非常规油气聚集主控因素及油气富集综合分析

2017-06-27 03:32姜培海段文哲郭朝斌
非常规油气 2017年3期
关键词:页岩油气孔隙

姜培海,张 政,唐 衔,段文哲,郭朝斌,林 潼.

(1.中化石油勘探开发有限公司,北京 100031;2.中国冶金地质总局地球物理勘查院,河北保定 071051;3.中国石油勘探开发研究院廊坊分院,河北廊坊 065007)



非常规油气聚集主控因素及油气富集综合分析

姜培海1,张 政2,唐 衔1,段文哲1,郭朝斌1,林 潼3.

(1.中化石油勘探开发有限公司,北京 100031;2.中国冶金地质总局地球物理勘查院,河北保定 071051;3.中国石油勘探开发研究院廊坊分院,河北廊坊 065007)

在解剖北美13个不同盆地的15个非常规油气层及国内四川和鄂尔多斯两个盆地的基础上,通过对比分析及进行非常规油气层烃源岩、储层评价和分类,详细分析油藏类型、构造特征、顶底封盖能力等控制因素,结合油气藏评价、储层改造、技术选型、产能评价等综合分析,总结出油气富集高产规律。认为源内、源外和二者混合的3种非常规油气成藏模式对储层产能高低起着控制作用,沉积环境决定干酪根类型、矿物成分、岩石组构,沉积构造等在空间上的差异是非常规油气产能的主控因素,裂缝发育是高产的主控因素之一。提出有机相、沉积相、成岩相和应力相空间四相叠合带作为地质优质“甜点”区。以期指导国内的非常规油气田的经济性勘探开发和效益最大化。

非常规油气;高产富集;控制因素;产能评价;四相叠合

随着美国页岩油气勘探开发技术的突破,北美“页岩气革命”掀起了全球非常规勘探开发热潮。中国建成近100×108m3产能标志着国内页岩气的巨大成功。2011年11月,美国地质调查局(USGS)定义的非常规油气包括页岩油、页岩气、致密油、致密气、煤层气和重油。

本文涉及的非常规油气是指“凡是需要进行储层改造技术才能经济开发的油气层”,包括页岩油、页岩气、致密油、致密气和煤层气。但就页岩油气而言,在中国往往是指页理发育的纯泥岩,在北美则不但包括中国所称的页岩,也包括发育页理的粉、细砂岩,细粒生物碎屑灰岩,泥灰岩。对产层岩性而言,北美富含有机质的泥页岩、泥灰岩与粉砂岩、生物碎屑灰岩/白云岩形成频繁互层的“夹心饼干”状结构,且粉、细砂岩或灰岩、白云岩层是产能主要贡献者,这种岩相组合具有最佳的含气能力,含气性最好,压裂后产量高,是页岩气富集的有利相带。

1 油气富集主控因素分析

1.1 烃源岩的作用与特点

无论是常规还是非常规油气,其有机质丰度、有机质类型、热演化程度都是成藏主控因素,生烃过程没有差异,但有独特的成藏机理与模式[1-3]。机质类型与含量决定了生烃强度,北美的非常规油气之所以获得成功,就是因为其发育了世界顶级烃源岩。目前北美已发现的油气田/“甜点”的TOC一般大于3.5%,集中在5%~10%分布,Woodford和Bakken最高分别可达35%和36%。成熟度在生油气和热裂解生凝析气两个窗口内并且高产(表1)。成熟度、岩石类型、矿物组成和厚度决定了富集程度;含气量、吸附量、硅质含量、有机质孔隙度、流体充填孔隙体积及产能均与TOC呈正相关[4-8];但烃源岩过成熟(Ro高于2%)时,孔隙度呈现降低趋势[9]。干酪根类型好,微孔发育吸附能力就会增强(含水大于4%,吸附能力又会降低);进入生气窗口后引起地层压力增大将提高吸附性;黏土具有较高的微孔体积和较大的比表面积,吸附能力强;深部地层温度高,分子运动快,吸附力降低,具有高气油比,产能就高。这些已由北美页岩气所证实[10]。高产页岩气层吸附气含量一般低于30%,Eagle Ford最低,仅8%(表1、表2)。

表1 国、内外古生界烃源岩特征Table 1 Characteristics of source rocks in the Paleozoic in China and abroad

续表

表2 国、内外中生界油气藏类型及储层分类Table2 Hydrocarbon reservoir types and reservoir classification in the Paleozoic in China and abroad

1.2 沉积环境控制作用

有机质丰度高低显然受沉积环境与沉积相带控制。北美众多页岩油气层与四川盆地龙马溪组表明封闭-半封闭低能环境,即发育潟湖环境或“盆中盆”古地貌有利于形成贫氧-缺氧条件,导致浅海陆棚海侵期发育高丰度烃源岩及脆性储层。因为海侵是海水逐渐向时代较老的陆地风化剥蚀面上推进的过程,这就为水体补充了外源营养有机物质,被剥蚀地层就成为钙质来源。由于盆中古隆起导致发生上升流并带来深水营养盐,从而形成有机质为内源的大量生物,进而引发歇性缺氧条件,有利于有机质保存。水不用很深,几十米即可,如早期认为Marcellus下段黑色富含有机质泥页岩是深水沉积,但Olusanmi O. Emmanuel等[11]根据岩性组合、沉积构造和生物化石及季节性缺氧富含有机质泥页岩无需深水条件的理论[12-13],认为Marcellus下段因局部快速沉降和隆起、季节性营养源变化导致的藻类繁盛、盐度变化、碎屑输入速率变化,水深只有几十米。沉积时期的火山活动导致浮游生物繁盛,下段快速水进期TOC高达10%~20%,属于非常好的储层。

Eagle Foord组沉积时期,盆中隆起San Marcos阻挡了东部Woodbine三角洲陆源粗碎屑的输入并引发上升流带来内源营养物,同时与南部大陆架边缘早期礁滩体形成潟湖状半封闭-封闭环境,盆内上升流和陆源河流这两个内、外营养物的汇集导致硅质、钙质生物繁盛,引发间歇性贫氧-缺氧条件循环,形成纹层状生物碎屑和泥灰岩/泥页岩/粗粒粉砂岩 “夹心饼干”式薄互层沉积并富含有机质。Woodford组发育类似环境,由纹层状碎屑岩和碳酸盐混积并富含有机质(图1)。

1.3 孔隙度的影响因素

孔隙度与干酪根类型、数量、岩性密切相关,并随成熟度增加而增大[14-15]。与常规储层类似,烃源岩进入生油窗口后,干酪根体积缩小并开始发育有机质孔隙[16-18],有机质孔比例随着成熟度增加而增加并形成纳米级孔隙网络,进入过成熟后反而开始减少。在中成岩成岩A段发育溶蚀孔和有机质孔隙,随着埋深加大孔隙度降低[19]。北美页岩油气已发现油田孔隙度一般大于7%,属于Ⅰ类储层,非常规储层物性要远远优于国内;国内已发现气田储层属于Ⅱ类范畴,湖相泥岩属于Ⅲ~Ⅳ类,为差储层。

图1 Woodford组沉积与地化特征(据Comer1991、1992修改)[24-25]Fig.1 Deposition and geochemical features of Woodford formation (Modified from Comer 1991, 1992)[24-25]A.黑色页岩,Tasmanites藻(T)顺层分布, TOC 35%;B.黑色页岩与粉细砂岩互层,石英颗粒来自奥陶系砂岩, TOC 3.5%;C.11555ft①的纹层状页岩, TOC 4.2%;D.纹层状页岩夹粉砂岩纹层, TOC 8.1%;E.纹层状/平行层理页岩, TOC 10.1%注:①1ft=0.3048 m。

1.4 裂缝发育影响因素

天然裂缝既可以作为储集空间,又可以作为油气运移通道,其发育与生烃过程产生高压、地层快速埋藏后抬升、断裂活动、盐岩塑性流动或垮塌等密切相关。如Bakken组裂缝主要是由于生烃过程导致的高压和下伏盐岩活动而产生的;Macellus 组裂缝发育与志留系盐岩运动密切相关(表3);Eagle Ford组和涪陵气田是由于深埋后抬升导致的上覆载荷减少有效应力降低而发育裂缝[20];Niobrara组裂缝的产生不但有上述两种原因,还有古近纪构造运动的原因[10]。构造缝距离断层越近,裂缝越发育;而水平裂缝受沉积机理所控制,纹层或水平层理是由粒度变化、不透明矿物、炭质碎片和生物碎屑等顺层排列(图1)而成,发育在有一定水体动荡的低能环境如闭塞海湾、潟湖、沼泽、牛轭湖以及风暴浪基面以下较深水等环境中。由于层间黏合强度低,导致水平裂缝发育,并成为游离气储集最佳场所[11,21-22];平行层理面裂缝和垂直裂缝相交构成空间网络将不但增加孔隙间流动性,而且提供了基质与裂缝系统间的高渗透通道(图2),使油气在合适的圈闭富集,产能随着裂缝发育而增大,是高产的主控因素之一[23-26]。如Eagle Ford组裂缝发育,

图2 封闭-半封闭环境中岩相所发育的裂缝特征Fig.2 Fracture characteristics of lithofacies deposited in restrict basinsA. Woodford组纹层状硅质泥岩垂直裂缝被沥青充填;B. 生物扰动泥岩缝合线和裂缝被沥青充填,据Comer 1991,1992修改[26-27];C. Bakken组平行层理面裂缝和垂直裂缝相交增加内部孔隙流动性和提供高渗透通道[23];D. Eagle Ford组粒泥灰岩/粒泥灰岩层理面裂缝和层间裂缝形成空间网络[26]

裂缝成因页岩油气层位 EagleFordNiobraraBakkenMaecellusBarnettHaynesvilleNeal龙马溪油气生成产生高压—★★————★快速埋藏后抬升★★————★★走滑断层————★★——挤压或拉涨断层—★——————盐岩塑性流动或盐丘垮塌——★★—★——

水平段为1828.8 m、裂缝半径为91.44~121.92 m、平均高度为45.7 m的井的初产能达715.42 m3/d[27]。而平静的水体悬浮物迅速堆积所形成的块状泥岩不易发育水平裂缝。

1.5 顶底封盖能力的影响

北美大多数页岩油气除了具有构造圈闭外,地层结构上类似“汉堡”状,即页岩油气层顶底板为更加致密的灰岩或泥岩且底板大多以致密灰岩为主(表5),顶底板致密岩性不但是有效盖层,阻挡油气垂向运移,起着封闭压力的作用;也是压裂的天然屏障,使得储层体积改造容易。如Eagle Ford组上覆Austin灰岩最致密、盖层质量最好的Hawkville地区是最大产气区,发育优质盖层的Karnes 地堑区是最大产油区。高产区顶底板突破压力与储层段突破压力的比值,被称为封盖系数,其一般大于2;而非储层或极差储层的封盖系数小于1,意味着油气很容易发生垂向运移。

表4 非常规油气藏顶底板岩相特征与封盖能力Table 4 Lithofacies characteristics and sealing abilities of the top and bottom plate of unconventional reservoirs

1.6 构造圈闭与油气成藏

根据油气运移距离,将非常规油气划分成源内、源外和二者混合的3种非常规油气藏类型[28]。Bakken组非常规油气与常规油气藏共存,地层本身向四周上倾尖灭[29-30]而发育地层和岩性圈闭,如Sanish Parshall油田为岩性圈闭,Elm Coulee油田属于岩性-地层圈闭[31],Bakken、Eagle Ford、Barnett、Macellus、Montney、Woodford等众多页岩油气层所发现的大型油气田都发育背斜、断背斜等构造背景[10,32-44],甚至Eagle Ford组上倾方向浅层由于温压低导致孔隙极低而发育成岩性圈闭。背斜等构造圈闭不但起到成藏作用,而且沿背斜轴向因为变形作用发育裂缝而导致高产。

2 油气富集综合分析

2.1 有机相、沉积相、成岩相、应力相有利叠合带是富集“甜点”

众所周知,储层厚度、有机质丰度和热成熟度决定了储层好坏,产量高低受孔隙拓扑结构所控制。空间上矿物成分和性质的变化导致各向异性,矿物、TOC、孔隙与沉积环境与岩相密切相关[45-47]。快速海侵期,封闭-半封闭陆棚盆地或海槽间歇缺氧、半深海-深海有利于富含有机质的沉积物沉积与保存,形成有利沉积相带,在生油和凝析油窗口形成有利有机相带。海退期,在陆棚盆地或海槽中陆源碎屑间歇断供条件下形成页理发育并富含生物碎屑、硅质及钙质的碳酸盐或与碎屑岩混积的有利沉积相带,并在生油和凝析油窗口发育溶蚀孔、干酪根等有机质孔隙和裂缝而形成有利成岩相带;区域构造演化史决定了目的层系应力场方向,构造变形导致平行走向的裂缝发育带,形成有利应力相带;四相叠合带是最为有利的地质和工程“甜点”区。因此,古地理环境、古地貌、古构造恢复是非常规油气勘探开发是否成功的决定因素,精细解释沉积矿物成分、岩石组构、孔隙度、脆性塑性就意味着精细划分出沉积相带及成岩相带空间展布特征,才能找到地质高产“甜点”。

2.2 中国与北美页岩油气富集差异

北美“甜点”的有机碳丰度为世界级,孔隙度一般大于7%,钙质含量大于55%;储层/产层顶底板以致密灰岩为主,结构上类似“汉堡”状,底板不但在海侵期提供钙质来源,而且阻挡油气垂向运移,起着封闭压力的作用,其封盖性能有利于储层横向改造;岩性以碳酸盐岩为主,其本身脆性优于泥岩,从而形成高产“甜点”(表5)。上升流和陆源河流这两个内、外营养物的汇集导致硅质、钙质生物繁盛,引发间歇性贫氧-缺氧条件,形成纹层状生物碎屑和泥灰岩、泥页岩、粗粒粉砂岩等“夹心饼干”式薄互层沉积并富含有机质储层;平行层理面裂缝和垂直裂缝相交构成空间网络将不但增加孔隙间流动性,而且提供了基质与裂缝系统间的高渗透通道;高产页岩气层吸附气含量一般低于30%,岩性以碳酸盐岩为主,脆性明显优于泥岩。

中国海相或陆相泥页岩气具有“一老二杂三高”的特征,即时代老,构造运动复杂、热演化史复杂,高有机碳、高成熟度、高演化程度;湖相泥岩具有“一新一深二低”的特征,即时代新、埋藏深、成熟度低和脆性矿物含量低;岩性以硅质或钙质泥岩为主;孔隙度一般小于7%,有机碳含量一般小于4%。

中国与北美所谓的“页岩油气”有着本质的区别:北美的页岩油气属于致密油气范畴,其地面设施更加完善;中国的页岩油气勘探开发则需要探索适合地下地质和地上地貌特征的、甚至是非连续分布的有效的经济之路。

3 国内页岩油气勘探开发展望与工作建议

焦石坝页岩气获得成功并高产是多因素耦合而成,其本身是一个宽缓完整背斜构造,顶底板封盖系数大于1.8,发育半封闭-封闭环境纹层状泥页岩,构造抬升和生烃阶段导致水平裂缝发育而成为储集空间,超压对页岩储层储集空间保存起到至关重要的作用;游离气含量大于60%,五峰与龙马溪之间的不整合及断层起到了油气运移通道作用,属于源内、源外混合成藏型。焦石坝气田龙一段快速海侵沉积了一套炭质页岩夹生物成因硅质泥岩(长宁和威远气田硅质来源与陆源碎屑),其沉积环境需要有植物碎屑供给;已钻井表明侏罗山式构造带由宝塔/临湘灰岩组成,推测在该碳酸盐岩沉积后经过长期风化剥蚀或潮道改造形成了“类环礁”古地貌-潟湖环境,因而发育含放射虫和笔石生物碎屑的纹层状硅质泥页岩;龙二段发育灰绿色泥岩和粉砂岩互层,含炭屑,由龙一段填平补齐后海底扇发育而成,为海退期沉积。这是值得重视的一个层系与领域,一旦富含有机质的烃源岩与粉砂岩、泥质粉砂岩储层耦合,将有利于非常规油气开发技术的应用并获得与长宁和威远型类似的高产油气藏。

表5 Bakken组中深层已发现油田储层物性特征与流体性质Table5 The physical properties and fluid properties of oil reservoirs have been found in the middle-deep Bakken formation

鉴于国内非常规油气发育主要是碎屑岩沉积环境,如松辽盆地扶余组和鄂尔多斯延长7段沉积具有满盆含砂特点,主要发育大型三角洲-浊积岩沉积体系。而三角洲远端前缘薄砂层与富含有机碳的前三角洲泥页岩指状交错呈薄互层的相带有利于发育“夹心饼干”型页岩和砂岩频繁薄互层,适合应用非常规油气勘探开发技术并获得高产。仅松辽盆地概算页岩油资源量约314×108t,页岩气约4.4×1012m3,特低渗透油藏未开发探明储量约14×108t,特低渗透剩余资源量超过14×108t,是值得重视的非常重要的战略领域。鄂尔多斯盆地长7段半深湖-深湖相环境本身陆相页岩油资源潜力巨大[48],而发育的重力流沉积有利于发育“夹心饼干”型页岩和砂岩频繁薄互层,是重要的非常规油气勘探开发技术应用领域,其产能要远远高于纯泥岩的压裂而具有经济性。

4 结论

(1)沉积环境和地理位置决定了干酪根类型、矿物成分、岩石组构、沉积构造等在空间上的差异,沉积环境与岩石组构是非常规油气产能的主控因素;储层质量受沉积环境和构造演化所控制,古地理环境、古地貌、古构造恢复是非常规油气勘探开发是否成功的决定因素。烃源岩、沉积相带、孔隙度、裂缝、构造等是非常规油气高产富集的主要控制因素。

(2)碳酸盐和碳酸盐与碎屑岩混积“盆中盆”古地貌是非常规油气富集的有利沉积环境和沉积模式,有机相、沉积相、成岩相和应力相相互耦合作用形成的四相叠合带是地质和工程的优质“甜点”区,是经济开发的决定因素。

(3)储层厚度、有机质丰度和热成熟度决定了储层好坏,产量高低受孔隙拓扑结构所控制。空间上矿物成分和性质的变化导致各向异性,矿物、TOC、孔隙与沉积环境和岩相密切相关,储层脆性取决于钙质或硅质含量,而钙质来源与海侵期剥蚀下伏老地层及周围古高地碳酸盐岩、硅质、“夹心饼干”式生物碎屑层与上升流和间歇性缺氧密切相关。“夹心饼干”式储层和“汉堡”状地层结构是非常规油气高产的主控因素。

(4)建议国内在发育大型三角洲-浊积岩沉积体系的松辽盆地和鄂尔多斯盆地展开和建立非常规油气勘探开发技术实验基地,指导国内致密油气的经济有效开发,并成为国内储量和产量的重要来源之一。

[1] 张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18.

[2] 刘成林,李景明,李剑,等.中国天然气资源研究[J].西南石油学院学报,2004,26(1):9-12.

[3] 刘树根.四川叠合盆地深层海相碳酸盐岩油气的形成和分布理论[C].第六届中国石油地质年会,2015.

[4] 郭旭升.涪陵页岩气田的发现及勘探技术[C].第六届中国石油地质年会,2015.

[5] 易积正.页岩气产能影响因素分析[C].第六届中国石油地质年会,2015.

[6] QUIREIN J, GALFORD J, WITKOWSKY J, et al. Review and Comparison of Three Different Gas Shale Interpretation Approaches[C]. Cartagena: the SPWLA 53rd Annual Logging Symposium, 2012.

[7] 聂海宽,何发岐,包书景.中国页岩气地质特殊性及其勘探对策[J].新能源,2011,31(11):111-131.

[8] 李新景,吕宗刚,董大忠,等.北美页岩气资源形成的地质条件[J].天然气工业,2009,29(5):27-32.

[9] 王飞宇,关晶,冯卫平,等.过成熟海相页岩孔隙度演化特征和游离气量[J].石油勘探与开发,2013,40(6):764-768.

[10] PATHAK M, DEO M, CRAIG J, et al. Geologic Controls on Production of Shale Play Resources: Case of the Eagle Ford, Bakken and Niobrara[C]. Denver: the Unconventional Resources Technology Conference, 2014.

[11] EMMANUEL O O, SONNENBERG. Geologic Characterization and the Depositional Environment of the Middle Devonian Marcellus Shale, Appalachian Basin, NE USA[C]. Denver: the Unconventional Resources Technology Confe-rence, 2013.

[12] TYSON R V, PEARSON T H. Modern and Ancient Continental Shelf Anoxia: An Overview[M]. London: Geological Society Special Publication, 1991: 1-24.

[13] SMITH L B, LEONE J. Integrated Characterization of Utica and Marcellus Black Shale Gas Plays[C]. American Association of Petroleum Geologists Annual Convention and Exhibition, 2010.

[14] MILLIKEN K L, RUDNICKI M, AWWILLER, et al. Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200.

[15] OZKAN A, MILLIKEN K L, MACAULAY C, et al, Influence of Primary Rock Texture, Diagenesis, and Thermal Maturity on Eagle Ford Pore Systems[C]. Pittsburgh: AAPG Annual Convention and Exhibition, 2013.

[16] LOUCKS R G, REED R M, RUPPEL, et al. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores[J]. AAPGBulletin, 2012, 96(6): 1071-1098.

[17] SONDERGELD C H, AMBROSE R J, RAI C S, et al. Microstructural Studies of Gas Shales[C]. Pittsburgh: SPE Unconventional Gas Conference, 2010

[18] AMBROSE R J, HARTMAN R C, DIAZ-CAMPOS, et al. New Pore-Scale Considerations for Shale Gas in Place Calculations[C]. Pittsburgh: SPE Unconventional Gas Conference, 2010.

[19] FAN J W, THOMSON J R, ROBINSON. Understanding Gas Production Mechnism and Effctiveness of Well Stimulation in the Haynesville Shale Through Reservoir Simulation[C]. Calgary: Canadian Unconventional Resources and International Petroleum Conference, 2010.

[20] XIA X Y, WALLACE J, DU L G. Modeling of Abnormal Fluid Pressure in Unconventional Plays Due to Uplift[C]. Denver: the Unconventional Resources Technology Conference, 2013.

[21] LOUCKS G R, ROWE H D. Upper Cretaceous Niobrara Chalk in Buck Peak Field, Sand Wash Basin, NW Colorado: Depositional Setting, Lithofacies, and Nanopore Network[C]. Denve: the Unconventional Resources Technology Conference, 2014.

[22] 于光春. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[C].北京: 第六届中国石油地质年会,2015.

[23] AL DUHAILAN M A, SONNENBERG S A. Impact of Petroleum-Expulsion Fractures on Productivity of the Bakken Shales: A Geological Interpretation for Pressure Transient Behaviors[C]. Denver: the Unconventional Resources Technology Conference, 2014.

[24] COMER J B. Stratigraphic Analysis of the Upper Devonian Woodford Formation, Permian Basin, West Texas and Southeastern New Mexico: Austin, Texas, Bureau of Economic Geology[R]. Report of Investigations, 1991: 51-62.

[25] COMER J B. Organic Geochemistry and Paleogeography of Upper Devonian Formations in Oklahoma and Northwestern Arkansas, in K. S.[J]. Oklahoma Geological Survey, 1992, Circular 93: 70-93.

[26] STEGENT A, WAGNER L A, MULLEN J, et al. Engineering a Successful Fracture-Stimulation Treatment in the Eagle Fold Shale[C] San Antonio: the SPE Tight Gas Completions Conference, 2010.

[27] SPENCER J, BUCIOR D, CATLETT R, et al. Evaluation of Horizontal Wells in the Eagle Ford Using Oil-Based Chemical Tracer Technology to Optimize Stimulation Design[C]. Woodlands: the 2013 SPE Hydraulic Fracturing Technology Conference, 2013.

[28] BOHACS M K, PASSEY Q R, RUDNICKI M, et al. The Spectrum of Fine-Grained Resevoirs from “Shale Gas” to “Shale Oil”/ Tight Liquids: Essential Attributes, Key Controls, Practical Characterization[C]. Beijing: the International Petroleum Technology Conference, 2013.

[29] HUI J, SONNENBERG A S. Characterization for Source Rock Potential of the Bakken Shales in the Williston Basin, North Dakota and Montana[C]. Denver: the Unconventional Resources Technology Conference, 2013.

[30] SONNENBERG A S. The Upper Bakken Shale Resource Play, Williston Basin[C]. Denve: the Unconventional Resources Technology Conference, 2014.

[31] 崔景伟,朱如凯,杨智,等.国外页岩层系石油勘探开发进展及启示[J].非常规油气,2015,2(4):68-82.

[32] HENNING T A, MARTIN R, PATON G. Data Conditioning and Seismic Attribute Analysis in the Eagle Ford Shale Play: Examples From Sinor Ranch, Live Oak County[C]. Denver: Texas SEG Annual Meeting, 2010.

[33] POLLASTRO M R, HILL R J, JARVIE M D, et al. Assessing Undiscovered Resources of the Barnett-Paleozoic Total Petroleum System, Bend Arch-Fort Worth Basin Province, Texas[C]. Fort Worth: AAPG Southwest Section Meeting, 2003.

[34] LI F, RON M, JOHAN T, et al. An Integrated Approach for Understanding Oil and Gas Reserves Potential in Eagle Ford Shale Formation[C]. Calgary: the Canadian Unconventional Resources Conference, 2013.

[35] MARTIN R, BAIHLY J D, MALPANI R, et al. Understanding Production from Eagle Ford-Austin Chalk System[R]. Paper SPE145117, the Annual Technical Conference and Exhibition, 2011

[36] VISWANATHAN A, ALTMAN R, OUSSOLTSEV D, et al. CompletionEvaluation of the Eagle Ford Formation with Heterogeneous Propant Placement[C]. Calgary: Canadian Unconventional Resources Conference, 2011.

[37] DONOVAN D A, STAERKER T S, PRAMUDITO A, et al. A 3-D Outcrop Perspective of an Unconventional Carbonate Mudstone Reservoir[C]. Denver: the Unconventional Resources Technology Conference, 2013.

[38] BELLO D H, BARZOLA G, PORTIS D, et al. Multiuse of Seismic and Attribute Mapping for Field Appraisal and Development in the Eagle Ford Shale: Mapping TOC, Porosity and Seal Integrity[C]. Denver: the Unconventional Resources Technology Conference, 2013.

[39] GUO S G, ZHANG B, LIN T F, et al. AVO Gradient Anisotropic Analysis on Prediction of Fractures on Barnett Shale[C]. Denver: the Unconventional Resources Technology Conference, 2013.

[40] SLATT M R, BRIEN O N, BLANCO M C, et al. Pores, Spores, Pollen and Pellets: Small, but Significant Constituents of Resource Shales[C]. Denver: the Unconventional Resources Technology Conference, 2013.

[41] METZNE D, SMITH L K. Case Study of 3D Seismic Inversion and Rock Property Attribute Evaluation of the Haynesville Shale[C]. Denver: the Unconventional Resources Technology Conference, 2013.

[42] OLSEN N T, GERMINARIO M P, REINMILLER R, et al. Horizontal Lateral Image Analysis Applied to Fracture Stage Optimization in Eastern Barnett Shale, Tarrant and Dallas Counties[C]. Denver: the Unconventional Resources Technology Conference, 2014.

[43] ENGELDER T, GOLOB B, HOCUM S J, et al.Comparison of Marcellus Fracturing Using Azimuthal Seismic Attributes Versus Published Data from Outcrop Studies[C]. Denver: the Unconventional Resources Technology Confe-rence, 2014.

[44] PEZA E, KVALE E, HAND R, et al. 3-D Integrated Workflow for Understanding the Fracture Interference and Its ImpactInto the Gas Production of the Woodford Shale Unconventional Resources Technology[C]. Denver: the Unconventional Resources Technology Conference, 2014.

[45] MULLEN J. Petrophysical Characterization of the Eagle Ford Shale in South Texas[C]. Calgary: SPE Proceedings of the Canadian Unconventional Resources and International Petroleum Conference, 2010.

[46] POPIELSKI A C. Rock Classification From Conventional Well Logs in Hydrocarbon-Bearing Shale[D]. Austin: the University of Texas at Austin, 2011.

[47] HAMMES U, HAMLIN H S, EWING T E. Geologic Analysis of the Upper Jurassic Haynesville Shale in East Texas and West Louisiana[J]. AAPG Bulletin, 2011, 95(10): 1643-1666.

[48] 王喆,陈清敏,杨文博,等.鄂尔多斯盆地铜川地区油页岩特征及资源评价[J].非常规油气,2016,3(4):32-39.

Comprehensive Analysis for Hydrocarbon Accumulation Main ControlFactors and Enrichment of Unconventional Oil and Gas

Jiang Peihai1, Zhang Zheng2, Tang Xian1, Duan Wenzhe1, Guo Chaobin1, Lin Tong3

(1.Sinochem Petroleum Exploration & Production Co., Ltd., Beijing 100031, China; 2.GeophysicalExploration Academy of China Metallurgical Geology Bureau, Baoding, Hebei 065007, China; 3.Langfang Branch of PetroChina Research Institute of Petroleum Exploration &Development, Langfang, Hebei 071051, China)

Based on the analysis of 15 unconventional oil and gas reservoirs in 13 different basins in North America and the two basins in Sichuan and Ordos in China, this paper analyzed the types of reservoirs structural characteristics, top and bottom cover capacity and other control factors, by means of comparative analysis and unconventional oil and gas source rocks, reservoir evaluation and classification, combined with oil and gas reservoir evaluation, reservoir transformation, technical selection, capacity evaluation and other comprehensive analysis, summed up the law of high oil and gas enrichment. It was considered that the three unconventional oil and gas reservoirs in the source, the source and the mixture were controlled by the reservoir capacity. The depositional environment determined the spatial differences of the kerogen type, mineral composition, rock structure and sedimentary structure was the main factor of unconventional oil and gas production capacity, fracture development was one of the main factors of high yield. The organic phase, the sedimentary facies, the diagenetic facies and the stress phase space four - phase overlapping zone were proposed as the geological quality “dessert” zone. With a view to guiding the domestic unconventional oil and gas field of economic exploration and development and maximize the benefits

unconventional oil and gas; enrichment and high yield; controlling factors; productivity evaluation; four facies superimposing

中化石油勘探开发有限公司自主创新项目“中国含油气盆地新领域、新层系研究”资助。

姜培海(1965—),男,高级工程师,1987年毕业于西北大学地质系石油与天然气专业,获学士学位,现主要从事储层沉积学和油气田勘探开发综合研究与管理工作。邮箱:1916849806@qq.com.

P624

A

猜你喜欢
页岩油气孔隙
平凉,油气双破2万吨
“峰中”提前 油气转舵
《非常规油气》第二届青年编委征集通知
二氧化碳在高岭石孔隙中吸附的分子模拟
Preparation of bimodal grain size 7075 aviation aluminum alloys and the ir corrosion properties
油气体制改革迷局
页岩气开发降温
页岩孔隙结构研究进展
煤焦孔隙结构的表征及分析方法的构建
我国页岩气可采资源量初步估计为31万亿m3