基于LabVIEW的旋转机械故障诊断系统

2017-07-08 02:58张娴史朋波张江涛
科技创新与应用 2017年19期
关键词:故障诊断

张娴+史朋波+张江涛

摘 要:研究旋转机械零部件的故障诊断方法,提出一种基于LabVIEW系统调用MATLAB程序的旋转机械故障诊断方法。主要介绍AIC9000转子试验台与虚拟仪器设备的组合应用,结合LabVIEW、MATLAB软件、EMD方法等,以轴承点蚀故障为例论述了该方法在旋转机械设备故障诊断领域的应用。

关键词:LabVIEW;旋转机械;EMD;故障诊断

中图分类号:TH164 文献标志码:A 文章编号:2095-2945(2017)19-0052-02

引言

近年来,虚拟仪器软件开发平台在机械设备领域的成功应用,对机械关键部件的人工智能化故障诊断起到推动作用。本文结合虚拟仪器设备和AIC9000转子试验仪器搭建平台,研究一套应用LabVIEW软件、MATLAB软件和EMD方法的旋转机械设备状态监测、分析系统。从实际工况出发,对设备监测故障预判有一定的指导作用。

1 LabVIEW数据采集系统

试验台搭建:有AIC9000多功能转子试验台、布点8组传感器、调理信号组件和LabVIEW虚拟仪器设备。

系统的程序设计基于NI-LabVIEW,实现对AIC9000转子设备及相关诊断仪器的改进设计,易于设备的升级和维护。AIC多功能转子系统和LabVIEW主机:Model:PXle-1078,PRODUCT OF MALAYSIA。

1.1 搭建LabVIEW平台

将8通道传输接口与调理信号模块连接,数字采集卡、信号处理卡等模块化的PXI板卡插入虚拟仪器主机箱中,机箱连接显示器。

1.2 LabVIEW软件程序设计

在程序框图窗口编程,程序汇编数据流设计包括通道设置→定时设置→触发设置→信息采集→分析设置→记录设置等。数据流向即为LabVIEW软件程序执行的顺序,按箭头方向依次连接各程序框图节点,其中信号采集部分和分析部分是信号调理、振动诊断并分析等最为重要。

1.3 DAQ数据采集

程序设计采用NI-DAQmx编程,常用数据采集VI有DAQmx创建虚拟通道VI、DAQmx读取VI、DAQmx写入VI、DAQmx定时VI、DAQmx触发VI、DAQmx开始任务VI、DAQmx清除任务VI等。

2 经验模态分解法(EMD)

旋转机械相关的传统故障诊断方法准确度较低,结合经验猜测估计得出大概故障类型及部位。EMD方法是一种自适应较好的时频分析法,其基本思想是将原始振动信号分解成一系列IMF的组合,再根据实际需要,对各个IMF进行希尔伯特变换组成时频谱图进行分析。

在虚拟程序系统的设计中,为提高故障信号的特征提取以及包络分析的准确性,应用HHT变换的EMD分解,将EMD程序以m.文件保存,并通过LabVIEW程序调用MATLAB软件的m.文件进行信号分析。

3 LabVIEW系统信号分析编程

在设计系统时,结合了MATLAB软件强大的数学分析计算和图形绘制功能的优势, 在LabVIEW编程时调用MATLAB命令。两种软件的嵌套使用强强联合,既进化了LabVIEW的复杂编程又发挥出了MATLAB在机械信号诊断分析方面的优势,提升计算速度。

3.1 EMD的m.文件程序

应用MATlAB软件编写function 函数语句function plot_hht(x,imf,Ts)% Plot the HHT.,并在MATLAB软件中File>>Set Path…>>Add Folder,将其添加保存到MATLAB函数中。

设置自适应的数据长度j和循环次数i等,结合使用for循环-if语句等实现IMF的分量提取。

3.2 创建MATLAB脚本节点

程序设计使用了最为快捷的m.文件调用方法,即直接调用NI-LabVIEW2014软件中的MATLAB Script节点。调用步骤为:在程序框图右击鼠标,执行all functions> > analyze> > mathematics> > formula> > matlab script操作,在程序框图中拖拽鼠标建立一个大小合适的MATLAB脚本节点,右击鼠标,设置程序框图输入和输出变量的数量,然后调用EMD程序代码的m.文件,最后完成连线。MATLAB脚本文件的创建图如图1。

3.3 EMD在LabVIEW中的实现

使用本系统对AIC转子试验台进行智能分析,在齿轮箱中安装故障齿轮,针对齿轮故障产生的振动信号进行8分量的IMF分解结果如图2所示。

从图2中可以看出点蚀I和点蚀II两种故障的8组信号数据经过EMD分解的IMF1~IMF8结果;点蚀信号柱状图对比正常齿轮信号特征其故障直观、明显。

4 结束语

LabVIEW平台具有有良好的扩展性,性价比较高,在科研和实际工程中得到了广泛的应用。从实际出发,根据旋转机械设备故障诊断的实际要求,构建LabVIEW软件平台,合理安装多传感器进行信号采集,运用虚拟仪器设计在线采集、分析、预测诊断。EMD方法、MATLAB软件与LabVIEW三者的结合,在诊断速度、分析准确性、程序设计的快捷性等方面都表现出了很强的优势,也将是未来的一个发展方向。

参考文献:

[1]胡劲松.面向旋转机械故障诊断的经验模态分解时频分析方法及实验研究[D].浙江大学,2003.

[2]程军圣,于德介,杨宇.EMD方法在转子局部碰摩故障诊断中的应用[J].振动、测试与诊断,2006,01:24-27+74.

[3]申永军,杨绍普,孔德顺.基于奇异值分解的欠定盲信号分离新方法及应用[J].机械工程學报,2009,45(8):64-70.

[4]曲丽荣,等.LabVIEW、MATLAB及其混合编程技术[M].北京:机械工业出版社,2011.

[5]王迪.基于虚拟仪器的振动测试分析系统研究[D].重庆:重庆交通大学,2014.

猜你喜欢
故障诊断
大功率并网风电机组状态监测与故障诊断研究综述
风力发电机组齿轮箱轴承故障诊断分析
数据流和波形诊断技术在发动机故障诊断中的应用
一种发动机启动继电器粘连故障诊断算法研究
基于人工神经网络的故障诊断专利浅析
浅谈机电一体化设备的故障诊断技术研究
基于EMD和SSAE的滚动轴承故障诊断方法
基于MapReduce的故障诊断方法
基于LabVIEW和Access的陀螺仪组故障诊断专家系统
电力变压器故障诊断及检修技术探究