使用三坐标测量圆锥上定尺寸圆的斜向圆跳动的测量方法

2017-04-18 14:46周炯鋆
价值工程 2017年10期

周炯鋆

摘要: 在使用三坐标测量形位公差时,斜向圆跳动公差的测量结果判定受到操作、维修、质量、工艺及产品设计等从业人员的质疑。为此,结合对形位公差标准的研究和应用实践,本文针对企业跳动检具中使用的校准件上的圆锥面上定直径圆的斜向圆跳动的检测设计了一种使用三坐标测量机测量的方案。

Abstract: In measuring the shape and position tolerances by the coordinate measuring technology, the measurement results of oblique circular runout tolerances are questioned by employees of operation, maintenance, quality, process and product design. Therefore, combined with the research and application of shape and position tolerance standard, this paper designs a measuring scheme using a coordinate measuring machine, aiming at testing oblique circular runout of a fixed circle on a cone.

关键詞: 三坐标测量机;斜向圆跳动;公差标准

Key words: coordinate measuring machine;oblique circular runout;tolerance standard

中图分类号:P111.31 文献标识码:A 文章编号:1006-4311(2017)10-0144-02

1 概述

在机械制造过程中,形位公差的测量主要通过平板、平尺、百分表、圆度仪、刀口尺和自准直仪等计量器具及配套设备进行直接或间接测量。其测量准确性除了受到测量器具测量不确定度的影响外,在一定程度上还受到测量方法、测量人员及测量环境等多方面因素的影响,所以在测量结果的判定上往往存在争议。随着三坐标测量机测量技术的发展,越来越多的制造企业在形位公差的测量中选用三坐标测量机作为标准器,从而减小了测量人员及测量环境的影响。

在使用三坐标测量形位公差时,圆跳动公差的测量结果判定受到操作、维修、质量、工艺及产品设计等从业人员的质疑。我国的国家标准中对圆跳动是这样定义的:圆跳动公差是被测要素某一固定参考点围绕基准轴线旋转一周时(零件和测量仪器间无轴向位移)允许的最大变动量t,圆跳动公差适用于每一个不同的测量位置。同时注明圆跳动可能包括圆度、同轴度、垂直度和平面度等误差,由此看出圆跳动公差作为用于控制一个或多个要素对基准的综合性误差,在实际测量中将受到更多因素的影响。所以在实际测量时,检测方案的合理与否,直接决定了最终评价结果的正确与否。

为此,结合对形位公差标准的研究和应用实践,本文针对企业跳动检具中使用的校准件上的圆锥面上定直径圆的斜向圆跳动的检测设计了一种使用三坐标测量机测量的方案。

2 检测参数分析

如图1,被测参数为校准件圆锥面上直径为?准D的圆对基准轴线的斜向圆跳动。在实际测量中,为了进一步提高测量检具的精度,所以对校准件在实际使用时的状态进行技术分析,最终确定该校准件的斜向圆跳动的校准结果是使用以到?准D圆距离分别为h1和h2的两个圆的圆心连线方向为基准轴测量出的斜向圆跳动。

3 测量难点与解决方案

由于三坐标测量原理的原因,该校准件的测量最大的难题就是如何准确测量?准D圆。为了解决该问题,我们先来分析一下?准D圆测量不准确会对最后的结果有哪些影响。

首先,在评价圆跳动时,斜向圆跳动公差如图2中(a)所示为平行于素线的一组平行线,实际评价时圆跳动的公差带如图2中(b)所示是平行于轴线的一组平行线。两者之间可以通过公式(1)进行转化。

其次,测量基准A的位置时,?准D圆的位置偏差会使得A基准的测量位置与实际使用不符。为了减小误差可使用扫描测量逐层逼近直到找到最佳位置,具体算法如下:

在实际的测量程序中考虑到测量直径D1受到三坐标测量定位精度的影响可能出现迭代多次D1已经很接近D值但始终无法与D值相等的情况,这会极大地降低测量效率并且可能使测量程序进入死循环,所以在兼顾测量准确性的情况下该程序通过查找相关资料做出了如下优化:在测量循环开始之前先设立循环次数n,得到D1后将判断条件由D1=D更改为D1=D或|D1-D|≤ε,如果循环n次判断条件仍不能达成则终止程序。判断条件中的ε一般取校准件尺寸公差的十分之一,同时可以根据校准件的实际使用情况作出适当修正。

4 试验及验证

5 结论

通过对测量过程中误差产生原因的分析发现测量斜向圆跳动的过程中三坐标软件采用的数据处理方法会引入余弦误差,同时基准的测量对测量结果的影响较大。本人在此基础上通过逐层逼近的测量方法找到最佳位置的被测要素与基准,通过数学计算的方法消除了余弦误差,并在实际工作中验证了该测量方案的可行性,从而能够准确测量校准件圆锥面上定直径圆的斜向圆跳动并提供可供参考的测量数据。同时值得一提的是我们在确定测量方法时除了要考虑该方法是否符合国家标准以外还需要考虑零件的使用状况、工作原理等影响要素。只有兼顾了这两者才能让我们得到的测量结果既准确又与实际使用状态相符。

参考文献:

[1]国家计量局.几何量计量[M].中国计量出版社,1989.

[2]第一机械工业部.六项基础互换性标准汇编[M].中国标准出版社,2004.

[3]杨洪涛,刘勇,费业泰,陈晓怀.三坐标测量机动态误差混合建模方法[J]. 仪器仪表学报,2010.