海绵城市与立体绿化技术

2017-07-12 20:26罗莎莎
绿色科技 2017年11期
关键词:径流海绵立体

罗莎莎

摘要:分析了海绵城市建设背景,介绍了海绵城市建设原则与技术措施。结合大城市人口密度及其城区布局,阐述了立体绿化对提高城市绿化覆盖率、建设城市水生态系统的重要意义。根据低影响开发原则,以屋顶绿化为例提出了提高径流雨水的渗透、调蓄、净化、利用和排放能力的立体绿化措施,以及新材料与新技术在构建海绵体中应用的方法。

关键词:海绵城市;立体绿化

中图分类号:TU986

文献标识码:A 文章编号:16749944(2017)11002503

1 海绵城市建设背景

在城镇化进程过程中,城镇面积持续扩张及其体量不断增长,给城市带来了严峻的水资源问题。一方面城市用水量增加使地下水位不断下降,饮用水资源变得越来越紧缺;另一方面城区洪涝灾害频繁发生,严重威胁居民生命财产安全。在没有充足淡水补给情况下,如何充分利用雨水资源补偿日常淡水消耗将成为建设未来城镇生态的关键任务。

习近平总书记中央城镇化工作会议的讲话中强调:“提升城市排水系统时要优先考虑把有限的雨水留下来,优先考虑更多利用自然力量排水,建设自然存积、自然渗透、自然净化的海绵城市”。建设完善的城市雨水收集利用系统对于节约用水、蓄洪排涝、修复城市水环境,特别是改善缺水城市的生态环境、解决居民用水紧张、推动水资源可持续发展具有重要的意义。

海绵城市建设重点在于最大限度提高绿地系统的雨水调蓄、水体净化功能,旨在建造众多“海绵体”。因此,建设公园绿地成为海绵城市建设的重要途径,并结合周边水系、市政道路设施,在如何利用公园绿地、街头绿化吸纳雨水径流的基础上,为城市街区提供雨水滞留、缓释空间,为城市景观用水提供补给空间是建设海绵城市的核心任务[1]。

1.1 海绵城市的建设现状

为了有效解决城市街区雨洪内涝频发、地表径流污染带来的水资源流失与水生态环境恶化问题,发达国家最先按照自然排水方式提出可持续发展的雨洪管理体系,制定各种技术措施[2~4]。例如:英国建立“可持续城市排水系统”(SUDS)[5]管理降雨径流,实现城市水体的良性循环;澳大利亚针对城市水循环建立“水敏感性城市设计”(WSUD)体系[6];新西兰也在城市水体管理理念下,整合已有管理经验,发展建立了“低影响城市设计与开发”(LIUDD)体系[7]。

我国城市雨洪控制管理起步于20世纪80年代。在实施初期注重如何集中利用雨水,近年来雨水控制技术逐渐从利用发展到如何调控雨洪及实现污染水体径流控制。在2013年各级政府明确提出通过在中心城区建设下沉式绿地与城市湿地公园,提升城市绿地汇聚雨水与蓄洪排涝能力,同时兼顾城区地下水补偿与水体净化等生态功能。虽然在发达城市区进行前期探索,从实施效果看目前城市海绵城市技术的实践主要是构建湿地、潜流湿地对雨水进行局部收集与水体净化,尚缺乏整体规划和系统性设计,导致城市水资源匮乏。鉴于我国海绵城市建设初期出现诸多问题,住房和城乡建设部于2014年发布了《海绵城市建设技术指南——低影响开发雨水系统构建(试行)》。该技术指南从目标、指标、过程、手段、管理方面对我国海绵城市构建进行规范指导(表1)。此外,财政部陆续发出“关于开展中央财政支持海绵城市建设试点的通知”、“关于组织申报2015年海绵城市建设试点城市的通知”,加大资金投入力度促进海绵城市建设。特别是党的十八大后中国多省份都掀起了建立海绵城市热潮,总投资超过数十亿元。

1.2 海绵城市建设技术措施

构建海绵城市实质是利用现存各类基础设施,添加各种类型的"海绵体"来提高城市的蓄洪滞洪能力。城市"海绵体"不仅涉及河、湖、池塘等地表水系,也包括公园绿地、建筑物、路面等城市基础设施。在雨水下渗过程中"海绵体"要完成滞蓄、净化、排水与回用功能[8],见表1。对于无法蓄存的雨水可通过市政管网将其排出,从而达到提高城市生态质量,根治城市内涝的目标[9]。

海綿城市建设目标应达到三个生态功能,①降雨过程中能够及时消纳并存贮雨水;②通过海绵体渗滤提升存贮水质;③枯雨期可以充分回收利用存贮雨水。根据《海绵城市建设技术指南——低影响开发雨水系统构建》原则,各类低影响开发设施包括透水铺装、绿色屋顶、下沉式绿地、生物滞留设施、渗透塘、渗井、湿塘、雨水湿地、蓄水池、雨水罐、调节塘、调节池、植草沟、渗管/渠、植被缓冲带、初期雨水弃流设施、人工土壤渗滤等[10]。总体原则是系统性地统筹自然降水、地表水和地下水分配关系;考虑其复杂性和长期性协调给水、排水等水循环利用各环节。具体做法是将城区分割成若干区域,各区域具备雨水立体化截留、消纳功能。

围绕各区域雨水截留消纳功能,区域低影响开发技术具体细分为截留技术、促渗技术和调蓄技术[11](表2)。其中,截留技术是利用基底材料或者结构的孔道曲折度,延缓雨水在材料孔隙网内径流速度,通过延长雨水汇集路径达到延缓径流目的的技术,例如利用绿色屋顶或者植物群落冠层截留等。地表促渗技术是通过优化地面材料或结构的连通性,让雨水在空隙结构渗透至场地底部,同时利用不同孔隙对下渗雨水进行过滤净化。如透水铺装和绿色停车场等。调蓄技术是指对储存一定量的雨水径流进行净化,当雨水储量达到设施饱和量时,多余雨水通过溢流口进入市政雨水管网。在干旱时储水设施可向周边绿地提供水资源,如生态沟、雨水花园、调蓄池、人工湿地等。 相比于传统的雨水径流收集利用技术,上述3种低影响开发技术,能够更充分地体现绿色建筑的生态性、可持续性、低能耗和低投资特点,在雨水收集利用中具有重要的应用前景。虽然区域低影响开发技术能够整体优化经济、社会及环境效益,但是低影响开发技术还不够完善,需要在如何利用控制雨水方面进行深入研究。

2 立体绿化的作用

由于城市人口稠密导致交通堵塞,热岛效应使众多城市面临环境危机。有研究表明,当绿化覆盖率达到30%以上时,城市热岛效应得到一定程度缓解作用;当绿化覆盖率达到40%以上时,热岛面积可减少3/4;当绿化覆盖率达到60%以上时,热岛效应将基本被控制。需要指出的是在城市土地利用率趋于饱和的情况下,预留较多空地作为海绵体是非常困难的。因此,进行立体绿化是实现城市绿化覆盖率大面积提高的重要措施和手段,可有效解决城市绿化用地的紧张状况。

与传统地面绿化相比,立体绿化注重在立体空间进行绿化覆盖。例如利用建筑物外墙、屋顶空间进行多层次、各种实际功能的绿化布设。这种做法将传统的二维消纳雨水模式(通过地面径流)转向三维多层(多阶段)消纳雨水方式。不仅延长径流空间,还美化居住环境。立体绿化场所涉及到屋顶花园、高层建筑和立交桥的立面、坑塘洼地湿地草地、下凹式广场、地下管廊系统、河道边坡绿化等。根据低影响开发原则,在场地开发过程中采用源头、分散式措施可以最大程度维持场地开发前的水文特征,并能有效提高对径流雨水的渗透、调蓄、净化、利用和排放能力。

以屋顶绿化为例,在降雨过程中屋顶水会流入城市街道,最后汇集到排水管网。对屋顶进行绿化后,屋面植被和土壤的吸收和过滤能力增强,使雨水径流放缓。被吸收的水分将在长时间内通过蒸发作用缓释土层含水量,使城市水文循环过程从瞬态排放转向稳态释放。具体表现为在短时间内城市强降雨导致的内涝、洪水被消减。有研究表明在土壤基层厚度为250 mm条件下,其蓄水层(饱和储水)厚度可达100 mm,可以吸纳150~200 mm降雨量。当遭遇100 mm暴雨时,屋面植物、泥土蓄水层可以完全吸收降雨[12]。围绕立体绿化,还可以利用屋顶开发都市农业。这其中,不占用土地与道路,在少量投资前提下施工便捷。其可以增加农作物种植面积,降低建筑物散热量,缓解城市热岛效应,同时滞尘降噪,还可以消化一部分有机生活垃圾,减小垃圾填埋焚烧带来的二次环境污染。此外,屋顶农业同样可以延长雨水到达地面的时间,避免发生城市雨洪灾害。针对屋顶农业发展,还需积极使用立体绿化新材料、新技术。植物根系生长对屋顶防水会产生破坏,必须采用耐根穿刺防水基材。针对立体绿化种植基质使用改良土、有机基质、无机基质。排(蓄)水板材料使用塑料凹凸排(蓄)水板、格栅排水板、塑料纤维丝状排水板、陶粒等排水材料。

由于屋顶存在大量绿色植物,植物茎叶表面气孔可以滞尘、杀菌和吸收低浓度污染物及增加空气中负离子数量。据测算花园式屋顶绿化平均滞尘量为12.3 g/(m2·年),简单式屋顶绿化平均滞尘量为8.5 g/(m2·年)。此外,种植媒介(土壤)还可以衰减各种低频声波,植被茎叶则可阻止高频声波传播。试验结果表明种植媒介厚度为120 mm时种植屋面的隔音量能高达40 dB。比较浅的种植媒介也能隔离约10 dB的噪音。这样种植屋面系统可形成有效隔音屏障,减少建筑物内部的噪音,特别适合在机场、工厂等噪音大的场所应用。

3 结语

海绵城市建设不仅要完善市政管渠系统,还应该依靠现有自然水体系统,并尽可能恢复原始生态系统,将雨水径流和消纳存储有机结合,才能从根本上管理城区雨洪,提升水环境保护质量。

在海绵城市具体实施中,立体绿化是城市常规绿化的重要补充。立体绿化不仅能优化景观效果,缓解城市绿化用地紧张,减缓热岛效应,还能保温隔热,节约能源,滞留雨水,缓解城市内涝。城市建设只有因地制宜地进行规划设计,借助地方特色生态系统,才能真正发挥人工海绵体作用,创建优美城市生态环境。

参考文献:

[1]车生泉,谢长坤,陈 丹.海绵城市理论与技术发展沿革及构建途径[J].Sponge City, 2015(6).

[2]Deletic A B, Maksimovic C T. Evaluation of water quality factors in storm runoff from paved areas[J]. Journal of Environmental Engineering , 1998, 124(9): 869~879.

[3]Gromaire M C, Garnaud S, Saad M, et al. Contribution of different sources to the pollution of wet weather flows in combined sewers.[J]. Water Research, 2001, 35(2):521~533.

[4]Jennings D B , Jarnagin S T . Changes in anthropogenic impervious surfaces, precipitation and daily streamflow discharge: a historical perspective in a mid-Atlantic subwatershed[J]. Landscape Ecology, 2002, 17(5): 471~489.

[5]Spillett P B, Evans S G, Colquhoun K. International Perspective on BMPs/SUDS: UK — Sustainable Stormwater Management in the UK[C]// World Water and Environmental Resources Congress. 2005:1~12.

[6]Lloyd S, Wong T, Chesterfield C. Water Sensitive Urban Design: A Stormwater Management Perspective [R]. CRC for Catchment Hydmlogy, 2002.

[7]Van M R, Greenaway A, Dixon J E, et al. Low Impact Urban Design and Development : scope, founding principles and collaborative learning[C]//7th International Conference on Urban Drainage Modeling and the 4th International Conference on Water Sensitive Urban Design; Book of Proceedings. Monash University, 2006: 531.

[8]白偉岚, 王媛媛. 风景园林行业在海绵城市构建中的担当[J]. 北京园林, 2015(4):3~6.

[9]王思思. 城乡水危机和海绵城市建设对风景园林专业提出的挑战及对策[J]. 风景园林, 2015(4):111~112.

[10]宋希强, 钟云芳. 面对21世纪的城市立体绿化[J]. 广东园林, 2003(2):34~38.

[11]车生泉, 谢长坤, 陈 丹,等. 海绵城市理论与技术发展沿革及构建途径[J]. 中国园林, 2015,31(6):11~15.

[12]胡春明.立体绿化:海绵城市建设重要一环[N].中国建设报,2016-04-14.

猜你喜欢
径流海绵立体
解读“海绵宝宝”
超级海绵在哪里?
竖琴海绵
西南岔河径流特性实例分析
Pop—Up Books立体书来了
西安市主城区土地利用变化及其对地表径流的影响
让你眼花缭乱的3D立体趣图
闽东北鹫峰山不同迹地与不同植被恢复模式对径流的影响
平面和立体等
立体年历