不同土地利用方式土壤酶活性的季节变化

2017-07-05 13:06王坤香王克勤
绿色科技 2017年10期
关键词:土壤酶活性

王坤香 王克勤

摘要:为了解尖山河小流域土壤酶活性的影响因素,以5种不同的土地利用方式为对象,研究分析了土地利用类型、季节变化和土层深度变化对土壤酶活性的影响。结果表明:不同土地利用类型对土壤酶活性存在显著影响,且次生林和人工林的酶活性较高;雨季土壤酶的活性较旱季高,且变化明显;土壤酶活性随土层加深活性降低。可见土地利用类型、季节变化和土层深度是影响土壤酶活性变化的重要因素。

关键词:土壤酶活性;土地利用类型;季节变化;垂直变化

中图分类号:S154

文献标识码:A 文章编号:16749944(2017)10010802

1 引言

土壤酶学是研究土壤酶活性及其相关特性的科学,是一门介于生物学和生物化学之间的边缘交叉学科[1]。土壤酶作为土壤组分中最为活跃的有机成分之一[2],是生态系统的催化剂,不仅可以表征土壤物质能量代谢旺盛程度,而且还可以作为评价土壤肥力高低、生态环境质量优劣的一个重要生物指标[3~4]。它既是土壤有机物转化的执行者,又是植物营养元素的活性库[5],其活性不仅能反映出土壤微生物活性的高低,而且能表征土壤养分转化和运移能力的强弱,是评价土壤肥力体系的重要参数之一[6]。土地利用方式不同使植被类型和植物群落不同,从而影响土壤的理化性质与土壤酶的活性状况。薛萐[7]等研究干热河谷地带不同土地利用方式下土壤酶活性。

2 研究区概况

研究区位于珠江南北盘江上游岩溶区域的玉溪市澄江县西南部的尖山河小流域(北纬24°32′00″~24°37′38″,东经102°47′21″~102°52′02″),为抚仙湖的一级支流。流域总面积35.42 km2。最高海拔在流域北部,为2347.4 m,最低海拔在尖山河入抚仙湖的入口处,为1722 m,相对高差625.4 m。澄江县属低纬度高原气候,流域多年平均降雨量充沛,气温适宜。流域内的土壤主要是红紫泥土和红壤。尖山河小流域主要土地利用类型有天然次生林、人工林、灌草丛、坡耕地和梯田等几种地类。

3 材料与方法

3.1 样品的采集

每个样地的面积大于1 hm2。在每个大于1 hm2的样地内各设置3块400 m2(20 m×20 m)的样方,样方间距大于20 m,在每个样方内按S型或梅花型布点,分别取0~20 cm、20~40 cm土层土样,将相同生境、相同层次的5个点的土样等比例混合为一个样,去掉土壤中可见的植物根系和残体,重复3次,编号,用于测定土壤化学性质与酶活性。

3.2 样品分析

脲酶:苯酚钠-次氯酸钠比色法;蔗糖酶:3,5-二硝基水杨酸比色法;过氧化氢酶:高锰酸钾滴定法;蛋白酶:茚三酮比色法。

3.3 数据分析

利用WPS Excel和SPSS21.0等软件,对观测和实验所得数据进行分析处理。

4 结果分析

4.1 土壤酶活性的季节变化

土壤酶是土壤的重要组成部分,是土壤各种生物化学反应的催化剂,参与土壤中的物质和能量转化过程。由于季节性气候温度的变化、植被种类的不同,不同土地利用类型的4种酶活性存在显著差异(图1)。

土壤蔗糖酶的活性依次表现为人工林>次生林>灌木林>原生草地>坡耕地,过氧化氢酶的活性依次表现为灌木林>人工林>次生林>坡耕地>原生草地,脲酶活性均依次表现为次生林>人工林>灌木林>坡耕地>原生草地,蛋白酶的活性依次变现为次生林>人工林>原生草地>坡耕地>灌木林。4种酶的活性中次生林的活性均表现为较高,原生草地和坡耕地的酶活性表现相对较低。原因主要有两方面:一是次生林林内的植被群落受外界的干扰较少,植被盖度较高,地表有机物丰富,为有机质的转化提供了丰富的酶促底物;二是林内土壤结构疏松,透气性透水性好,且林内湿度较大,温度适宜,有利于提高酶活性,加快酶的反应速度,促使更多的有机物质转化为易于植物吸收的成分。坡耕地和原生草地土壤酶活性较低的原因则是土壤表层的有机质堆积较少,提供酶促反应的底物较少,土壤板结严重,透气性差,地表土壤的水分较少,缺乏土壤酶反应的环境条件,从而导致土壤酶的活性较低。

从气候条件来看,4种土壤酶活性在不同的气候条件下变化情况有一定的相似性,均表现为雨季的土壤酶活性大于旱季。土壤酶对温度的变化很敏感,一般的来说,当温度过高时,土壤酶会丧失本身的活性,而温度过低时,虽然不会丧失活性,但会抑制土壤酶的活性;土壤水分同样影响土壤酶的活性,土壤湿度较大时,土壤酶的活性会提高,但是如果土壤湿度达到一定的值甚至达到饱和状态时,则会抑制土壤酶的活性,当土壤水分减小时,相应的酶活性也会减弱。雨季实验区内气候环境适宜,湿热的环境条件有利于土壤酶的产生以及酶活性的增加;旱季试验区内的温度明显降低,土壤的水分含量较少,相应的酶活性减弱。不同土地利用方式也存在一定的差异。从图1可以看出,次生林、人工林和灌木林受温度和水分的影响差异较大,但是坡耕地和原生草地的酶活性的差异性不明显,原因主要有两方面:一方面是坡耕地和原生草地的植被覆盖度低,地表堆积层薄,有机质含量较低,缺少发生酶促反应的底物;另一方面是区域内的土壤蒸发快,土壤水分含量较低,地表易板结。这表明,土壤温度和土壤水分对土壤酶活性有一定的影响。

4.2 土壤酶活性的垂直变化

由图2可以看出,0~20 cm、20~40 cm土层的4种土壤酶活性变化曲线有一定的相似性,即0~20 cm的土壤酶活性高于20~40 cm。表层土壤的土壤酶活性较高的原因是地表的凋落物层较厚,有机质含量较高,为酶促反映提供了充足的底物,凋落物的腐解会释放一部分酶进入土壤,提高酶活性;凋落物的腐解还会促使土壤表层微生物的数量和活性的提高,进而使得土壤酶的活性升高。随着土层的加深,土壤的容重變大,土壤的孔隙度变小,透气性变差,抑制微生物以及植物根部的呼吸作用,从而减少酶的释放。土层加深,土壤的温度、水分以及微生物的数量也会随之降低。综上所述,土壤酶的活性随着土层的加深逐渐减小。杨式雄[8]等人对武夷山土壤酶的垂直分布做了详细研究,得出统一地类的土壤酶活性表现为上层高、下层低的层次性分布;吴旭东[9]等人探讨了不同种植年限的紫花苜蓿人工草地的土壤酶活性垂直分布的差异,3种酶的活性都随着土层的加深而降低,这一系列的研究与该研究结果一致,可以看出土壤酶的活性与土壤理化性质以及土壤养分的关系密切,尤其以地表有机质含量的影响最明显,因此酶活性是反映土壤养分情况的重要生物指标。

5 結论

土地利用方式对土壤酶存在显著影响。不同土地利用方式的土壤酶的含量有明显差异。总体上来讲也存在一定的相似性,即次生林和人工林的土壤酶活性均表现较高。

季节变化影响土壤酶的活性变化,雨季气候环境适宜,湿热的环境条件有利于土壤酶的产生以及酶活性的增加,4种土壤酶的活性均表现为雨季大于旱季。

同一土地利用类型,不同土层深度土壤酶的活性不同,总体上是随土层加深,土壤酶活性降低;且不同土地利用方式,土壤活性随土层加深的变化幅度有所差异。

参考文献:

[1]

关松荫.土壤酶及其研究方法[M].北京:农业出版社,1986.

[2]Marx M C,Wood M,Jarvis S C.A microplate fluorimetric assay for the study of enzyme diverzity in soils[J].Soil Biology & Biochemistry,2001,33(12-13):1633~1640.

[3]张咏梅,周国逸,吴 宁.土壤酶学研究进展[J].热带亚热带植物学报,2004,12(1):83~90.

[4]董 艳,董 坤,郑 毅,等.种植年限和种植模式对设施土壤微生物区系和酶活性的影响[J].农业环境科学学报,2009,28(3):527~532.

[5]Badiane N N Y,Chotte J L,Pate E,et al.Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semiarid tropical regions[J].Applied Soil Ecology,2001,18(3):229~238.

[6]Paz Jimenez M D,Horra A M,Peuzzo L,et al.Soil quality :a new index based on microbiological and biochemical parameters[J].Biology and Fertility of Soils,2002,35:302~306.

[7]薛 萐,李占斌,李 鹏,等.不同土地利用方式对干热河谷地区土壤酶活性的影响[J].中国农业科学,2011,44(18):3768~3777.

[8]杨式雄,戴教藩,陈宗献,等.武夷山土壤酶活性垂直分布与土壤肥力关系的研究[J].福建林业科技,1993,20(1):1~7.

[9]吴旭东,张晓娟,谢应忠,等.不同种植年限紫花苜蓿人工草地土壤有机碳及土壤酶活性垂直分布特征[J].草业学报,2013,22(1):245~251.

猜你喜欢
土壤酶活性
不同施肥处理对植烟土壤关键酶活性及根系活力的影响
秸秆还田及腐熟剂对土壤微生物特性和酶活性的影响
海岸带森林生态系统中土壤酶活性研究进展
大棚萝卜菜田土壤理化性质及相关酶活性特征
新疆泥火山不同生境土壤微生物数量、酶活性与理化因子的关系
不同施肥年限对赣南脐橙果园土壤酶活性及微生物种群的影响
伊犁河谷不同土地利用方式对土壤养分与酶活性的影响
重金属污染对土壤微生物及土壤酶活性影响的研究进展
辽西半干旱区果粮间作对土壤微生物和酶的影响
施氮时期对大豆结瘤和生长的影响