魏海燕 李宏亮 程金秋 张洪程 戴其根 霍中洋 许 轲 郭保卫 胡雅杰 崔培媛
缓释肥类型与运筹对不同穗型水稻产量的影响
魏海燕 李宏亮 程金秋 张洪程*戴其根 霍中洋 许 轲 郭保卫 胡雅杰 崔培媛
扬州大学农业部长江流域稻作技术创新中心/ 扬州大学江苏省作物遗传生理重点实验室 / 粮食作物现代产业技术协同创新中心, 江苏扬州 225009
以大穗型品种甬优2640和多穗型品种南粳9108为材料, 270 kg hm–2纯氮条件下, 选用树脂包衣(PCU)、硫包衣(SCU)和脲甲醛(UF)3种缓控释肥类型, 设置了缓控释肥与尿素均基施、缓控释肥基施后分蘖期施尿素2种施肥方式, 以常规尿素定量分施为对照(CK)。结果表明, 缓控释肥的应用对甬优2640无增产效应。主要因为甬优2640穗大粒多, 群体颖花量大。与CK比, 相对集中在前中期的肥效难以满足植株全生育期生长, 中后期叶面积指数下降快, 氮素积累少, 光合势弱, 物质生产量不足, 不能实现群体大库容的有效充实。而对南粳9108, 脲甲醛基施+尿素分蘖期施处理比CK增产5.2%~5.9%, 树脂包衣基施+尿素分蘖期施和脲甲醛+尿素均基施处理与CK平产的同时可减少施肥2~3次。2种运筹方式中, 以缓控释肥基施后分蘖期施用尿素处理能有效增加植株茎蘖数, 提高成穗率和最终穗数, 扩大叶面积指数, 增强光合势, 增加干物质和氮素的积累, 获得高产。3种肥料类型中, 产量呈现UF>PCU>SCU。脲甲醛基施+分蘖期施尿素处理之所以能使南粳9108获得比CK更高的产量, 是因为UF的肥效在中后期依然能相对稳定释放, 配合尿素的分蘖期施用, 既保证了前期分蘖的发生, 又能保证高峰苗后稳定的茎蘖数和群体叶面积指数, 植株在拔节后的光合势和物质积累量大, 氮肥利用率高, 增产显著。由此可见, 针对不同穗型和产量特性的水稻品种, 优选缓控释肥类型基施的同时, 分蘖期配合速效肥料的施用, 可获得既省工又增产的效果。
缓控释肥类型; 肥料运筹; 不同穗型水稻; 产量
水稻常规施氮一般采用基肥加多次追肥的方式[1], 这种方式存在施肥次数多、费工费时、肥料利用率低等缺点, 难以满足高效、资源节约、环境友好的现代水稻生产要求。近年来, 利用多种调控机制使养分按照设定的释放速率和周期缓慢或控制释放、以满足作物在一定生长季内对养分需求的缓控释肥得到了快速发展和应用, 为现代作物生产简化施肥、降低施肥劳动强度、提高肥料利用率提供了可能。现有的缓控释肥大体可分为物理型缓控释肥(各种包膜肥料)和化学型缓释肥(养分释放抑制型肥料、阻溶型肥料及化学合成类肥料等)等类型[2-3]。不同类型缓控释肥其养分释放规律有差异[4-6], 对水稻生长发育有着不同的影响。已有的研究表明, 施用缓控释肥, 可显著降低稻田表土层和表面水NH4+-N的含量[7], 使氮素释放过程与水稻吸氮过程基本一致, 减少氮肥损失[8], 提高水稻中、后期叶片中硝酸还原酶和谷氨酰胺合成酶的活性[9-10], 促进根系生长、延缓叶片衰老[11], 增加水稻产量, 提高氮肥利用率[12]。同时, 缓控释肥的施用还能减少稻田N2O、CH4等温室气体的排放[13-15], 减少氮肥施用对环境的压力。但邢晓鸣等[16]研究不同类型缓控释肥及其组配对水稻生产发育的影响时也发现, 单纯的硫包衣或树脂包衣缓控释肥在水稻上应用效果不佳, 而组配的掺混肥配合分蘖期施用速效氮肥, 可显著提高水稻群体光合物质生产和产量。但也有研究发现[14, 17-18], 一旦缓控释肥的肥效释放与水稻需肥规律存在一定差异时,施用缓控释肥则难以达到优化群体质量和增产效果。以上研究大多是缓控释肥在某一类型水稻上的应用研究。缓控释肥因类型不同其肥效释放有差异, 而水稻植株也会因品种不同对氮素的吸收存在差异。本试验选用长江中下游近年来新推出的高产大穗型品种甬优2640和优质多穗型品种南粳9108为材料, 在等量施氮条件下, 比较3种缓控释肥类型及其与尿素的配施方法对产量的影响, 以期为缓控释肥的因种施用提供科学依据。
1.1 试验材料
试验于2014—2015年在泰州市姜堰区沈高镇河横试验基地进行, 土壤类型为潴育型水稻土, 土壤0~20 cm耕层含有机质36.13 g kg–1、全氮2.14 g kg–1、速效磷5.81 mg kg–1、速效钾163.02 mg kg–1, pH 6.72。
供试水稻为大穗型品种甬优2640, 多穗型品种南粳9108。
供试肥料类型为树脂包衣PCU (N 21%); 硫包衣SCU (N 37%); 脲甲醛UF (N 16%); 普通尿素(N 46%)。
1.2 试验设计
试验采用毯苗机插塑盘育秧, 5月31日播种, 甬优2640播种量为每盘80 g, 南粳9108播种量为每盘120 g。6月20日秸秆还田条件下机械移栽。甬优2640栽插密度为22.5万穴 hm–2(14.6 cm × 30.0 cm), 每穴2株苗; 南粳9108栽插密度为28.5万穴 hm–2(11.7 cm × 30.0 cm), 每穴4株苗。每处理小区面积25.5 m2, 重复3次。各小区间作埂隔离, 并用塑料薄膜覆盖埂体, 单独排灌。
试验每公顷施用纯氮270 kg, 其中缓控释肥与尿素以5∶4的比例配合施用。设置3种缓控释肥类型和2种施肥方式。其中缓控释肥类型包括树脂包衣、硫包衣、脲甲醛。肥料施用方式依据施用时间的不同分为缓控释肥与尿素均基施、缓控释肥料基施后分蘖期施用尿素。以普通尿素定量分施为对照(CK), 具体处理名称、肥料用量与施用时间见表1。基肥于水稻移栽前施用, 分蘖肥于水稻移栽后5~7 d施用, 促花肥和保花肥分别于倒四叶叶龄和倒二叶叶龄期施用。同时增设不施氮肥空白处理, 以计算肥料利用率。除氮肥外, 以过磷酸钙和氯化钾的形式分别基施P2O5和K2O各150 kg hm–2。其他水分与病虫害管理按高产栽培要求统一进行。
表1 各处理氮肥种类、用量(kg hm–2纯N)与施用时间
B(PCU+U): 树脂包衣+尿素均基施; B(SCU+U): 硫包衣+尿素均基施; B(UF+U): 脲甲醛+尿素均基施; B(PCU)+T(U): 树脂包衣基施+分蘖期施尿素; B(SCU)+T(U): 硫包衣基施+分蘖期施尿素; B(UF)+T(U): 脲甲醛基施+分蘖期施尿素; CK: 普通尿素定量分施。
B(PCU+U): both polymer-coated urea and conventional urea as basal fertilizer; B(SCU+U): both sulfur-coated urea and conventional urea as basal fertilizer; B(UF+U): both urea formaldehyde and conventional urea as basal fertilizer; B(PCU)+T(U): polymer-coated urea as basal fertilizer with conventional urea as tillering fertilizer; B(SCU)+T(U): sulfur-coated urea as basal fertilizer with conventional urea as tillering fertilizer; B(UF)+T(U): urea formaldehyde as basal fertilizer with conventional urea as tillering fertilizer; CK: common urea applied separately.
1.3 测定指标及方法
1.3.1 茎蘖动态 每小区定点20穴, 于移栽后每隔7 d调查茎蘖数直至分蘖停止发生, 计算成穗率。
1.3.2 叶面积、干物重和含氮率 分别于拔节期、抽穗期、成熟期, 按小区茎蘖数的平均值取有代表性的植株4穴, 采用长宽法测定植株叶面积, 计算叶面积指数。将所取植株样品105℃杀青, 80℃烘至恒重后测定各器官及全株的干物重。样品粉碎后采用H2SO4-H2O2消化, 半微量凯氏定氮法测定植株含氮率。
1.3.3 产量及其结构 成熟期采用每块田五点普查100穴, 计算有效穗数, 按每小区的平均穗数取有代表性的植株4穴, 测定每穗粒数、结实率和千粒重等, 计算理论产量, 并实收计产。
1.4 数据计算与统计分析
氮肥吸收利用率(%) = (施氮处理总吸氮量–无氮处理总吸氮量)/施氮量×100。
光合势(m2d m–2) = (L1+L2)×(t2–t1)/2; 式中, L1和L2为前后2次测定的叶面积指数, t1和t2为前后2次测定的时间。
2年试验的产量在年度间差异不显著, 因此, 本文以2015年数据为主。以Microsoft Excel 2013处理数据, 运用DPS V7.05数据处理软件进行统计分析。
2.1 缓控释肥类型及其运筹对不同穗型水稻产量的影响
大穗型品种甬优2640, 与普通尿素定量分施(CK)相比, 缓控释肥的施用无增产效应。缓控释肥基施+分蘖期施尿素比相对应的缓控释肥+尿素均基施处理略增产, 但差异不显著(表2)。
多穗型品种南粳9108的脲甲醛基施+分蘖期施尿素处理比CK增产5.2%~5.9%, 而树脂包衣基施+分蘖期施尿素、脲甲醛+尿素均基施[B(UF+U)]处理与CK产量相当, 无显著差异。缓控释肥基施+分蘖期施尿素比相应的缓控释肥+尿素均基施处理显著增产。相同运筹方式下, 3种缓控释肥处理的产量, 脲甲醛>树脂包衣>硫包衣。分析产量各构成因素, 与缓控释肥料+尿素均基施处理相比, 缓控释肥基施+分蘖期施尿素处理, 主要通过增加穗数提高了群体颖花量, 获得高产。
2.2 缓控释肥类型及其运筹对不同穗型水稻茎蘖动态及成穗率的影响
2种不同类型品种茎蘖动态的变化规律基本一致(图1)。移栽后至分蘖盛期, 不同缓控释肥类型及其运筹处理的茎蘖数均大于CK。其中缓控释肥基施+分蘖期施尿素各处理的茎蘖数显著高于缓控释肥+尿素均基施各处理。相同运筹方式下, 高峰苗前, 各处理茎蘖数以硫包衣>脲甲醛>树脂包衣, 高峰苗后, 以脲甲醛>树脂包衣>硫包衣。
表2 缓控释肥类型及其运筹对水稻产量及其构成的影响
同列数据后不同小写字母表示在0.05水平上差异显著。缩写同表1。
Values followed by different lowercase letters are significantly different at the 0.05 probability level, respectively. Abbreviations are the same as those given in Table 1.
缩写同表1。Abbreviations are the same as those given in Table 1.
2种类型水稻中, 施用缓控释肥各处理的成穗率要低于CK (图2)。且缓控释肥基施+分蘖期施尿素处理的成穗率显著高于对应的缓控释肥料+尿素均基施处理。相同运筹方式下, 3种缓控释肥类型的成穗率呈树脂包衣>脲甲醛>硫包衣处理。甬优2640与南粳9108表现一致。
缩写同表1。Abbreviations are the same as those given in Table 1.
2.3 缓控释肥类型及其运筹对不同穗型水稻叶面积指数的影响
甬优2640拔节期, 缓控释肥处理的叶面积指数高于CK。抽穗和成熟期, 缓控释肥处理的叶面积指数低于CK (表3), 且缓控释肥基施+分蘖期施尿素处理的叶面积指数比相对应的缓控释肥料+尿素均基施略有增加, 但是不显著。相同运筹方式下, 3种缓控释肥料处理的叶面积指数呈脲甲醛>树脂包衣>硫包衣。
表3 缓控释肥类型及其运筹对水稻叶面积指数的影响
同列数据后不同小写字母表示在0.05水平上差异显著。缩写同表1。
Values followed by different lowercase letters are significantly different at the 0.05 probability level, respectively. Abbreviations are the same as those given in Table 1.
南粳9108拔节期, 缓控释肥处理的叶面积指数也高于CK; 抽穗期与成穗期, 脲甲醛基施+分蘖期施尿素处理的叶面积指数高于CK, 而树脂包衣基施+分蘖期施尿素和脲甲醛肥+尿素均基施两处理的叶面积指数与CK相当。缓控释肥基施+分蘖期施尿素处理的叶面积指数要显著大于相对应的缓控释肥+尿素均基施处理。相同运筹方式下, 3种缓控释肥料处理的叶面积指数, 脲甲醛>树脂包衣>硫包衣。
不同缓控释肥类型及运筹处理对2种类型品种叶面积的衰减率无显著影响。
2.4 缓控释肥类型及其运筹对不同穗型水稻光合势的影响
甬优2640, 播种至拔节阶段, 缓控释肥处理的光合势高于CK。拔节后, 缓控释肥处理的光合势低于或显著低于CK, 且缓控释肥基施+分蘖期施尿素处理的光合势比相对应的缓控释肥+尿素均基施有所增加, 但在抽穗至成熟阶段未能达到显著差异。相同运筹方式下, 3种缓控释肥处理的光合势呈脲甲醛>树脂包衣>硫包衣(表4)。
表4 缓控释肥类型及其运筹对水稻光合势的影响
同列数据后不同小写字母表示在0.05水平上差异显著。缩写同表1。
SS: sowing stage; JS: jointing stage; HS: heading stage; MS: maturity stage. Values followed by different lowercase letters are significantly different at the 0.05 probability level, respectively. Other abbreviations are the same as those given in Table 1.
南粳9108播种至拔节阶段, 缓控释肥处理的光合势也高于CK。拔节后, 脲甲醛或树脂包衣基施+分蘖期施尿素和脲甲醛肥料+尿素均基施三处理的光合势高于CK, 而其他处理低于CK。拔节后, 缓控释肥基施+分蘖期施尿素处理的光合势显著大于相对应的缓控释肥料+尿素均基施处理, 尤其是抽穗至成熟阶段。相同运筹方式下, 3种缓控释肥处理的光合势呈脲甲醛>树脂包衣>硫包衣。
2.5 缓控释肥类型及其运筹对不同穗型水稻物质积累量与积累比例的影响
甬优2640播种至拔节, 拔节至抽穗阶段, 缓控释肥处理的物质积累量和积累比例高于CK, 而抽穗至成熟阶段, 缓控释肥处理的物质积累量和积累比例低于CK。缓控释肥基施+分蘖期施尿素处理的物质积累量比相应的缓控释肥+尿素均基施处理略高, 但中后期尤其是抽穗至成熟阶段, 未能达到显著水平。相同运筹方式下, 3种缓控释肥处理的物质积累量在抽穗至成熟阶段呈脲甲醛>树脂包衣>硫包衣(表5)。
南粳9108播种至拔节阶段, 除脲甲醛或树脂包衣基施+分蘖期施尿素处理的物质积累量显著高于CK外, 其他处理物质积累量仅略高于CK或相当。拔节至抽穗阶段, 脲甲醛+尿素分蘖期施或一次性基施处理的物质积累量显著高于CK, 而抽穗至成熟阶段, 仅脲甲醛+分蘖期施尿素处理的物质积累量要显著高于CK。相同运筹方式下, 3种缓控释肥处理的物质积累量在各生育阶段均呈脲甲醛>树脂包衣>硫包衣, 以抽穗至成熟阶段差异最为显著。
表5 缓控释肥类型及其运筹对水稻物质积累量及比例的影响
同列数据后不同小写字母表示在0.05水平上差异显著。缩写同表1。
SS: sowing stage; JS: jointing stage; HS: heading stage; MS: maturity stage. Values followed by different lowercase letters are significantly different at the 0.05 probability level, respectively. Other abbreviations are the same as those given in Table 1.
2.6 缓控释肥类型及其运筹对不同穗型水稻氮素积累量与积累比例的影响
甬优2640播种至拔节阶段, 缓控释肥处理的氮素积累量和积累比例高于CK, 而拔节至抽穗和抽穗至成熟阶段, 缓控释肥处理的氮素积累量和积累比例低于CK。缓控释肥基施+分蘖期施尿素处理的氮素积累量比相对应的缓控释肥+尿素均基施处理高, 但抽穗至成熟阶段, 未能达到显著差异。相同运筹方式下, 3种缓控释肥处理的氮素积累量在播种至拔节阶段呈树脂包衣>脲甲醛>硫包衣, 而拔节至抽穗和抽穗至成熟阶段呈脲甲醛>树脂包衣>硫包衣(表6)。
南粳9108播种至拔节阶段, 缓控释肥处理的氮素积累量和积累比例高于CK, 拔节至抽穗和抽穗至成熟阶段, 除脲甲醛基施+分蘖期施尿素处理的氮素积累量与积累比例与CK相当外, 其他处理显著低于CK。缓控释肥基施+分蘖期施尿素处理的氮素积累量比相应的缓控释肥+尿素均基施处理高, 以拔节至抽穗和抽穗至成熟阶段最为显著。相同运筹方式下, 3种缓控释肥处理的氮素积累量在拔节至抽穗和抽穗至成熟阶段均呈脲甲醛>树脂包衣>硫包衣。
表6 缓控释肥类型及其运筹对水稻氮素积累量及比例的影响
同列数据后不同小写字母表示在0.05水平上差异显著。缩写同表1。
SS: sowing stage; JS: jointing stage; HS: heading stage; MS: maturity stage. Values followed by different lowercase letters are significantly different at the 0.05 probability level, respectively. Abbreviations are the same as those given in Table 1.
2.7 缓控释肥类型及其运筹对不同水稻品种氮肥利用率的影响
在甬优2640中, 不施氮肥空白处理的吸氮量为129.09 kg hm–2, 缓控释肥处理的氮肥利用率低于CK (图3)。缓控释肥基施+分蘖期施尿素比相对应的缓控释肥+尿素均基施氮素利用率提高。相同运筹方式下, 3种缓控释肥处理的氮素利用率为脲甲醛>树脂包衣>硫包衣。
南粳9108不施氮肥空白处理的吸氮量为104.10 kg hm–2, 脲甲醛基施+分蘖期施尿素处理的氮肥利用率高于CK, 而树脂包衣基施+分蘖期施尿素、脲甲醛+尿素均基施处理的氮肥利用率略低于CK, 但未达显著差异。与甬优2640类似, 缓控释肥基施+分蘖期施尿素比相对应的缓控释肥+尿素均基施氮素利用率高。相同运筹方式下, 3种缓控释肥处理的氮素利用率为脲甲醛>树脂包衣>硫包衣。
缩写同表1。Abbreviations are the same as those given in Table 1.
3.1 缓控释肥类型及其运筹对水稻产量的影响
不同类型缓控释肥的肥效控制或缓慢释放的机理及影响因素有所不同。树脂、硫包衣等控释肥是将包膜材料直接在颗粒尿素表面缩合成膜状物, 其养分释放影响因素主要有调节成膜的物质组成、膜的厚度和温度[19]。而脲甲醛则是由甲醛和尿素在一定条件下反应缩合形成, 根据甲醛与尿素反应的摩尔比不同, 获得亚甲基二脲、二亚甲基三脲、三亚甲基四脲、四亚甲基五脲和五亚甲基六脲等缩合物。缩合度越高, 分子链越长、在水中的溶解度越小, 其肥效期越长[20]。正是由于以上不同, 前人关于缓控释肥施用效应的研究具有一定的差异。李玥等[12]研究发现, 相对于常规尿素运筹, 树脂包膜缓控释氮肥能有效促进机插稻物质积累和增产, 而硫包膜和抑制剂包膜缓控释氮肥不利于水稻增产增效。彭玉等[21]研究缓控释肥在不同移栽秧龄施肥对水稻根系形态及籽粒产量的结果表明, 与其他类型肥料相比, 杂交中稻在五叶一心移栽并施用树脂包膜的控释肥可获得高产。胡春花等[22]研究发现, 尽管树脂包膜缓释尿素能促进水稻增产, 但水稻生产后期有贪青和倒伏现象, 而脲甲醛和水溶性聚合物包膜缓控释肥, 能促进水稻后期叶青秆壮、成熟期适中, 获得稳定高产。在本试验条件下, 不同类型缓控释肥对水稻的增产效应呈脲甲醛>树脂包衣>硫包衣。这可能是由于影响包膜类肥料养分释放的主要因素是温度,而影响脲甲醛肥料的因素为土壤微生物, 南方稻季高温多湿的条件非常不利于包膜类控释肥肥效按照预期曲线稳定释放[17]。已有的研究认为, 缓控释肥能显著提高水稻生育中后期叶片SPAD值和净光合速率[23], 延缓叶片衰老, 促进根系生长[11], 增加根系活力, 增强植株对养分的吸收和地上部的物质积累[24], 提高氮肥利用效率[25], 增加籽粒产量[26]。在本试验的南粳9108中, 与普通尿素定量分施相比, 脲甲醛肥料基施+尿素分蘖期处理之所以能够增产, 是由于提高了植株在各个生育时期的叶面积指数和光合势, 增强了植株的干物质和氮素积累, 提高了氮肥利用效率。由于缓控释肥肥效释放相对要慢, 一次性基施条件下难以满足作物前期生长的需要[16,27], 为此本试验在一次性施用缓控释肥的同时, 以基肥或分蘖肥的方式配施了一定比例的速效尿素, 以探索缓控释肥与尿素的运筹方式对水稻产量的影响。结果表明, 缓控释肥基施+分蘖期施尿素比相应的缓控释肥+尿素均基施处理的产量高, 以南粳9108最为显著。与缓控释肥+尿素均基施相比, 缓控释肥料基施+分蘖期施尿素的各处理, 能有效增加植株分蘖, 提高茎蘖成穗率, 以保证植株中后期具有较高的叶面积指数进行光合生产, 形成高产。针对以上水稻生长发育对养分的需求, 今后可探索不同缓释期的缓释肥料按照一定比例混合、一次性基施方法, 不仅可以简化水稻生产中的施肥次数, 还能满足水稻生长发育对养分的阶段性需求。
3.2 缓控释肥施用对不同穗型水稻品种产量的影响
已有的研究表明, 缓控释肥料的实际应用还受到品种、土壤类型、地力水平、灌溉方式等因素的影响。徐明岗等[7]研究表明, 针对早稻和晚稻品种, 要分别选择不同的缓控释肥料, 才能有利于水稻获得高产。张小翠等[28]研究表明, 缓控释肥在黏土上的施用效果要优于在沙土上。而王永军等[29]研究发现, 在低地力条件下施用缓释期短的控释肥、在高地力下施用缓释期较长的控释肥更有利于玉米高产。同时, 在水稻生产中, 与常规淹水灌溉相比, 干湿交替灌溉条件下, 施用缓控释肥能保持氮素的高效释放, 提高植株氮素积累, 利于高产群体的形成[30-31]。本试验的研究表明, 缓控释肥的应用效果还因品种生长发育特性而有所差异。对于大穗型的籼粳杂交稻甬优2640, 无论何种缓控释肥+尿素一次性基施还是+尿素分蘖期施处理, 均没有获得预期的增产效果, 而对于多穗型品种南粳9108, 脲甲醛+尿素基施或+尿素分蘖期施处理和树脂包衣基施+尿素分蘖期施处理与CK相比却能增产或在平产的基础上减少施肥次数。这可能是由于, 相对于CK, 同一品种的各缓控释肥处理在播种至拔节的氮素积累量与积累比例均高于CK, 即缓控释肥各处理的肥效相对集中在前中期。这种肥效释放模式, 使得即使是同类缓控释肥料的同种施用方法, 对两种不同穗型品种的产量具不同的效果: 对于大穗型品种甬优2640, 集中在前中期的肥效尽管可以形成一定数量的穗数和5.32´108~6.00´108hm–2的群体颖花量, 但是抽穗后, 相对于CK, 其叶面积指数下降快, 生长发育中后期的氮素积累少, 光合势弱, 物质生产量不足, 难以满足群体大库容充实需求, 不能发挥大穗型品种的产量优势[32]。对于多穗型品种南粳9108, 前期肥效的释放有利于分蘖的发生, 在获得足够穗数的同时, 群体颖花量相对适中(3.93´108~4.75´108hm–2), 因此部分肥效相对较长的缓控释肥料在拔节后能保证植株维持一定数量的叶面积指数和氮素吸收, 促进物质生产的同时实现了群体中等库容的有效充实, 获得与CK相当或更高的产量。因此, 针对中后期生长具有优势的大穗型品种, 其缓控释肥的应用, 可探索性选择一些肥效集中在中后期发挥的缓控释肥或缓控释肥基施配合部分尿素做穗肥施用, 以满足大穗型品种中后期籽粒灌浆的物质生产需求。
在本试验条件下, 与CK相比, 缓控释肥的应用对大穗型品种甬优2640无增产效应, 而对多穗型品种南粳9108, 脲甲醛肥基施+分蘖期施尿素处理比CK增产5.2%~5.9%, 树脂包衣基施+分蘖期施尿素和脲甲醛+尿素均基施处理与CK产量相当的同时可减少施肥次数。2种运筹方式中, 以缓控释肥基施后分蘖期施尿素处理更容易获得高产, 3种缓控释肥类型中, 产量呈现脲甲醛>树脂包衣>硫包衣。与缓控释肥+尿素同时基施处理相比, 缓控释肥基施后分蘖期施用尿素, 可有效增加植株茎蘖数, 提高成穗率和最终穗数, 增加群体颖花量, 提高植株在各个生育时期的叶面积指数和光合势, 增加干物质和氮素积累量。与其他类型缓控释肥相比, 脲甲醛的肥效在植株生长的前中后期能相对稳定释放, 其基施配合尿素的分蘖期施用, 既保证了前期分蘖的发生, 又能保证高峰苗后稳定的茎蘖数和群体叶面积指数, 植株在拔节至抽穗和抽穗至成熟阶段的光合势和物质积累量大, 氮肥利用率高, 从而获得高产。
[1] 凌启鸿. 水稻精确定量栽培理论与技术. 北京: 中国农业出版社, 2007. pp 92–99 Ling Q H. Theory and Technology of Precise and Quantitative Cultivation in Rice. Beijing: China Agriculture Press, 2007. pp 92–99
[2] 樊小林, 廖宗文. 控释肥料与平衡施肥和提高肥料利用率. 植物营养与肥料学报, 1998, 4: 219–223 Fan X L, Liao Z W. Increasing fertilizer use efficiency by means of controlled release fertilizer (CRF) production according to theory and techniques of balanced fertilization.,1998, 4: 219–223 (in Chinese with English abstract)
[3] 陈剑秋. 几种新型缓控释肥工艺及养分释放特征研究. 山东农业大学博士学位论文, 山东泰安, 2012 Chen J Q. Study on Technology and Nutrient Release Characteristics of New Slow/Controlled Release Fertilizers. PhD Dissertation of Shandong Agricultural University, Tai’an, China, 2012 (in Chinese with English abstract)
[4] 杜建军, 廖宗文, 王新爱, 毛小云, 崔英德. 高吸水性树脂包膜尿素的结构特征及养分控/缓释性能. 中国农业科学, 2007, 40: 1447–1455 Du J J, Liao Z W, Wang X AI, Mao X Y, Cui Y D. Structure and nutrient controlled/slow release characteristics of super absorbent polymer coated urea., 40: 1447–1455 (in Chinese with English abstract)
[5] 黄旭, 唐拴虎, 徐培智, 黄巧义, 卢钰升, 蒋瑞萍, 李苹, 付弘婷. 不同种类缓/控释肥料对水稻产量及养分利用率的影响. 广东农业科学, 2010, 37(8): 95–96 Huang X, Tang S H, Xu P Z, Huang Q Y, Lu Y S, Jiang R P, Li P, Fu H T. Effect of different kinds of slow/controlled release fertilizer on rice yield and nutrient utilization., 2010, 37(8): 95–96 (in Chinese)
[6] 王晓巍, 蒯佳林, 刘晓静, 叶芳, 张进霞. 4种缓控释氮肥在不同环境条件下的养分释放特性的研究. 草地学报, 2013, 21: 332–337 Wang X W, Kuai J L, Liu X J, Ye F, Zhang J X. Nutrient release characteristics of four slow and controlled release nitrogen fertilizer in different environmental conditions., 2013, 21: 332–337 (in Chinese with English abstract)
[7] 徐明岗, 孙小凤, 邹长明, 秦道珠, 八木一行, 宝川靖和. 稻田控释氮肥的施用效果与合理施用技术. 植物营养与肥料学报, 2005, 11: 487–493 Xu M G, Sun X F, Zou C M, Qin D Z, Yagi K, Hosen Y. Effects and rational application of controlled-release nitrogen fertilizer in paddy field of southern China., 2005, 11: 487–493 (in Chinese with English abstract)
[8] Ji X H, Zheng S X, Lu Y H, Liao Y L. Study of dynamics of floodwater nitrogen and regulation of its runoff loss in paddy field-based two-cropping rice with urea and controlled release nitrogen fertilizer application., 2007, 6: 189–199
[9] 聂军, 肖剑, 戴平安, 郑圣先. 控释氮肥对水稻氮代谢关键酶活性及糙米蛋白质含量的影响. 湖南农业大学学报: 自然科学版, 2003, 29: 318–321 Nie J, Xiao J, Dai P A, Zheng S X. Effect of controlled release nitrogen fertilizer on key enzymes activities of nitrogen metabolism and protein contents in brown rice.(Nat Sci), 2003, 29: 318–321 (in Chinese with English abstract)
[10] Yang Y C, Zhang M, Li Y C, Fan X H, Geng Y Q. Controlled release urea improved nitrogen use efficiency, activities of leaf enzymes, and rice yield., 2012, 76: 2307–2317
[11] Tang S H, Yang S H, Chen J S, Xu P Z, Zhang F B, Ai S Y, Huang X. Studies on the mechanism of single basal application of controlled-release fertilizers for increasing yield of rice (L.)., 2007, 6: 586–596
[12] 李玥, 李应洪, 赵建红, 孙永健, 徐徽, 严奉君, 谢华英, 马均. 缓控释氮肥对机插稻氮素利用特征及产量的影响. 浙江大学学报(农业与生命科学版), 2015, 41: 673–684 Li Y, Li Y H, Zhao J H, Sun Y J, Xu H, Yan F J, Xie H Y, Ma J. Effects of slow-and controlled-release nitrogen fertilizer on nitrogen utilization characteristics and yield of machine- transplanted rice.(Agric & Life Sci), 2015, 41: 673–684 (in Chinese with English abstract)
[13] Ji Y, Liu G, Ma J, Zhang G, Xu H, Yagi K. Effect of controlled-release fertilizer on mitigation of N2O emission from paddy field in South China: a multi-year field observation., 2013, 371: 473–486
[14] Wang B, Li Y E, Wan Y F, Qin X B, Gao Q Z, Liu S, Li J L. Modifying nitrogen fertilizer practices can reduce greenhouse gas emissions from a Chinese double rice cropping system., 2016, 215: 100–109
[15] Yang J, Gang L, Jing M, Zhang G B, Hua X. Effects of urea and controlled release urea fertilizers on methane emission from paddy fields: a multi-year field study., 2014, 24: 662–673
[16] 邢晓鸣, 李小春, 丁艳锋, 王绍华, 刘正辉, 唐设, 丁承强, 李刚华, 魏广彬. 缓控释肥组配对机插常规粳稻群体物质生产和产量的影响. 中国农业科学, 2015, 48: 4892–4902 Xing X M, Li X C, Ding Y F, Wang S H, Liu Z H, Tang S, Ding C Q, Li G H, Wei G B. Effects of types of controlled released nitrogen and fertilization modes on yield and dry mass production., 2015, 48: 4892–4902 (in Chinese with English abstract)
[17] 许仙菊, 马洪波, 宁运旺, 汪吉东, 张永春. 缓释氮肥运筹对稻麦轮作周年作物产量和氮肥利用率的影响. 植物营养与肥料学报, 2016, 22: 307–316 Xu X J, Ma H B, Ning Y W, Wang J D, Zhang Y C. Effects of slow-released nitrogen fertilizers with different application patterns on crop yields and nitrogen fertilizer use efficiency in rice-wheat rotation system., 2016, 22: 307–316 (in Chinese with English abstract)
[18] Grant C A, Wu R, Selles F, Harker K N, Clayton G W, Bittman S, Zebarth B J, Lupwayi N Z. Crop yield and nitrogen concentration with controlled release urea and split applications of nitrogen as compared to non-coated urea applied at seeding., 2012, 127: 170–180
[19] 樊小林, 刘芳, 廖照源, 郑祥洲, 喻建刚. 我国控释肥料研究的现状和展望. 植物营养与肥料学报, 2009, 15: 463–473 Fan X L, Liu F, Liao Z Y, Zheng X Z, Yu J G. The status and outlook for the study of controlled-release fertilizers in China., 2009, 15: 463–473 (in Chinese with English abstract)
[20] 高志博, 王晓宇. 缓释肥料脲甲醛的研究进展. 高师理科学刊, 2016, 36(4): 38–41 Gao Z B, Wang X Y. The research progress on the slow release fertilizers of urea formaldehyde., 2016, 36(4): 38–41 (in Chinese with English abstract)
[21] 彭玉, 马均, 蒋明金, 严奉君, 孙永健, 杨志远. 缓/控释肥对杂交水稻根系形态、生理特性和产量的影响. 植物营养与肥料学报, 2013, 19: 1048–1057 Peng Y, Ma J, Jiang M J, Yang F J, Sun Y J, Yang Z Y. Effects of slow/controlled release fertilizers on root morphological and physiological characteristics of rice., 2013, 19: 1048–1057 (in Chinese with English abstract)
[22] 胡春花, 罗革彬, 曾建华, 潘孝忠. 不同类型缓释氮肥对水稻产量和氮肥利用率的影响. 中国农学通报, 2011, 27(15): 174–177 Hu C H, Luo G B, Ceng J H, Pan X Z. Influence of different types of slow-release nitrogen fertilizer on rice yield and nitrogen fertilizer use efficiency., 2011, 27(15): 174–177 (in Chinese with English abstract)
[23] 李敏, 郭熙盛, 叶舒娅, 刘枫, 袁嫚嫚, 黄义德. 硫膜和树脂膜控释尿素对水稻产量, 光合特性及氮肥利用率的影响. 植物营养与肥料学报, 2013, 19: 808–815 Li M, Guo X S, Ye S Y, Liu F, Yuan M M, Huang Y D. Effects of sulfur-and polymer-coated controlled release urea on yield photosynthetic characteristics and nitrogen fertilizer efficiency of rice., 2013, 19: 808–815 (in Chinese with English abstract)
[24] 彭玉, 孙永健, 蒋明金, 徐徽, 秦俭, 杨志远, 马均. 不同水分条件下缓/控释氮肥对水稻干物质量和氮素吸收、运转及分配的影响. 作物学报, 2014, 40: 859–870 Peng Y, Sun Y J, Jiang M J, Xu H, Qin J, Yang Z Y, Ma J. Effects of water management and slow/controlled release nitrogen fertilizer on biomass and nitrogen accumulation, translocation, and distribution in rice., 2014, 40: 859−870 (in Chinese with English abstract)
[25] 符建荣. 控释氮肥对水稻的增产效应及提高肥料利用率的研究. 植物营养与肥料学报, 2001, 7: 145–152 Fu J R. Effects of controlled release fertilizer on rice yield and N recovery., 2001, 7: 145–152 (in Chinese with English abstract)
[26] 田吉林, 诸海焘, 廖宗文, 杜建军. 包膜尿素的养分释放特征及其肥效. 水土保持学报, 2006, 20(6): 128–132 Tian J L, Zhu H T, Liao Z W, Du J J. Nutrient release characteristic of coated urea and its efficiency on rice., 2006, 20(6): 128–132 (in Chinese with English abstract)
[27] Geng J B, Sun Y B, Zhang M, Li C L, Yang Y C, Liu Z G, Li S L. Long-term effects of controlled release urea application on crop yields and soil fertility under rice-oilseed rape rotation system., 2015, 184: 65–73
[28] 张小翠, 戴其根, 胡星星, 朱德建, 丁秀文, 马克强, 张洪程, 朱聪聪. 不同质地土壤下缓释尿素与常规尿素配施对水稻产量及其生长发育的影响. 作物学报, 2012, 38: 1494–503 Zhang X C, Dai Q G, Hu X X, Zhu D J, Ding X W, Ma K Q, Zhang H C, Zhu C C. Effects of slow-release urea combined with conventional urea on rice output and growth in soils of different textures., 2012, 38: 1494−1503 (in Chinese with English abstract)
[29] 王永军, 孙其专, 杨今胜, 王空军, 董树亭, 袁翠平, 王立春. 不同地力水平下控释尿素对玉米物质生产及光合特性的影响. 作物学报, 2011, 37: 2233−2240 Wang Y J, Sun Q Z, Yang J S, Wang K J, Dong S T, Yuan C P, Wang L C. Effects of controlled-release urea on yield and photosynthesis characteristics of maize (L.) under different soil fertility conditions., 2011, 37: 2233−2240 (in Chinese with English abstract)
[30] Tao Y Y, Qu H, Li Q J, Gu X H, Zhang Y N, Liu M J, Guo L, Liu J, Wei J J, Wei G J, Shen K R, Dittert K, Lin S. Potential to improve N uptake and grain yield in water saving Ground Cover Rice Production System., 2014, 168: 101–108
[31] Ye Y S, Liang X Q, Chen Y X, Liu J, Gu J T, Guo R, Li L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use., 2013, 144: 212–224
[32] 姜元华, 张洪程, 韦还和, 赵可, 许俊伟, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 亚种间杂交稻不同冠层叶形组合产量差异及其形成机理. 中国农业科学, 2014, 47: 2313–2325 Jiang Y H, Zhang H C, Wei H H, Zhao K, Xu J J, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Difference of yield and its formation mechanism ofinter-subspecific hybrid rice with different canopy leaf types., 2014, 47: 2313–2325 (in Chinese with English abstract)
Effects of Slow/Controlled Release Fertilizer Types and Their Application Regime on Yield in Rice with Different Types of Panicle
WEI Hai-Yan, LI Hong-Liang, CHENG Jin-Qiu, ZHANG Hong-Cheng*, DAI Qi-Gen, HUO Zhong-Yang, XU Ke, GUO Bao-Wei, HU Ya-Jie, and CUI Pei-Yuan
Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture / Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
Rice cultivars of Yongyou 2640 with big panicle and Nanjing 9108 with more panicles were adopted in this study. Three types of slow/controlled release fertilizer (polymer-coated urea, sulfur-coated urea, and urea formaldehyde) and two fertilization methods (both slow/controlled release fertilizer and conventional urea as basal fertilizer, slow/controlled release fertilizer as basal fertilizer with conventional urea as tillering fertilizer) were applied in field with conventional urea split fertilization as control (CK). The application of slow/controlled release fertilizer could not increase the yield of Yongyou 2640 that has big panicles and a large amount of spikelets. Compared with CK, most nitrogen of slow/controlled release fertilizers were released at early and middle stage of rice resulting in rapid decrease of LAI, fewer nitrogen accumulation and LAD, insufficient dry matter production and poor grain filling at middle and late stage. For Nanjing 9108, compared with CK, the yield in treatment with urea formaldehyde as basal fertilizer and conventional urea as tillering fertilizer was increased by 5.2% to 5.9%. And rice yield in treatment with polymer-coated urea as basal fertilizer and conventional urea as tillering fertilizer or treatment with both urea formaldehyde and conventional urea as basal fertilizer was similar to that of CK, while the fertilizer application frequency was decreased by 2 to 3 times. Rice yields in treatments with slow/controlled release fertilizer as basal fertilizer and conventional urea as tillering fertilizer were higher than those in treatments with both slow/controlled release fertilizer and conventional urea as basal fertilizer. Compared with the application of both slow/controlled release fertilizer and conventional urea as basal fertilizer, the application of slow/controlled release fertilizer as basal fertilizer and conventional urea as tillering fertilizer could increase the number of rice tillers effectively with a large number of panicles and a higher percentage of productive tillers. Meanwhile, the leaf area index and leaf area duration in treatment with both slow/controlled release fertilizer and conventional urea as basal fertilizer were large, which could enhance the accumulation of dry matter and nitrogen in rice. Rice yield by using different types of slow/controlled release fertilizer showed a tendency of urea formaldehyde > polymer-coated urea > sulfur-coated urea. In Nanjing 9108, the reason of high yield by using urea formaldehyde was that, nitrogen of urea formaldehyde could be steadily released at the late stage also, therefore, the application of urea formaldehyde as basal fertilizer and conventional urea as tillering fertilizer could not only promote tillering but also maintain a high level of productive tiller and leaf area index after peak seedling stage. And the highest leaf area duration, dry matter accumulation after elongating and the final nitrogen use efficiency were beneficial to obtain high yield. In conclusion, for rice cultivars with different types of panicle and various characteristics of yield, the application of optimal type of slow/controlled release fertilizer as basal fertilizer and conventional urea as tillering fertilizer can achieve labor saving and yield increasing simultaneously in rice production.
Type of slow/controlled release fertilizer; Application regime of fertilizer; Ricewith different types of panicle; Yield
10.3724/SP.J.1006.2017.00730
本研究由国家重点研发计划项目(2016YFD0300503), 江苏省重点研发计划项目(BE2016344), 江苏省农业科技自主创新基金项目(CX[12]1003-9), 国家公益性行业(农业)科研专项(201303102)和扬州大学科技创新培育基金项目(2016CXJ056)资助。
This work was financed by the National Key Research and Development Programs (2016YFD0300503), the Key Research and Development Programs of Jiangsu Province (BE2016344), the Agricultural Technology Independent Innovation Fund of Jiangsu Province (CX[12]1003-9), the China Special Fund for Agro-scientific Research in the Public Interest (201303102), and the Science and Technology Innovation Fund of Yangzhou University (2016CXJ056).
(Corresponding author): 张洪程, E-mail: hczhang@yzu.edu.cn
E-mail: wei_haiyan@163.com
(收稿日期): 2016-11-10; Accepted(接受日期): 2017-01-21; Published online(网络出版日期):2017-02-17.
URL: http://www.cnki.net/kcms/detail/11.1809.S.20170217.0954.004.html