冯诗海,李红,蒋佳俊,3,雷云,牛元哲,杨锐,刘永杰
1.大陆动力学国家重点实验室 西北大学,西安 710069 2.甘肃有色地质勘查局天水矿产勘查院,甘肃天水 741025 3.中国科学院地球化学研究所,贵阳 550081
华北秦皇岛地区柳江盆地马家沟组碳酸盐岩多期白云化作用
冯诗海1,2,李红1,蒋佳俊1,3,雷云1,牛元哲1,杨锐1,刘永杰1
1.大陆动力学国家重点实验室 西北大学,西安 710069 2.甘肃有色地质勘查局天水矿产勘查院,甘肃天水 741025 3.中国科学院地球化学研究所,贵阳 550081
华北秦皇岛地区的中奥陶统马家沟组以广泛发育海相白云质灰岩、灰质白云岩和白云岩为特征。在石门寨奥陶系亮甲山剖面,马家沟组自下而上识别出四类碳酸盐岩:含白云石泥晶灰岩(类型I)、细—粉晶白云岩(类型II)、“麦粒状”细—粉晶白云岩(类型III)和钙质泥晶白云岩(类型IV)。类型I主要由泥晶方解石构成,含三叶虫和介形类生物碎片,少量自形的粉晶白云石呈“漂浮状”分布于压溶缝合线内,基质中少见。岩相学和地球化学特征表明此类白云石形成于埋藏成岩期压溶作用之后,压溶缝为云化流体提供通道,压溶缝内泥质组分的成岩转化可能为白云化作用提供了部分镁离子来源;类型II白云岩主要由自形、半自形不等粒粉晶—细晶白云石构成,白云石普遍具有“雾心亮边”,在背散射和阴极发光照片中白云石可见清晰的多圈亮、暗相间环带。环带和带间主量元素的差异表明白云石经历了埋藏成岩期多期成岩流体的改造;类型III白云岩中白云石呈单向延伸的“米粒”或“麦粒”状,粉晶为主,晶体长轴方向具有垂直结晶轴c的特点,白云石具富铁、贫锰、锶的特点,长、短对角线上钙、镁离子的微小差异以及阴极发光特征表明此类白云石也经历了埋藏成岩期的改造,成岩流体使白云石发生微溶作用可能是导致白云石晶体单向延伸且光学性质固定取向的主要原因;类型IV为钙质泥晶球粒白云岩,含石膏假晶,白云石多为微晶和微亮晶,球粒也多由微晶白云石构成,溶孔发育,但全被亮晶贫铁方解石充填,此类岩石的白云化作用发生得很早,可能形成于潮上带澙湖或潮坪环境。综上所述,研究区马家沟组碳酸盐岩具有经历了不同类型及多期白云化作用的特点。自剖面底部向顶部,白云石的有序度由0.8降至0.47,而去云化作用则呈现逐渐增强的趋势。
中奥陶统马家沟组;压溶缝合线;麦粒状白云石;埋藏白云化作用;华北秦皇岛地区
“白云石(白云岩)问题”是地球科学领域长期存在争议的热点问题之一。由于白云石矿物低温合成的动力学障碍,绝大多数古代白云岩都被认为属于交代成因。上世纪六十年代起,人们通过对现代潮上带蒸发盐沼、高盐度澙湖及某些潮下带环境中白云石化作用的观察及与古代白云岩的对比研究建立出了与蒸发作用有关的模式(如准同生白云岩模式、萨布哈模式、库龙模式等)[1-5]、渗透回流模式[6]、海水白云石化模式[7]、埋藏白云化模式[8-9]、热液白云化模式[10-11]等来解释古代白云岩的成因。这些经典模式为研究地质记录中白云岩的成因提供了依据,同时也反映出不同条件和环境下白云岩化作用的复杂性和多解性。特定地质历史时期的白云岩在漫长的沉积—成岩演化史中由于地质背景和参与云化作用的流体性质的改变,常常会受到多期成岩流体的改造。近二十年来,尽管微生物活动参与白云石的低温沉淀取得了重要进展,然而在白云石矿物的合成以及地质历史时期厚层白云岩的成因等方面仍有许多值得关注的问题尚未得到圆满解决[12-21]。
中国西北、华北和东北地区广泛发育中奥陶统马家沟组[22-25],以厚层粉、细晶白云岩、含燧石白云岩为特点,此套白云岩也是鄂尔多斯盆地下古生界重要的产气层段。前人对于鄂尔多斯盆地马家沟组白云岩做了大量丰富而细致的研究[25-33],对该区白云岩的分类、成因、成岩作用、储集层性质及其影响因素已有深入见解,然而针于华北地区东部马家沟组白云岩的研究相对匮乏[22,34]。本文以秦皇岛柳江盆地石门寨亮甲山剖面中奥陶统马家沟组白云岩为研究对象,拟通过详细的岩石学及地球化学分析对该区白云岩化机理尤其是埋藏成岩期流体对白云石晶体的改造进行探讨,以期为我国早古生代白云岩成因研究提供实例。
秦皇岛地区柳江盆地位于华北板块东北缘,是以古生界向斜为基础并受中—新生代构造运动改造的复合盆地,其构造演化基本与华北地台一致,总体演化特征表现为:基底形成、盖层发育和强烈活动三个演化阶段,即自中太古代—早元古代陆壳形成—成熟—拼合期、中太古代—中生代盖层发育期、印支和燕山期褶皱侵入活动和喜山期强烈差异升降的复杂演化过程[35-36]。柳江盆地由边缘到中央完整地保存着从前寒武纪到中生代沉积地层(图1),沉积环境也具有由海相向陆相演化的特点,由于地层连续、界限清楚、构造简单,是我国北方理想的野外地质教学和实习基地[38]。
柳江盆地奥陶系自下而上发育下奥陶统冶里组、亮甲山组和中奥陶统马家沟组,为海相碳酸盐岩沉积,上奥陶统缺失。奥陶系与下伏上寒武统凤山组为整合接触,与上覆上石炭统本溪组为假整合接触。马家沟组主要由浅海—潮上环境的暗灰色白云质灰岩、白云岩、含燧石结核豹皮状白云质灰岩构成,底部以含燧石条带黄灰色白云质灰岩与下伏亮甲山组灰色灰岩整合接触。
2.1 剖面概述及取样
研究剖面位于柳江盆地石门寨以西亮甲山,发育下奥陶统冶里组、亮甲山组和中奥陶统马家沟组。冶里组发育灰色泥晶灰岩与灰色竹叶状砾屑灰岩的互层沉积,偶夹灰绿色、灰黑色钙质泥岩,砾屑多平行层面且略具定向,灰至灰绿色,表明形成于浅海较深水还原环境(图2 A),与上覆亮甲山组以一层灰绿色钙质页岩为界,二者整合接触。亮甲山组在该剖面厚度109.29 m,下部由1.3~9.4 m厚的浅灰色砾屑灰岩、泥晶灰岩及豹皮灰岩构成,偶含土黄色泥质条带或薄层灰绿色钙质泥岩;上部为0.8~11.1 m厚的灰色、黄灰色泥晶灰岩、砾屑灰岩及豹皮灰岩互层,以顶部出现含燧石条带豹皮灰岩而与马家沟组分界。豹皮灰岩中水平、垂直及斜交虫迹非常发育并充填灰黄色钙、泥质组份因而呈豹纹状(图2 B)。剖面上马家沟组厚28.79 m,与下伏亮甲山组也为整合接触关系,顶部为厚约2 m的覆盖层与上覆石炭系本溪组为平行不整合接触关系。马家沟组底部为一层厚约1.8 m的灰黑色含云泥晶灰岩,向上为厚度0.4~7.5 m灰黑色、灰色、土黄色粉—细晶白云岩,底部含燧石结核;马家沟组上部发育3.2~5.0 m灰色、土黄色块状粉—细晶白云岩,普遍含燧石结核或硅质条带,中间夹一层厚约0.9 m角砾状钙质白云岩,网状粗大的方解石脉将围岩切割呈角砾状(图2C~F、图3),顶部为中—厚层(0.2~2.3 m)土黄色块状钙质泥晶白云岩,燧石结核逐渐减少,白云岩表面刀砍纹发育。
图1 柳江盆地石门寨地区地质简图[37]Fig.1 Simplified map of Liujiang Basin, showing the location of Shimenzhai area[37]
图2 柳江盆地石门寨地区奥陶系灰岩、白云岩A.下奥陶统冶里组竹叶状砾屑灰岩,砾屑排列略具定向;B.下奥陶统亮甲山组豹纹状灰岩,豹纹为虫迹构造,充填土黄色钙泥质组分;C,D.中奥陶统马家沟组白云岩;E.马家沟组白云岩中顺层分布的燧石条带;F.马家沟组上部,白云岩被网状方解石脉切割呈角砾状。Fig.2 Ordovician limestones and dolostones in Shimenzhai area, Liujiang Basin
图3 石门寨地区奥陶系亮甲山剖面实测柱状图Fig.3 Ordovician lithological profile of Liangjiashan section, Shimenzhai area
2.2 测试方法及实验条件
本文涉及样品均采自亮甲山剖面马家沟组,共15件(图3)。普通染色岩石薄片来自于新鲜块状样品,用于样品基础矿物学及岩石学分析,染色剂选用莤素红-S与铁氰化钾,以区分方解石、白云石、铁方解石及铁白云石。粉末样品用于全岩粉晶X射线衍射分析,利用玛瑙研钵将小块样品粉碎并筛至200目以下备用。
全岩粉晶X射线衍射用于确定岩石的矿物组成及白云石有序度分析,由西北大学化学与材料科学学院分析测试研究中心完成,仪器型号为日本理学D/MAX-3C型X射线衍射仪,铜靶,常用电压35 kV,电流35 mA,扫描步长为0.02°,角度为15°~70°,扫描速度为4°/min。电子探针、扫描电镜、能谱分析、流体包裹体测温由西北大学大陆动力学国家重点实验室完成。电子探针用于单矿物微区组分分析,仪器由日本电子(JEOL)生产,型号为JXA—8230,实验电压15 kV,入射电子束电流10 nA,测定Si,K,Al,Ti,Cr,Na,Ca,Mg,Sr,Mn,Fe选用的标样分别为石英、钾长石、斜长石、金红石、Cr2O3、钠长石、方解石、白云石、SrO、蔷薇辉石、磁铁矿。扫描电镜用于碳酸盐岩的微形貌分析,为新鲜样品喷金镀膜,未做酸蚀处理,仪器型号FEI Quanta 400 FEG型环境扫描电子显微镜。能谱分析用于矿物成分半定量分析,仪器型号OXFORD IE 350型能谱仪,分辨率:138 eV, 分析范围:B5—U92。流体包裹体测温在两面抛光薄片上进行,用于细晶和粉晶白云石中流体包裹体均一温度的测量,显微冷热台为Linkam THMS 600冷/热台,温度控制范围-196°C~600°C,冷热台温度稳定性和测量精度±0.1°C。
3.1 岩石学特征
亮甲山剖面中奥陶统马家沟组碳酸盐岩自下而上主要发育四种类型:含白云石泥晶灰岩、细—粉晶白云岩、“麦粒状”细—粉晶白云岩和钙质泥晶白云岩。
3.1.1 含白云石泥晶灰岩
含白云石泥晶灰岩发育于马家沟组最底部,厚约1.8 m,新鲜面灰黑色。基质主要为泥(微)晶方解石(Micrites, <4 μm),少数为微亮晶(Microspar, 5~30 μm),泥晶方解石之间含有泥质组分。灰岩偶含溶孔但又全被亮晶方解石充填,压溶作用强烈,压溶缝合线发育,压溶缝内主要有灰泥、白云石、和铁泥质难溶组分(图4A~E)。沿压溶缝分布有黄铁矿微粒(图4D,E,F)。白云石含量约10%~15%左右,粒径介于0.02~0.11 mm,粉晶为主,多为自形晶,有序度0.8,光学显微镜和背散射照片中隐约可见白云石具环带结构(图4C,D),白云石的分布局限,多呈“漂浮”状分布于压溶缝内,基质中少见。镜下观察此类灰岩偶含少量亮晶球粒灰岩砾屑,砾屑和基质中均有较多三叶虫及介形类壳体碎片,完整化石少见(图4A,B)。
3.1.2 细—粉晶白云岩
细—粉晶白云岩是马家沟组最主要、分布最广的白云岩类型,整个马家沟组均有分布,厚度约20.14 m。单层为中到厚层状,新鲜面灰色,风化面土黄色,局部层段含压扁状黑色燧石结核或不连续条带,燧石结核长轴平行层面(图2 E)。全岩粉晶X射线衍射分析表明主要成分为白云石(60%~93.5%),有序度介于0.74~0.78,另有少量方解石(4%~30.2%)及石英(2.5%~25.7%)(图5)。镜下观察白云岩具晶粒结构,白云石为不等粒状,大小介于0.02~0.60 mm,主体为粉晶、细粉晶,多为菱形自形晶,半自形晶次之,晶体边界平直(图6,7)。多数白云石晶体中心呈混浊云雾状,边缘则相对洁净,构成“雾心亮边”状(图6A~E),“雾心”主要由微细的非碳酸盐组分、方解石残余物及流体包裹体组成(图6B,C,E、图7A,B)。白云石晶粒之间往往充填着更细粒的白云石、亮晶方解石、泥晶方解石及铁泥质组分,溶蚀孔或溶蚀缝则被粗大亮晶方解石充填,由于晶间泥质组分较多使岩石整体显示较脏,有时可见零星分布的黄铁矿微粒分布于碳酸盐颗粒间或粒表(图6)。
阴极发光照片可见细、粉晶白云石自形程度好,且发育明暗相间的环带构造,白云石核部往往发育1~2圈明亮的橙红色环带,向边缘逐渐过渡为较暗的橙红色与黑色环带相间分布,可达为2~8圈(图6F)。背散射照片也可清晰见到白云石亮暗相间的的环带构造,环带多分布于边部,晶体中间可见零散分布的微小方解石残晶。白云石晶体间往往充填方解石胶结物,有时可见粒间溶孔(图7A,B)。
此类白云岩普遍经历压溶作用,镜下常见多条近平行或锯齿状压溶缝(图6A,C),缝间充填黑色铁泥质组分。显微镜、扫描电镜和背散射照片可见自形的白云石晶体间充填更细粒的半自形或它形白云石、泥晶方解石等,表明细晶、粉晶白云石发生了重结晶作用。染色薄片观察细晶、粉晶白云石晶体内部和边缘有溶蚀现象,溶孔被粉红色(贫铁)亮晶方解石充填(图6C,D),部分粉晶白云石边缘被溶蚀呈港湾状(图7A),偶见白云石铸模孔,但也被亮晶方解石完全充填,说明样品经历了去云化作用的改造。此外,此类白云岩裂缝也较发育,缝内常充填粗晶方解石或白云石。
图4 马家沟组含白云石泥晶灰岩(类型I)显微特征A,B.含白云石泥晶灰岩,含亮晶球粒灰岩砾屑,基质为泥晶方解石,常见破碎的三叶虫(白色箭头)及介壳类化石碎片,单偏光;C,D.含白云石泥晶灰岩,基质以泥晶方解石为主,压溶缝内充填铁泥质组分和白云石,白云石呈漂浮状分布于灰泥和铁泥质之间,少量溶孔被亮晶方解石全充填,单偏光;E.染色薄片,泥晶方解石呈浅红色,压溶缝内白云石晶体可见环带结构,单偏光;F.背散射照片,黄铁矿微粒沿压溶缝零散分布,缝内白云石多为自形晶,基质为浅灰色泥晶方解石。Fig.4 Microphotographs of dolomitic wackstones(type I) of Majiagou Group
图5 马家沟组细晶—粉晶白云岩(类型II)X射线衍射特征Fig.5 X-ray diffraction patterns of fine to medium grained dolostones(type II) of Majiagou Group
图6 马家沟组细晶—粉晶白云岩(类型II)显微特征A.粉晶白云岩,白云石粒间充填泥质组分使岩石呈混浊状。发育多条彼此近平行的压溶缝,缝内铁泥质充填,单偏光;B.白云石普遍发育雾心亮边结构,黑色为黄铁矿微粒,单偏光;C.白云岩中的压溶缝合线,白云石晶粒间充填亮晶方解石和铁泥质组分,部分白云晶体表面被方解石交代。染色薄片,粉红色者为方解石,无色为白云石;D.去云化作用,可见部分白云石内部及边缘溶蚀并被亮晶方解石充填,白云石晶体间充填亮晶方解石,单偏光;E. 粉晶白云石具雾心亮边,晶体间充填铁泥质组分,单偏光;F.照片E的阴极发光图像,可见粉晶白云石具清晰的明暗相间环带结构,表明经历了多期成岩流体的改造。Fig.6 Microphotographs of fine to medium grained dolostones(type II) of Majiagou Group
3.1.3 “麦粒状”粉晶白云岩
此类白云岩分布于剖面马家沟组上部与顶部,与粉—细晶白云岩和含石膏假晶钙质泥晶球粒白云岩互层,偶含燧石团块,单层厚度0.2~2.0 m,总厚度约4.5 m。全岩粉晶X射线衍射分析主要成分为白云石(67.8%~86.5%),有序度0.6~0.73,方解石(约27.5%)及石英(4.7%~13.5%)含量较低。镜下观察白云岩样品具晶粒结构,部分样品可见分布不均的暗色团块,荧光照片显示暗色团块发光较强,很可能为残余的有机质(图8 A,D),生物碎片主要为三叶虫及棘皮类,燧石团块中未见化石,白云石晶体间泥质组分较多而使岩石显得略脏(图8)。
该岩类白云石晶形特殊,呈略具单向拉长的菱形或透镜状,不等粒状,形似麦粒,故称为“麦粒状”或“米粒状”, 长轴直径介于0.06~0.12 mm,长/短轴比值约为2~4(图8,9),晶体排列杂乱,不具明显定向性,个别样品可见“雾心亮边”构造,但不如细—粉晶白云岩中白云石的“雾心”明显。单偏光镜下随机观察白云石晶体的光性方位,发现白云石均有长对角线方向的突起和糙面明显高于短对角线方向的特征,表明长轴方向平行于光学主轴No方向(常光的振动方向),即在平面上白云石单向延伸方向垂直于结晶轴c。
图7 马家沟组细—粉晶白云岩(类型II)背散射及扫描电镜特征A.背散射图像,白云石(Dol)为自形的菱形晶,内部可见方解石残晶,部分白云石边缘和内部可见溶蚀并被方解石(Cal)充填;B.背散射图像,可见白云石晶体发育清晰的亮、暗相间环带,白云石晶体内部可见少量方解石残晶,数字“1~8”为电子探针分析点,亮色环带含铁较高;C.背散射图像,白云石多呈自形的菱形,可见清晰的环带,数字“1~4”为电子探针分析点,亮色环带含铁较高;D.扫描电镜图像,可见粉晶白云石多呈自形的菱面体。Fig.7 Back scatter and SEM microphotographs of type II dolostones
图8 “麦粒状”粉晶白云岩(类型III)显微特征A.“麦粒状”白云岩,白云石略呈单向拉长的菱形,排列杂乱,晶形与类型II中白云石自形晶有差别,薄片中可见明显暗色团块;B.白云石呈单向延伸的菱形,晶体长轴垂直结晶轴c;C.为染色薄片,粉红色为方解;D.荧光照片,与照片A同视域,可见暗色团块部分荧光显示明显,可能为残留的有机质;E.“麦粒状”白云岩含有较多泥质组分使岩石整体看起来较脏;F.阴极发光照片,与E同视域,可见白云石颗粒中心发橙红色光,边缘为暗红色光。Fig.8 Microphotographs of “wheat shaped” fine to medium grained dolostones(type III)
阴极发光照片显示白云石中心发橙红色光,边缘为暗红色光(图8 F)。背散射照片显示白云石晶体环带结构不明显,仅局部发育,边缘凹凸状似有溶蚀现象,少见平直完善的晶体边界,这一点与类型II 自形的细、粉晶白云石平直的晶体边界不同,麦粒状白云石粒间往往充填更细小的白云石晶粒、铁泥质组分及少量黄铁矿(图9 A,B)。扫描电镜图像可见白云石晶体边缘并不平直,晶面粗糙,伴有显微溶孔并发育大量丘状突起和纳米级小粒,丘状突起上也分布有纳米小粒,能谱分析表明白云石颗粒及其表面的丘状突起成分一致(图9 C,D),这些丘状突起及纳米小粒很可能为白云石晶面生长特征。镜下观察“麦粒状”白云岩普遍发育锯齿状压溶缝,剖分样品溶孔发育,但粒间溶孔及粒内溶孔均被方解石充填,表明岩石也经历了溶蚀作用和去云化作用(图8 C)。
3.1.4 钙质泥晶球粒白云岩
此类白云岩仅分布于马家沟组顶部,夹于“麦粒状”粉晶白云岩之间,厚约1.3 m。全岩粉晶X衍射分析表明方解石含量31.3%,白云石含量68.7%,白云石有序度0.47。镜下观察该类白云岩多具有球粒结构(图10A,B,C),含大量藻类及少量棘皮类生物碎片。基质为泥晶(微晶)白云石(<4 μm),球粒则由微晶或微亮晶白云石构成,局部球粒发生重结晶作用变为亮晶白云石,藻类由于白云化作用而使内部结构不可辨,棘皮类碎片具有同轴消光(single-crystal extinction)特征,还可见板状石膏假晶被亮晶白云石充填(图10A,B)。显微镜和背散射照片显示球粒间常见不规则溶孔,但也都被亮晶方解石全充填(图10C,D),裂缝非常发育,常被粗晶方解石充填,表明该类岩石也经历了去云化作用的改造。
3.2 白云岩地球化学特征
3.2.1 含白云石泥晶灰岩和细—粉晶白云岩地化特征
图9 “麦粒状”白云石(类型III)显微特征A.背散射照片,白云石(Dol)呈单向拉长的菱形或透镜状,部分边缘呈凹凸状似有溶蚀,粒表及粒间有少量黄铁矿(Pyr),粒间充填细小的白云石颗粒及铁泥质,数字“1~6”为长对角线电子探针分析点,字母“a~d”为短对角线电子探针分析点;B.背散射照片,C,D.扫描电镜照片,“麦粒状”白云石晶面发育显微溶孔,还可见大量丘状突起和纳米级小粒,“+”为能谱分析点,左上角为相应点的能谱分析图,照片D中“+”位于丘状突起上。Fig.9 Back scatter and SEM microphotographs of “wheat shaped” dolostones(type III)
图10 钙质泥晶球粒白云岩(类型IV)显微特征A,B.泥晶球粒白云岩,基质主体为微晶白云石,球粒也为微晶或微亮晶白云石,部分球粒、生物碎屑重结晶为亮晶白云石。白色箭头指示为石膏假晶,被亮晶白云石充填;C.染色薄片,微晶白云石间不规则的溶孔被粉红色亮晶方解石充填;D.背散射照片,深灰色为泥晶白云石(Dol),浅灰白色为方解石(Cal),可见方解石充填于不规则的白云石溶孔内。Fig.10 Microphotographs of calcareous microcrystalline pellets dolostones(type IV)
亮甲山剖面马家沟组含云泥晶灰岩和细—粉晶白云岩中碳酸盐矿物的电子探针成分组成见表1。含白云石泥晶灰岩中和粉晶白云岩中白云石普遍具有富铁、贫锰、锶、钛、铬、镍等特点。其中含云泥晶灰岩中方解石基质极度贫Fe、Mn,而压溶缝内的白云石则具有富Fe及略富Mn的特征(表1)。
对细—粉晶白云岩中的环带白云石的中心、亮色环带、环带间及边缘分别测其成分,结果表明,白云石亮色环带的FeO含量介于0.34%~2.12%,明显高于白云石中心、环带间及边缘相对暗色部分FeO含量(0~0.75%,图7B,C、表1)。此外,含云灰岩中白云石Mg/Ca离子比值介于0.49~0.51,钙离子相对于理想白云石中钙离子的质量偏差介于1.05~1.11(表1),镁离子相对于理想白云石中镁离子的质量偏差介于0.91~0.93。细—粉晶白云岩中白云石Mg/Ca离子比介于0.46~0.57(表1),钙离子的标准质量偏差介于0.94~1.15,镁离子的标准质量偏差介于0.82~0.94。细—粉晶白云岩的粒间方解石胶结物也具有贫铁、锰的特征(表1)。
3.2.2 “麦粒状”白云石地化特征
从表2可以看出“麦粒状”白云石也多表现出富铁、贫锰、锶、钛、镍的特点。沿着“麦粒状”白云石长对角线和短对角线分别进行电子探针分析,颗粒1长对角线各点CaO平均为31.73%,MgO平均为20.78%;短对角线上各点CaO平均含量33.28%,MgO平均含量20.30%。颗粒2长对角线各点CaO平均30.76%,MgO平均20.73%;短对角线CaO平均31.15%,MgO平均20.64%。颗粒3长对角线各点CaO平均32.58%,MgO平均20.77%;短对角线CaO平均32.80%,MgO平均20.77%。三个颗粒长、短对角线CaO含量的差异依次为1.55%、0.39%和0.22%,而MgO的差异依次为0.47%、0.09%和0%。由上可知,“麦粒状”白云石短对角线CaO含量略高于长对角线CaO含量;而MgO含量在长、短对角线上的差异不甚明显,长对角线MgO含量微弱高于短对角线MgO(图9A、表2)。相应地,三个颗粒长对角线上各点Mg/Ca离子比的变化分别为0.54~0.57,0.55~0.58,0.51~0.55;短对角线上各点Mg/Ca离子比的变化分别为0.44~0.54,0.54~0.59,0.52~0.55之间(表2)。三个颗粒长对角线上各点钙离子相对于理想白云石钙离子质量偏差分别为0.98~1.05,0.98~1.04,1.04~1.08,短对角线上各点钙离子的标准质量偏差分别为1.06~1.14,0.97~1.04,1.04~1.09(表2)。三个颗粒长对角线上各点镁离子标准质量偏差分别为0.92~0.99,0.95~0.97,0.94~0.98,短对角线上各点镁离子标准质量偏差分别为0.85~0.98,0.94~0.98,0.95~0.99(表2)。
3.3 细—粉晶白云岩流体包裹体均一温度
对三件细—粉晶白云岩(类型II)和一件“麦粒状”粉晶白云岩样品白云石内的流体包裹体测均一温度,得到15组数据(表3)。所测包体均为气—液两相水溶液包体,无色透明,形态以浑圆、椭圆、长条状为主,绝大多数为孤立状分布于粉晶白云石内部(图11 A),根据岩相学推测应属白云石重结晶时捕获的原生包体。流体包裹体中液相部分大小介于1.6~5.0 μm之间,气相部分大小约为液相的15%~20%。流体包裹体的均一温度介于76.4°C~137.1°C之间,平均105.1°C,大致分布在三个温度区间,分别为:75°C~90°C区间,包含6组数据;105°C~120°C,包含4组数据;120°C~135°C区间,包含3组数据(图11B)。
4.1 含白云石泥晶灰岩的白云石化机理
出现在灰岩压溶缝合线内的白云石可见下列报道[8, 39-42],往往被认为发生在埋藏成岩阶段。
研究区泥晶灰岩中白云石的分布受限于压溶缝合线,白云石为自形的粉晶呈漂浮状分布在压溶缝内的暗色组分中,压溶缝外鲜有分布。偏光显微镜和背散射镜下可见部分白云石具有1-2圈环带结构,此外,压溶缝普遍不切割白云石,表明白云石形成于压溶作用之后,并且该类岩石的选择性白云化作用与压溶缝密切相关。从该类白云石地化特征来看,白云石往往富Fe,且FeO含量明显高于泥晶方解石基质(表1),也说明白云石的形成应为埋藏期(机械压实以后)的还原环境;此外,沿压溶缝常见大量黄铁矿微粒与白云石相伴生(图4B,D),这些均从侧面反应泥晶灰岩的选择性白云化作用发生在埋藏成岩期。
表1 马家沟组碳酸盐矿物电子探针成分(mass%)
注:TFeO为全铁含量。
表2 马家沟组“麦粒状”白云石电子探针成分(mass%)
注:TFeO为全铁含量。Ca|Mg为钙、镁离子分别相对于理想白云石钙、镁离子的质量偏差。
表3 马家沟组白云岩流体包裹体均一温度表
图11 马家沟组白云岩流体包裹体均一温度直方图A. 箭头指示为粉晶白云石内部孤立的气、液两相流体包裹体;B. 流体包裹体均一温度直方图Fig.11 Histogram of homogenization temperatures of fluid inclusions in Majiagou dolostones
缝合线作为灰岩和白云岩中常见的粒间压溶作用产物,常常被认为会降低围岩的物性或作为流体的隔挡层[43-45]。然而,另一些研究却发现沿着灰岩压溶缝合线的侧面及末端能够发育相对高孔隙带,这些高孔隙带可能提高流体的循环[46-47]。Heapetal.[42]进行了灰岩缝合线对渗透率影响的实验研究,实验数据表明缝合线不但不能起到阻障流体的作用,而且当缝合线与流体方向平行时,其渗透率会比垂直流体方向时的渗透率高出一个数量级。可见,在某些情况下,缝合线能够成为成岩流体或白云化流体的输导管。Kahle[48]曾提到黏土矿物能够催化某些白云石的沉淀,不仅能为白云化作用提供镁离子来源,而且还可能为白云石提供初始成核位点。McHargueetal.[49]认为埋藏期蒙脱石向伊利石的转化会释放大量Fe, Mg, Ca, Na和Si,能够为含泥灰岩中分散状的白云石提供离子来源。尽管有人对这种分散在泥质沉积物中的白云石成因有所质疑[50],然而,研究区泥晶灰岩的岩相学特征似乎支持黏土矿物转化可为白云石提供离子来源的观点。研究区这类灰岩压溶缝中黏土质占主导地位,而且,白云石多为自形晶分散状分布于压溶缝内,基质中分布的非常少,既使有,也往往散布在压溶缝附近的基质内,这些均暗示了白云石的形成可能与压溶缝内的黏土矿物有关。因此,研究区含白云石泥晶灰岩的白云石化作用可能发生在埋藏环境下压溶作用之后,云化作用仅局限于压溶缝内,压溶缝不仅为白云化流体提供通道,而且缝合线内黏土矿物的成岩转化很可能为白云石的形成提供离子来源。
4.2 细—粉晶白云岩化机理
“雾心亮边”是白云石常见的特征之一,可以形成于各种环境[51-54]。Sibley[51]指出“雾心”主要为隐晶质的方解石包裹体及显微溶孔,“亮边”是由不含方解石微晶的低镁方解石被白云石交来而来;Landetal.[55]通过“雾心”和“亮边”的微量元素差异认为“亮边”沉淀于比雾心更稀释的溶液中。
研究区类型II白云岩岩相学分析表明粉、细晶白云石的“雾心” 除了微晶方解石及少量流体包裹外,还有少量黏土物质,微晶方解石可能为早期白云化作用的残留物。针对白云石内部及外侧环带的电子探针分析点数据(表1)表明白云石中心及环带均较富铁,表明云化作用发生在还原环境。“亮边”在背散射和阴极发光照片下可见明显的多圈环带构造(图6,7),表明白云石经历过多次成岩流体的改造,而环带和环间元素的变化可能反映了不同期成岩流体的成分差异。这种环带结构与德国南部Swabian Alb地区上侏罗统白云质灰岩[56]以及美国田纳西州东部Cooper Ridge区下奥陶统Kingsport组中—粗粒白云岩[52]中具环带结构的白云石类似,代表了埋藏成岩期间多幕式白云化作用和重结晶作用。
研究区细—粉晶白云岩的流体包裹体均一温度显示出小于100°C(76.4°C~95.1°C)和大于100°C(112.1°C~137.1°C)两个温度区间,与鄂尔多斯盆地南部马家沟组埋藏成因的“糖粒状”粗粉晶—细晶白云岩(Type IV dolostones)的岩相学特征及流体包体均一温度(140°C~203°C)[22]均有相似之处。两个均一温度区间表明此类白云岩的多幕式白云化作用可能从浅埋藏一直持续到深埋藏期。因此,类型II白云岩的形成不是一次云化作用形成的,很可能是在早期云化作用(准同生蒸发作用、渗透回流作用,或其他)的基础上经历了埋藏期多次云化作用的产物。此外,该类岩石发育晶粒结构,镜下未见残余的原岩结构或任何化石碎片,也说明此类白云岩的白云化程度很深且彻底,可能为多期云化作用和重结晶改造的结果。
4.3 “麦粒状”白云岩化机理
研究区“麦粒状”白云岩具有的残余球粒结构表明原岩可能形成于潮上带潮坪环境,而且白云石的形成是由云化作用交代方解石形成的。镜下观察 “麦粒状”白云石晶间含有比类型II细—粉晶白云岩更多的陆源泥质组分。从化学成分来看,“麦粒状”白云石的钙、镁离子含量比类型II白云岩中的白云石更接近于理想白云岩的钙、镁子含量(表2),“麦粒状”白云石短对角线上各点CaO含量略高于长对角线(垂直于结晶轴c方向)上各点,而MgO的差异并不明显,而钙、镁离子含量的微小差异能否导致白云石沿垂直结晶轴c方向单向延伸还需更多实验研究的支持。此外,该类白云岩的背散射照片中可见大多数“麦粒状”白云石晶体边缘有微溶现象,且发育不甚清晰的环带,阴极发光照片显示白云石的发光普遍分为两部分,核部橙红色光,边缘发暗红色光,暗示了此类白云石也经历了埋藏成岩作用的改造,只是成岩流体对白云石的影响程度和频率不如类型II白云岩中的细、粉晶白云石强烈。据此,推测 “麦粒状”白云石的晶体形貌可能与埋藏期间的成岩流体的溶蚀作用有关,由于白云石短轴方向CaO含量相对较高,导致其被溶蚀程度强于长轴方向,因此形成了目前观察到的白云石晶体呈单向延长的现象。
4.4 钙质泥晶球粒白云岩化机理
此类白云岩基本保留了原岩结构,白云石多为微晶和微亮晶,可见白云化作用发生得相当早,生物类型单一,主要为藻类,球粒与基质均为微晶或微亮晶白云石,白云石有序度低小于0.5,石膏假晶的出现意味着沉积环境为强烈蒸发作用为主,该类白云岩很可能在潮上带潮坪环境(如萨布哈等)中由于强烈蒸发作用导致的白云化作用形成,据报道[1-4],这类环境原始碳酸盐沉积物多以文石为主,而白云石很可能为交代文石而来。此类白云岩与大巴哈马滩地区Andros岛潮上带潮坪环境中富含球粒的白云质结壳层非常类似[60],而后者形成于强蒸发的潮上带封闭或半封闭的澙湖或潮坪环境。
4.5 去云化作用
根据亮甲山剖面各类碳酸盐岩的岩石学分析表明马家沟组四类白云岩均经历了去云化作用的影响,自下而上,去云化作用趋于强烈。类型I的去云化作用最微弱,灰岩基质偶见溶孔被亮晶贫铁方解石充填。类型II细—粉晶白云岩的去云化作用表现为白云石晶间孔几乎全被贫铁、锰的方解石(表2)充填,部分白云石粒内也被方解石交代,白云颗粒边缘因淋滤溶蚀而呈现破碎状(图7A)。类型IIII麦粒状白云岩和类型IV钙质泥晶球粒白云岩的去云化作用最强烈,基质中淋滤溶孔大量发育且全被贫铁亮晶方解石充填(图8C、图10C)。与鄂尔多斯盆地奥陶系白云岩晶间孔隙及溶蚀孔隙改善了储层物性相比[28-29, 61],研究区白云岩的晶间孔及与去云化作用有关的淋滤溶蚀孔又被后期亮晶方解石充填,储层物性未得到明显改善。
石门寨亮甲山剖面马家沟组的四类碳酸盐岩的白云化作用具有随埋藏深增加由早期蒸发白云化作用转为受多期埋藏白云化作用改造的特征。剖面底部类型I泥晶灰岩中白云石的分布受限于压溶缝,自形的粉晶白云石呈“漂浮状”分布于压溶缝合线内,基质中少见白云石,白云化作用发生在压溶作用之后,压溶缝为云化流体提供通道,压溶缝内泥质组分可能为云化作用提供了部分离子来源;类型II白云岩主要由自形、半自形不等粒粉晶—细晶白云石构成,白云石具有“雾心亮边”,在背散射和阴极发光照片中白云石可见清晰的多圈亮、暗相间环带,白云石富铁、贫锰、锶的特征,以及环带和带间主量元素的差异表明白云石在埋藏期经历多次成岩流体的改造;类型III白云岩中白云石呈单向延伸的“米粒”或“麦粒”状,粉晶为主,晶体长轴方向具有垂直结晶轴c的特点,白云石也具富铁、贫锰、锶的特点,长、短对角线上钙、镁离子的微小差异以及阴极发光特征表明此类白云石也经历了埋藏成岩期的改造,成岩流体使白云石发生微溶作用可能是导致白云石晶体单向延伸且光学性质固定取向的主要原因;剖面顶部类型IV为钙质泥晶球粒白云岩,含石膏假晶,白云石多为微晶和微亮晶,球粒及藻类也由微晶白云石构成,溶孔发育,但全被亮晶贫铁方解石充填,此类岩石的白云作用发生得很早,可能形成于潮上带澙湖或潮坪环境。
研究剖面从顶向底,白云石的有序度由0.47增加至0.8,表明随埋深增加白云石晶体趋于更有序。而去云化作用则呈现逐渐减弱的趋势,剖面顶部类型III和类型IV白云岩去云化作用最强。
致谢 非常感谢西北大学大陆动力学国家重点实验室和化学与材料科学学院分析测试研究中心的张宏法老师、余向阳老师、弓虎军老师、杨文强老师、庞云龙老师在样品分析测试过程中提供的大力帮助。同时,也衷心感谢两位评审专家为本文提供的宝贵意见和建议。
References)
[1] Illing L V, Wells A J, Taylor J C M. Penecontemporary dolomite in the Persian Gulf[M]//Pray L C, Murray R C. Dolomitization and Limestone Diagenesis. Tulsa, Ok, USA: Society of Economic Paleontologists and Mineralogists, Special Publication, 1965, 13: 89-111.
[2] Butler G P. Modern evaporite deposition and geochemistry of coexisting brines, the Sabkha, Trucial coast, Arabian Gulf[J]. Journal of Sedimentary Research, 1969, 39(1): 70-89.
[3] Hsü K J, Siegenthaler C. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem[J]. Sedimentology, 1969, 12(1/2): 11-25.
[4] McKenzie J A. Holocene dolomitization of calcium carbonate sediments from the coastal Sabkhas of Abu Dhabi, U.A.E.: a stable isotope study[J]. The Journal of Geology, 1981, 89(2): 185-198.
[5] von der Borch C C. Stratigraphy and formation of Holocene dolomitic carbonate deposits of the Coorong Area, South Australia[J]. Journal of Sedimentary Research, 1976, 46(4): 952-966.
[6] Adams J E, Rhodes M L. Dolomitization by seepage refluxion[J]. AAPG Bulletin, 1960, 44(12): 1912-1920.
[7] Saller A H. Petrologic and geochemical constraints on the origin of subsurface dolomite, Enewetak Atoll: an example of dolomitization by normal seawater[J]. Geology, 1984, 12(4): 217-220.
[8] Zenger D H. Burial dolomitization in the Lost Burro Formation (Devonian), east-central California, and the significance of late diagenetic dolomitization[J]. Geology, 1983, 11(9): 519-522.
[9] Gawthorpe R L. Burial dolomitization and porosity development in a mixed carbonate-clastic sequence: an example from the Bowland Basin, northern England[J]. Sedimentology, 1987, 34(4): 533-558.
[10] Qing Hairuo, Mountjoy E W. Formation of coarsely crystalline, hydrothermal dolomite reservoirs in the Presqu'ile barrier, Western Canada sedimentary basin[J]. AAPG Bulletin, 1994, 78(1): 55-77.
[11] Davies G R, Smith L B Jr. Structurally controlled hydrothermal dolomite reservoir facies: an overview[J]. AAPG Bulletin, 2006, 90(11): 1641-1690.
[12] Shukla V, Baker P A. Sedimentology and geochemistry of dolostones: based on a symposium[M]. Tulsa, Ok, USA: Society of Economic Paleontologists and Mineralogists, Special Publication, 1988, 43: 41-52.
[13] Vásconcelos C, Mckenzie J A, Bernasconi S, et al. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377(6546): 220-222.
[14] Vásconcelos C, Mckenzie J A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil)[J]. Journal of Sedimentary Research, 1997, 67(3): 378-390.
[15] Burns S J, Mckenzie J A, Vásconcelos C. Dolomite formation and biogeochemical cycles in the Phanerozoic[J]. Sedimentology, 2000, 47(S1): 49-61.
[16] Zhang Fangfu, Xu Huifang, Konishi H, et al. Polysaccharide-catalyzed nucleation and growth of disordered dolomite: a potential precursor of sedimentary dolomite[J]. American Mineralogist, 2012, 97(4): 556-567.
[17] Zhang Fangfu, Xu Huifang, Konishi H, et al. Dissolved sulfide-catalyzed precipitation of disordered dolomite: implications for the formation mechanism of sedimentary dolomite[J]. Geochimica et Cosmochimica Acta, 2012, 97: 148-165.
[18] Roberts J A, Kenward P A, Fowle D A, et al. Surface chemistry allows for abiotic precipitation of dolomite at low temperature[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(36): 14540-14545.
[19] Gregg J M, Bish D L, Kaczmarek S E, et al. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: a review[J]. Sedimentology, 2015, 62(6): 1749-1769.
[20] 由雪莲,孙枢,朱井泉,等. 微生物白云岩模式研究进展[J]. 地学前缘,2011,18(4):52-64. [You Xuelian, Sun Shu, Zhu Jingquan, et al. Progress in the study of microbial dolomite model[J]. Earth Science Frontiers, 2011, 18(4): 52-64.]
[21] You Xuelian, Sun Shu, Zhu Jingquan. Significance of fossilized microbes from the Cambrian stromatolites in the Tarim Basin, Northwest China[J]. Science China Earth Sciences, 2014, 57(12): 2901-2913.
[22] Feng Zengzhao, Zhang Yongsheng, Jin Zhenkui. Type, origin, and reservoir characteristics of dolostones of the Ordovician Majiagou Group, Ordos, North China Platform[J]. Sedimentary Geology, 1998, 118(1/2/3/4): 127-140.
[23] 辽宁省地质矿产勘查开发局. 辽宁省岩石地层[M]. 武汉:中国地质大学出版社,1997:72-73. [Liaoning Bureau of Geology and Mineral Resources Exploration. Stratigraphy (Lithostratic) of Liaoning province[M]. Wuhan: China University of Geosciences Press, 1997: 72-73.]
[24] 李晶晶,杨一鸣. 辽河油田东部凹陷奥陶系碳酸盐岩储层特征分析及评价[J]. 复杂油气藏,2011,4(4):1-4. [Li Jingjing, Yang Yiming. Study and evaluation of carbonate reservoir characteristics of Ordovician System in eastern sag of Liaohe oilfield[J]. Complex Hydrocarbon Reservoirs, 2011, 4(4): 1-4.]
[25] 马永生,李启明,关德师. 鄂尔多斯盆地中部气田奥陶系马五1-4碳酸盐岩微相特征与储层不均质性研究[J]. 沉积学报,1996,14(1):22-32. [Ma Yongsheng, Li Qiming, Guan Deshi. Carbonate microfacies characteristics and reservoir heterogeneity of the Ordovician weathering crust (O1ma51-4) of the Zhongbu gasfield, Ordos Basin, Northwest China[J]. Acta Sedimentologica Sinica, 1996, 14(1): 22-32.]
[26] 张永生. 鄂尔多斯地区奥陶系马家沟群中部块状白云岩的深埋藏白云石化机制[J]. 沉积学报,2000,18(3):424-430. [Zhang Yongsheng. Mechanism of deep burial dolomitization of massive dolostones in the Middle Majiagou Group of the Ordovician, Ordos Basin[J]. Acta Sedimentologica Sinica, 2000, 18(3): 424-430.]
[27] 侯方浩,方少仙,董兆雄,等. 鄂尔多斯盆地中奥陶统马家沟组沉积环境与岩相发育特征[J]. 沉积学报,2003,21(1):106-112. [Hou Fanghao, Fang Shaoxian, Dong Zhaoxiong, et al. The developmental characters of sedimentary environments and lithofacies of Middle Ordovician Majiagou Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 2003, 21(1): 106-112.]
[28] 吴亚生,何顺利,卢涛,等. 长庆中部气田奥陶纪马家沟组储层成岩模式与孔隙系统[J]. 岩石学报,2006,22(8):2171-2181. [Wu Yashneg, He Shunli, Lu Tao, et al. Diagenetic patterns and pore systems of the Lower Ordovician Majiagou Formation reservoirs of the central Changqing gas fields[J]. Acta Petrologica Sinica, 2006, 22(8): 2171-2181.]
[29] 方少仙,何江,侯方浩,等. 鄂尔多斯盆地中部气田区中奥陶统马家沟组马五5-马五1亚段储层孔隙类型和演化[J]. 岩石学报,2009,25(10):2425-2441. [Fang Shaoxian, He Jiang, Hou Fanghao, et al. Reservoirs pore space types and evolution in Ma55to Ma51submembers of Majiagou Formation of Middle Ordovician in central gasfield area of Ordos Basin[J]. Acta Petrologica Sinica, 2009, 25(10): 2425-2441.]
[30] 姚泾利,王保全,王一,等. 鄂尔多斯盆地下奥陶统马家沟组马五段白云岩的地球化学特征[J]. 沉积学报,2009,27(3):381-389. [Yao Jingli, Wang Baoquan, Wang Yi, et al. Geochemical characteristics of dolomites in Lower Ordovician Majiagou Formation, Ordos Basin[J]. Acta Sedimentologica Sinica, 2009, 27(3): 381-389.]
[31] 周进高,张帆,郭庆新,等. 鄂尔多斯盆地下奥陶统马家沟组障壁潟湖沉积相模式及有利储层分布规律[J]. 沉积学报,2011,29(1):64-71. [Zhou Jingao, Zhang Fan, Guo Qingxin, et al. Barrier-Lagoon sedimentary model and reservoir distribution regularity of Lower Ordovician Majiagou Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 2011, 29(1): 64-71.]
[32] 孙瑞,陈曦,明爽,等. 鄂尔多斯盆地西北部奥陶系马家沟组斑状白云岩成因机理及储集特征[J]. 新疆地质,2012,30(4):442-446. [Sun Rui, Chen Xi, Ming Shuang, et al. Formation mechanism and its reservoir characteristics of Ordovician Majiagou Formation mottled dolomite in northwestern Ordos Basin[J]. Xinjiang Geology, 2012, 30(4): 442-446.]
[33] 袁路朋,周洪瑞,景秀春,等. 鄂尔多斯盆地南缘奥陶系碳酸盐微相及其沉积环境分析[J]. 地质学报,2014,88(3):421-432. [Yuan Lupeng, Zhou Hongrui, Jing Xiuchun, et al. Microfacies and facies analysis of the Ordovician carbonates in the South Margin of the Ordos Basin[J]. Acta Geologica Sinica, 2014, 88(3): 421-432.]
[34] 金振奎,冯增昭. 华北地台东部下古生界白云岩的类型及储集性[J]. 沉积学报,1993,11(2):11-18. [Jin Zhenkui, Feng Zengzhao. Types and reservoiring performance of dolostones of the Lower Paleozoic in eastern North-China Platform[J]. Acta Sedimentologica Sinica, 1993, 11(2): 11-18.]
[35] 邓晋福,吴宗絮,赵国春,等. 华北地台前寒武花岗岩类、陆壳演化与克拉通形成[J]. 岩石学报,1999,15(2):190-198. [Deng Jinfu, Wu Zongxu, Zhao Guochun, et al. Precambrian granitic rocks, continental crustal evolution and craton formation of the North China Platform[J]. Acta Petrologica Sinica, 1999, 15(2): 190-198.]
[36] 王荃. 华北克拉通与全球构造[J]. 地质通报,2011,30(1):1-18. [Wang Quan. North China Craton and global tectonics[J]. Geological Bulletin of China, 2011, 30(1): 1-18.]
[37] 龚一鸣,张立军,吴义布. 秦皇岛石炭纪粪化石[J]. 中国科学(D辑):地球科学,2009,39(10):1421-1428. [Gong Yiming, Zhang Lijun, Wu Yibu. Carboniferous coprolites from Qinhuangdao, North China[J]. Science China(Seri.D): Earth Sciences, 2009, 39(10): 1421-1428.]
[38] 陈丹玲,赖绍聪,刘养杰. 秦皇岛柳江盆地混合花岗岩的锆石U-Pb定年[J]. 西北大学学报:自然科学版,2007,37(2):277-281. [Chen Danling, Lai Shaocong, Liu Yangjie. LA-ICP-MS zircon U-Pb dating for magmatitic granite from Liujiang Basin in Qinhuangdao area[J]. Journal of Northwest University: Natural Science Edition, 2007, 37(2): 277-281.]
[39] Barnaby R J, Read J F. Dolomitization of a carbonate platform during late burial; lower to Middle Cambrian Shady dolomite, Virginia Appalachians[J]. Journal of Sedimentary Research, 1992, 62(6): 1023-1043.
[40] Srinivasan K, Walker K R, Goldberg S A. Determining fluid source and possible pathways during burial dolomitization of Maryville limestone (Cambrian), Southern Appalachians, USA[J]. Sedimentology, 1994, 41(2): 293-308.
[41] Marfil R, Caja M A, Tsige M, et al. Carbonate-cemented stylolites and fractures in the Upper Jurassic limestones of the Eastern Iberian Range, Spain: a record of palaeofluids composition and thermal history[J]. Sedimentary Geology, 2005, 178(3/4): 237-257.
[42] Heap M J, Baud P, Reuschlé T, et al. Stylolites in limestones: barriers to fluid flow?[J]. Geology, 2013, 42(1): 51-54.
[43] Nelson R A. Significance of fracture sets associated with stylolite zones[J]. AAPG Bulletin, 1981, 65(11): 2417-2425.
[44] Koepnick R B. Distribution and permeability of stylolite-bearing horizons within a Lower Cretaceous carbonate reservoir in the Middle East[J]. SPE Formation Evaluation, 1987, 2(2): 137-142.
[45] Alsharhan A S, Sadd J L. Stylolites in Lower Cretaceous Carbonate Reservoirs, U.A.E.[M]. Society of Economic Paleontologists and Mineralogists, Special Publications, 2000: 185-207.
[46] Von Bergen D, Carozzi A V. Experimentally-simulated stylolitic porosity in carbonate rocks[J]. Journal of Petroleum Geology, 1990, 13(2): 179-192.
[47] Van Geet M, Swennen R, Wevers M. Quantitative analysis of reservoir rocks by microfocus X-ray computerised tomography[J]. Sedimentary Geology, 2000, 132(1/2): 25-36.
[48] Kahle C F. Possible roles of clay minerals in the formation of dolomite[J]. Journal of Sedimentary Research, 1965, 35(2): 448-453.
[49] McHargue T R, Price R C. Dolomite from clay in argillaceous or shale-associated marine carbonates[J]. Journal of Sedimentary Research, 1982, 52(3): 873-886.
[50] Narkiewicz M, Price R C, McHargue T R. Dolomite from clay in argillaceous or shale-associated marine carbonates; discussion and reply[J]. Journal of Sedimentary Research, 1983, 53(4): 1353-1355.
[51] Sibley D F. The origin of common dolomite fabrics; clues from the Pliocene[J]. Journal of Sedimentary Research, 1982, 52(4): 1087-1100.
[52] Churnet H G, Misra K C, Walker K R. Deposition and dolomitization of Upper Knox carbonate sediments, Copper Ridge district, east Tennessee[J]. Geological Society of America Bulletin, 1982, 93(1): 76-86.
[53] Nielsen P, Swennen R, Keppens E. Multiple-step recrystallization within massive ancient dolomite units: an example from the Dinantian of Belgium[J]. Sedimentology, 1994, 41(3): 567-584.
[54] Qing Hairuo, Bosence D W J, Rose E P F. Dolomitization by penesaline sea water in Early Jurassic peritidal platform carbonates, Gibraltar, western Mediterranean[J]. Sedimentology, 2001, 48(1): 153-163.
[55] Land L S, Salem M R I, Morrow D W. Paleohydrology of ancient dolomite; geochemical evidence[J]. AAPG Bulletin, 1975, 59(9): 1602-1625.
[56] Reinhold C. Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: eastern Swabian Alb, southern Germany[J]. Sedimentary Geology, 1998, 121(1/2): 71-95.
[57] 邬金华,Fralick P. 米粒状白云石及其出溶成因[J]. 沉积学报,1992,10(2):45-53. [Wu Jinhua, Fralick P. Rice-shaped dolomite and its exsolution origin[J]. Acta Sedimentologica Sinica, 1992, 10(2): 45-53.]
[58] Zhu Jingquan. Characteristics and origin of polycrystalline dolomite needles in the Triassic Jialingjiang Formation, Upper Yangtze Platform, southwest China[J]. Sedimentary Geology, 1998, 118(1/2/3/4): 119-126.
[59] 张永生,金振奎,谭健. 鄂尔多斯地区奥陶系马四组麦粒状白云石的发现及其成因探讨[J]. 岩石矿物学杂志,1999,18(1):18-25. [Zhang Yongsheng, Jin Zhenkui, Tan Jian. The discovery and genetic study of wheat dolomite crystals in the Ordovician Majiagou 4th Formation, Ordos area[J]. Acta Petrologica et Mineralogica, 1999, 18(1): 18-25.]
[60] Shinn E A, Lloyd R M, Ginsburg R N. Anatomy of a modern carbonate tidal-flat, Andros Island, Bahamas[J]. Journal of Sedimentary Research, 1969, 39(3): 1202-1228.
[61] Li Jian, Zhang Wenzheng, Luo Xia, et al. Paleokarst reservoirs and gas accumulation in the Jingbian field, Ordos Basin[J]. Marine and Petroleum Geology, 2008, 25(4/5): 401-415.
The Multiple Dolomitizations in Ordovician Majiagou Carbonate Rocks in Liujiang Basin, Qinhuangdao Area, North China
FENG ShiHai1,2,LI Hong1,JIANG JiaJun1,3,LEI Yun1,NIU YuanZhe1,YANG Rui1,LIU YongJie1
1. State Key Laboratory of Continental Dynamics, Northwest University, Xi’an 710069, China 2. Gansu Non-ferrous Metal Geological Exploration Bureau-Tianshui Mineral Exploration Institute, Tianshui, Gansu 741025, China 3. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
Middle Ordovician Majiagou Group, widely distributed in North China, was characterized by layers of marine dolomitic limestones, calcareous dolostones and dolostones in Liujiang Basin, Qinhuangdao area, North China. Four types of carbonate rocks in Majiagou Group were recognized in Liangjiashan Section, Shimenzhai area. From bottom to the top, they are type I- dolomitic wackstones; type II-fine to medium grained dolostones; type III- “wheat shaped” fine to medium grained dolostones; and type IV- calcareous microcrystalline pellets dolostones. Type I rock is mainly composed of microcrystalline calcite with fragments of trilobites and ostracods. Some fine-grained euhedral dolomites are “floating” in the pressolution stylolites and seams, rare in matrix. Petrological analysis and geochemical features of type I rocks indicate that the dolomitization occurred after the pressolution. The pressolution seams and stylolites provided pathways for dolomitizing fluids. Meanwhile, the conversion of clay minerals within the stylolites could provide part of magnesium for the dolomitization; Type II dolostone consists largely of euhedral to subhedral inequigranular (fine to medium grained) dolomites with “cloudy center and clear rim” structure. Photomicrographs of backscattered electron and cathodeluminescence of type II dolostones show that most dolomites have clear zonal structures. The variations of major elements, especially Fe ions between the rings and the intervals in a single dolomite crystal suggest that type II dolomites were formed by multi-stage dolomitizations during the burial history. The dolomite in type III dolostone reveals the feature of unidirectional extending, named as “wheat -shaped” crystals. The long axis orientation of the dolomite is fixed and perpendicular to crystalcaxis. The EPMA analysis indicates that type III dolomite is Fe rich and poor with Mn and Sr. The content of MgO along the long axes is slightly higer than that along the short axes, while CaO content shows the opposite tendency. Both the geochemical and cathodeluminescence features indicate that the “wheat-shaped” dolomite was also the result of burial dolomitization. The diagenetic fluids may play an important role in the formation of the unidirectional extending dolomite crystals; Type IV is calcareous microcrystalline pellets dolostones, with pseudomorphisms of gypsum. This type is mainly composed of microcrystalline to microsparry dolomite, including pellets and algae. The dissolution pores are common in type IV rocks, but had already been filled by poor-Fe sparry calcites totally. The petrology of type IV dolostones indicates that the dolomitization occurred very early, probably formed in lagoon or tidal flat of supratidal zones. In summary, these four types of dolomite in research area are the products of different dolomitizations, varied from very early to burial dolomitizations. From the bottom to the top of this section, the dolomite degree of order declined from 0.8 to 0.47, while the dedolomitization in four types of rocks appears the reverse tendency.
Middle Ordovician Majiagou Group; pressolution stylolite; “wheat-shaped” dolomite; burial dolomitization; Qinhuangdao area of North China
1000-0550(2017)04-0664-17
10.14027/j.cnki.cjxb.2017.04.002
2016-02-23; 收修改稿日期: 2016-09-12
国家自然科学基金项目(41272115,41272116)[Foundation: National Natural Science Foundation of China, No. 41272115, 41272116]
冯诗海,男,26岁,硕士研究生,石油与天然气工程,E-mail: fshwsu@126.com
李红,女,副教授,E-mail: lihong2008@nwu.edu.cn
P588.24+5
A