mathematics, 2006, 58(4): 820-842.
[6] MORENO J P, SCHNEIDER R. Local Lipschitz Continuity of the Diametric Completion Mapping[J]. Houston J. Math, 2012, 38(4): 1207-1223.
[7] PAPINI P L, WU SENLIN. Construction of Complete Sets[J]. Adv. Geom., 2015,15(4):485-498.
[8] BLANCE. Sur Une Généralisation des Domaines Dépaisseur constante[J]. CR Acad. Sci. Paris, 1944, 219: 662-663.
[9] BAVAUDF. Adjoint Transform, Overconvexity and Sets of Constant Width[J]. Transactions of the American Mathematical Society, 1992, 333(1): 315-324.
[10]MAEHARAH. Convex Bodies Forming Pairs of Constant Width[J]. Journal of Geometry, 1984, 22(2): 101-107.
[11]PAPINIP L. Complete Sets and Surroundings[J]. Proc. Int. Symposium on Banach and Function Spaces IV, Kitakyushu, 2012: 149-163.
[12]HE CHAN, WU SENLIN, ZHANG XINLING. Wide Spherical Hull and Tight Spherical Hull of Bounded Sets in Banach Spaces[J]. Annals of Functional Analysis, accepted.
[13]POLOVINKINE S, SIDENKO S V. The Completion of Sets to Bodies of Constant Width (Russian)[J]. Uch. Zap. Kazan. Gos. Univ., ser, Fiz.-Mat. Nauki, 2006, 148(2): 132-143.
[14]SALLEEG T. Pairs of Sets of Constant Relative Width[J]. Journal of Geometry, 1987, 29(1): 1-11.
[15]MARTINIH, PAPINI P L, SPIROVA M. Complete Sets and Completion of Sets in Banach Spaces[J]. Monatshefte Für Mathematik, 2014, 174(4): 587-597.
[16]MORENOJ P. Porosity and Unique Completion in Strictly Convex Spaces[J]. Mathematische Zeitschrift, 2011, 267(1/2): 173-184.
[17]BARONTIM, PAPINI P L. Diameters, Centers and Diametrically Maximal Sets[J]. Rend. Circ. Mat. Palermo (2) Suppl, 1995, 38(2): 11-24.
[18]GROEMERH. On Complete Convex Bodies[J]. Geometriae Dedicata, 1986, 20(3): 319-334.
[19]MARTINIH, RICHTER C, SPIROVA M. Intersections of Balls and Sets of Constant Width in Finitedimensional Normed Spaces[J]. Mathematika, 2013, 59(2): 477-492.
[20]MORENOJ P, PAPINI P L, PHELPS R R. New Families of Convex Sets Related to Diametral Maximality[J]. Journal of Convex Analysis, 2006, 13(3/4): 823-837.
[21]MORENOJ P, SCHNEIDER R. Lipschitz Selections of the Diametric Completion Mapping in Minkowski spaces[J]. Advances in Mathematics, 2013, 233(1): 248-267.
(編辑:温泽宇)