整体把握数学知识揭示数学知识本质

2017-07-06 23:04林自强韦强�お�
中学教学参考·理科版 2017年6期
关键词:本质途径高效课堂

林自强++韦强�お�

[摘要]要打造数学高效课堂,就要对数学知识进行整体把握,揭示其本质,抓住“教师如何教”“学生如何学”这两个基本点.

[关键词]高效课堂;本质;途径;高中数学

[中图分类号]G633.6[文献标识码]A[文章编号]16746058(2017)17000603

高效课堂即在单位时间里高效率、高质量地完成教与学任务,促使学生获得高效的发展.高效课堂凸显教学的高效率,这种高效率既着眼于当前,更应立足于长远.

高效课堂评价主要标准是:学生思维活跃,语言表达正确、流利、有感情,课堂充满激情;学生分析问题与解决问题的能力强;课堂目标达成且正确率在95%以上.[1]让课堂真正成为“知识的超市、生命的狂欢”.[2]前提就是要看学生愿不愿学、会不会学、乐不乐学.如何打造一节高效的数学课堂?笔者总结与反思近年的教学实践,深深体会到“教学的艺术不在于传授知识,而在于激励与唤醒!”.[3]

一、善于解读新课程标准,灵动把脉教学的主线

教师要明确教学的重点工作是如何实现教与学,逐步减少外部的一些控制,增加学生自控的空间.然而,做到灵动地把握好教学的主线,则需要相应的理论(或理念)的支撑.高中数学新课程标准倡导积极主动、勇于探索的学习方式;强调本质,注意适度形式化;与时俱进地认识“双基”,注重信息技术与数学课程的整合.[4]提出“提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达与交流的能力,发展独立获取数学知识的能力[4]”的目标.

怎样才能体现新理念,实现课程目标?实践证明,问题的创设、问题的提出、问题的解决是行之有效的手段.我们教师要善于解读新课程标准,做到心中有数,应用自如.这样才能很好地呈现给学生一个全新的学习环境,激发学生的求知欲;才能使教学更有效、更高效.教师要处理好“要教什么,如何教”的关系,做到备教材、备教法、备学情有根有据.只有恰到好处地创设问题情境,才能使学生主动思考问题,积极投入到自主探索、合作交流的氛围中.教学设计时还要尽可能地创设与学习主题相关的、切合学生实际的教学情境,让数学课堂充满激情与活力.

二、创设恰到好处的问题情境,进行情到深处的知识讲解

恰到好处的问题情境可以起到事半功倍的效果.实践证明,并不是什么时候都要创设问题情境,或者说都可以创设问题情境.教师要把握时机,如一节课的开头引入、遇到难点时要创设问题情境.下面笔者就教学经验举几个例子予以说明.

【例1】(古典概型)创设问题情境:甲、乙两位同学在大课间民族体育运动的花样跳绳中都表现得十分出色,现要选派一位代表我校参加市民族体育运动花样跳绳比赛,请你为他们设计一个选派的方案.有两个学习小组分别给出了如下两个规则.

规则1:掷一枚质地均匀的硬币,正面向上就派甲去,反面向上就派乙去.

规则2:两人同时掷两个质地均匀的骰子,点数之和为6点就派甲去,点数之和为7点就派乙去.

请问哪个规则公平与合理?

情境源自于学生平时的大课间活动,对规则作出公平合理的选择,自然而然就联想到概率的问题.问题串就出来了,怎样计算?进而激发学生的求知欲,把教学内容转化为具有潜在实际意义的问题,让学生产生强烈的问题意识,为学生高效的学习做好铺垫.

【例2】(回归分析)创设问题情境1:2015年6月7日下午高考考完数学,很多考生都说2015年高考数学卷普遍被认为较为容易.事实是这样吗?

本课作为选修2-3第三章的起始课,鉴于该章内容为新课改的新增内容.因此,在设计与处理教材上,尽可能地从学生的最近发展区入手,如开篇从“2015年高考数学卷普遍被认为较为容易”这一现象引入本章统计案例.要做好统计,就需要相关数学知识做理论指导.寻找易于学生理解和接受的知识点切入,让学生感到数学学习也是十分有趣的.

创设问题情境2:在日常生活中,常听人们说:“量的积累达成质的飞跃.”“计划赶不上变化.”“因为你的存在让我变得如此美丽.”“年龄大了,发福了啵.”等,这些话语都饱含着两个量之间的相互关系.在数学上,我们也学过有关两个量之间的关系,比如数学必修1的函数关系(确定性关系)和数学必修3的相关关系(非确定性关系).

由于笔者所教的学生数学底子较薄,所以笔者尽量通过通俗易懂的话语激起学生的兴趣,让学生的思维尽快进入课堂的学习.让学生感受到数学不再枯燥,体验到其中的乐趣,将较为抽象的知识化为直观的感触.

【例3】任意角的三角函数.

[问题1]什么是任意角的三角函数?

[问题2]你打算怎样给“任意角”建立一个函数?

[问题3]锐角三角函数可以用来建立任意角的函数吗?

[问题4]能用锐角三角函数来建立任意角三角函数吗?

[问题5]它的定义域、值域是什么?

[问题6]余弦、正切函数是不是也可以用同样的方法来建立?

每節课首先要提出一个问题,并且去解决它.美国数学家哈尔莫斯说过:“问题是数学的心脏.”问题成为数学的生命,数学因问题而获得生命力.让学生学数学,能不让他们了解数学的生命吗?因此,课堂的引入也可以用问题驱动的方式引入.一些开放性的题目将会让每个学生的思维都动起来,让学生不再做默默的观众,而是做积极的参与者,渐渐体现课堂是学生的,教师扮演的是引导者.这样,学生就会在单位时间内学有所成、学有所获,为后续的学习传递正能量.

三、充分体现学生的主体地位,激起师生的双边互动

笔者提倡小组合作学习,利用导学案,举全组力量,相互帮扶.课前解决相关问题,对所上的内容有所了解,不至于上课时云里雾里.笔者截取《古典概型》部分导学案如下:

(一)活动1:读一读,想一想.中心任务:理解基本事件.

带着下面问题阅读教材第125页,2分钟后回答下列问题.

问题1:掷一枚质地均匀的硬币,正面向上和反面向上出现的概率分别是多少?为什么?

问题2:掷一个质地均匀的骰子,1~6点出现的概率分别是多少?为什么?

问题3:基本事件的特征是什么?请列举一个随机事件为基本事件的例子.

问题4:除了课本方法,计算例题1的基本事件个数的方法还有哪些?

(二)活动2:读一读,说一说.中心任务:理解古典概型特征及公式.

带着下面问题阅读教材第126页,2分钟后回答下列问题.

问题5:古典概型的基本特征是什么?请列举一个你身边的古典概型的例子.

问题6:如图1,向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?

问题7:某同学随机地向一靶心进行射击,射击的结果只有有限个:命中10环、命中9环……命中1环和不中环.你认为这是古典概型吗?为什么?

问题8:在推导古典概型某事件的概率公式时,用到了哪些知识和哪些方法?

问题9:尝试用多种语言描述古典概型事件A的概率计算公式.

(三)活动3:辨一辨,思一思.中心任务:应用古典概型公式,解决实际问题.

问题10:根据课本例题2,思考如下变式问题.

变式1:如果一道试题可以排除两个,还有两个选项不知道该选哪一个,则他回答对的概率是多少?

变式2:假设该题是一道多选题,这道题只有两个正确答案,如果某考生不知如何回答,就随便选.那么选对的概率是多少?并说明在做多项选择题时,没有把握猜对的概率更少.

(四)活动4:用一用,展一展:中心任务:总结计算古典概型方法、体悟合作学习意义.

问题11:同时掷两个骰子,计算:

(1)一共有多少种不同的结果?

(2)其中向上的点数之和是5的结果有多少种?

(3)向上的点数之和是5的概率是多少?

问题12:回到开始问题,思考规则1和规则2的合理性.

问题的预设均根据课程标准的理念和目标进行设置,课前分发给学生,让学生有宽裕的时间交流与探讨,给学生一个“兵教兵、兵练兵”的平台.一来能给学生做“小老师”的优越感,增强学习数学的自信;二来能提高学生的语言表达能力,促使学生多提问题,合作探索,揭示数学本质;三来让学生在正式课堂中知道教师上课的主线.同时,教师也能自如地做到教学明线鲜明,暗线不虚,达成课堂的双边互动,为高效的学习带来促进的作用.

四、化抽象为直观,帮助学生高效理解知识

笔者在讲到诱导公式时,针对口诀“奇变偶不变,符号看象限”进行如下教学.

下面以图3解说“奇变偶不变,符号看象限,加也好减也好,α统统是锐角”.α看成是锐角,奇偶数是针对π2的系数而言.

通过图解将抽象化为直观,通俗的语言讲解会让学生更为容易理解,提供高效学习的途径,帮助学生有效和高效地理解知识,既做到适当的形式化,又注重强调本质,从而整体把握诱导公式的作用“负化正、正化主、主化锐”.适时地举出例子“sin(3π2+θ)=”,让学生“小试牛刀”,体验收获的喜悦感.

五、借助图表构建知识网,由浅入深地总结与反思

在课的尾声,教师不要包办课堂的小结,应以开放式的形式给小组完成.学生全面参与,为自己小伙伴的回答点赞,增强学生学习自信心.比如在《古典概型》这节课的尾声,提出如下总结与反思.

知识上的收获:古典概型及其特征、古典概型的概率计算公式;

技能上的收获:求解古典概型概率的“五步曲”;

方法上的收获:枚举法、图表法;

思想上的收获:符号化、数形结合、化归;

学法上的收获:阅读课本、归纳与概括、总结与反思.

根据学生的心理认知规律和对图文的感性认识,教师引进图表

(如图4)

帮助学生构建知识网络,让学生有满满的收获,做到把书读薄又把书读厚,既能遵循形式化原则,又能揭示知识的本质.

图4知识“鱼骨”图

学生说出了本课的收获,提出困惑,情不自禁地开启下一节课要讲的问题.哪怕是学生所提的和所总结的不是十分完善和到位,但至少印证了只要将足够的时间

留给学生,学生的小组合作探究效果就会显著,课堂上

人人有事做、人人有收获,整堂课下来大家都感到充实.

高中数学教学中的情境教学,其核心在于数学知识与实际生活的高度融合.通过创设教学情境,使得学生积极主动地学习数学,思考数学学习的现实意义,有利于高中数学教学质量的提高,从而使得数学课堂教学充满乐趣.从学生的实际出发做好教师的教学设计与预期目标,相信我们的数学课堂将不会再那么枯燥.

[参考文献]

[1]张金凯.打造高效课堂的实践与思考[J].现代教育科学普教研究,2010(2).

[2]第斯多惠.德國教师培训指南[M].北京:人民教育出版社,2001.

[3]李炳亭.高效课堂的九大范式[M].济南:山东文艺出版社,2010.

[4]中华人民共和国教育部制订.普通高中数学课程标准(实验)[S].北京:人民教育出版社,2003.

[5]姜世武.创设问题情境构建数学高效课堂[J].学苑教育,2011(15).

[6]汪务玲.多环节做细,打造数学高效课堂[J].数学教学通讯(初等教育),2015(16).

[7]师轶.高效课堂的实施策略[J].广西教育,2010(10).

[8]迟学为.高效课堂教学模式构建的文化思考与行动策略[J].课程·教材·教法,2012(5).

(责任编辑黄桂坚)

猜你喜欢
本质途径高效课堂
构造等腰三角形的途径
回归本质
童年的本质
减少运算量的途径
WUU——让“物”回归其使用本质