汪 帅,孙图南
·前沿进展·
线粒体靶向药物治疗缺血性心脏病的研究进展
汪 帅,孙图南
缺血性心脏病是全球范围内导致人类死亡的主要疾病之一。溶栓和经皮冠状动脉介入术是目前治疗缺血性心脏病的主要方法,可及时恢复心肌灌注、避免心肌梗死。研究证实,在心肌缺血再灌注过程中采取一定保护措施可有效减轻心肌缺血再灌注损伤。线粒体功能紊乱是心肌缺血及再灌注损伤的重要病理学基础,故线粒体可作为抗心肌缺血再灌注损伤的重要靶点。尽管实验室研究已发现多种线粒体靶向药物可有效减轻心肌缺血再灌注损伤,但目前顺利通过临床试验的药物仍较少,线粒体作为抗心肌缺血再灌注损伤的重要靶点仍未被充分利用。本文主要综述了线粒体靶向药物治疗缺血性心脏病的研究进展。
缺血性心脏病;线粒体;靶向治疗;综述
汪帅,孙图南.线粒体靶向药物治疗缺血性心脏病的研究进展[J].实用心脑肺血管病杂志,2017,25(3):115-118.[www.syxnf.net]
WANG S,SUN T N.Progress on mitochondrion-targeted drugs in treating ischemic heart disease[J].Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease,2017,25(3):115-118.
缺血性心脏病是人类健康的“主要杀手”,尽管目前的治疗措施已使缺血性心脏病患者病死率明显降低,但如进一步采取保护措施还可以改善患者预后。线粒体功能紊乱是心肌缺血及再灌注损伤的重要病理学基础,故线粒体可以作为抗心肌缺血损伤的治疗靶点。尽管实验室研究已发现多种线粒体靶向药物可以减轻心肌缺血及再灌注损伤,但目前顺利通过临床试验的药物仍较少。本文主要综述了线粒体靶向药物治疗缺血性心脏病的研究进展。
正常情况下,线粒体约占心肌细胞体积的30%。当线粒体中三羧酸循环产生的还原当量进入氧化呼吸链后可产生H+,进而形成跨膜电位,H+顺浓度梯度通过ATP合酶复合体时可驱动ATP合成,为心肌收缩提供能量。心肌有多种能量底物,包括葡萄糖、脂肪酸、乳酸等,通常情况下以其中一种能量底物为主提供能量,且该能量底物会随着底物可利用度及机体生理节律而发生改变[1]。生命初期,心肌主要依赖葡萄糖或乳酸提供能量;出生后约1周,心肌主要能量底物转变为脂肪酸[2];至成年阶段,心肌主要能量底物仍然为脂肪酸,且此时由葡萄糖氧化提供的能量仅占所需能量的很小部分。
冠状动脉阻塞是导致缺血性心脏病的主要原因,冠状动脉短暂性阻塞及心肌缺血再灌注会影响心肌结构及功能,且在此过程中线粒体受损;冠状动脉永久性阻塞则可引起心肌梗死,进一步导致心肌重构及心力衰竭。心肌缺血再灌注后线粒体功能发生紊乱,其主要表现如下:(1)线粒体钙超载;(2)活性氧大量产生;(3)心磷脂氧化,膜蛋白功能紊乱;(4)呼吸复合物和腺苷酸转移酶受抑制;(5)线粒体通透性转换孔(mitochondrial permeability transition pore,MPTP)开放,细胞色素C等促凋亡物质释放;(6)质子渗漏增加等[3]。
心肌缺血可分为可预见的心肌缺血和不可预见或难以预见的心肌缺血,其中可预见的心肌缺血包括经皮冠状动脉介入术或心脏外科手术过程中发生的心肌缺血,不可预见或难以预见的心肌缺血包括急性心肌梗死等。临床上对于以上两种心肌缺血采取的防治措施不尽相同。
对于可预见的心肌缺血,术前或术中采取相应措施可以减轻心肌损伤,如心脏手术过程中应用低温、心脏停搏法、β-受体阻断剂等;此外,缺血预处理也可作为心脏保护措施[4]。缺血预处理是在长时间缺血前实施短时间缺血再灌注循环,旨在缩小心肌梗死面积及改善心脏功能;但该措施需要重复阻断大动脉,故可能导致大动脉损伤。临床研究还发现,短暂阻塞远端动脉也具有心脏保护作用[5]。虽然缺血预处理的保护机制十分复杂,但已明确线粒体在其中发挥着重要作用。
对于不可预见或难以预见的心肌缺血,临床主要治疗目的是预防缺血性心脏病,包括采用他汀类药物延缓粥样硬化形成、采用抗心绞痛药物提高短暂缺血区血流灌注等。但突发的急性心肌梗死不能采用预处理方法,目前其主要治疗措施是经皮冠状动脉介入术或溶栓治疗以早期恢复血流[6]。值得注意的是,缺血后重复进行简短再灌注也可以对心脏产生保护作用,称为缺血后处理。临床研究已证实,将缺血后处理用于经皮冠状动脉介入术可以缩小心肌梗死面积,其心脏保护机制可能与促进线粒体钾通道开放并抑制MPTP开放有关[7]。
目前,很多实验室研究结果显示效果良好的线粒体靶向药物未能通过临床试验,原因可能为动物模型不适宜、患者本身存在糖尿病等危险因素、不可预知的药物间相互作用、缺血组织对药物吸收差等。除此之外,很多心脏保护药物可能阻断了内源性保护途径,如缺血预处理需要活性氧的产生,而活性氧可以抵消缺血预处理的心脏保护作用[8]。
4.1 MPTP 目前,学术界对于MPTP的分子结构仍存在争议。在转基因动物模型中已证实MPTP的主要成分是腺苷酸转移酶、磷酸载体及亲环素D(CypD)[9-10],其他参与MPTP组成或与其调节相关的蛋白质包括己糖激酶Ⅱ[11]和线粒体转运蛋白[12]。心肌缺血再灌注会导致MPTP开放,引起线粒体去极化、ATP合成中断、Ca2+释放及线粒体基质肿胀,进一步发展会造成线粒体外膜破裂、促凋亡物质(如细胞色素C)释放等,进而导致心肌损伤[13]。研究发现,部分作用于MPTP的药物具有心脏保护作用,首先被发现能抑制MPTP开放的药物是环孢霉素A。环孢霉素A通过与CypD结合而抑制MPTP开放,进而减轻心肌缺血再灌注损伤。PIOT等[14]前期研究发现,经皮冠状动脉介入术前应用环孢霉素A可以减轻心肌梗死;其后续研究发现,上述心脏保护作用至少持续6个月,且应用环孢霉素A治疗的患者左心室收缩末期容积明显缩小[15]。临床研究显示,高胆固醇血症会降低缺血后处理对心肌的保护作用,但应用环孢霉素A阻断MPTP可恢复心肌保护作用[16]。目前,临床已开发了具有线粒体特异性的环孢霉素A,其与CypD的亲和力更高[17],但近期一项国际多中心临床研究却发现,ST段抬高型心肌梗死患者行经皮冠状动脉介入术前应用环孢霉素A不能改善患者预后,故环孢霉素A的心脏保护作用仍值得商榷[18]。
4.2 乙醛脱氢酶2(aldehyde dehydrogenase isoform 2,ALDH2) 脂质过氧化作用在心血管疾病发病过程中具有重要作用,其主要产物是醛类,且醛类可以抑制代谢相关酶类和呼吸链复合体,进而开放MPTP。ALDH2是一种可以将线粒体中有毒醛类清除的酶类,其是心肌缺血再灌注损伤中保护线粒体的一个新的靶点。ALDH2高表达或应用ALDH2激活剂可以降低心肌细胞中醛类水平,进而缩小梗死面积、改善缺血后心脏功能[19]。α-硫辛酸是一种天然二巯基化合物,其作为ALDH2辅助因子能增强ALDH2活性[20]。HE等[21]研究结果显示,α-硫辛酸通过增强ALDH2活性而减少心肌细胞凋亡,从而改善心功能;此外,α-硫辛酸还能降低缺血再灌注后心律失常发生率[22]。
4.3 再灌注损伤补救激酶(reperfusion injury salvage kinase,RISK)通路 一项有关缺血再灌注损伤的研究发现,MPTP在心肌缺血时处于关闭状态,而在心肌缺血再灌注早期则处于开放状态[23]。研究发现,RISK通路能调节MPTP开放并抑制糖原合成酶激酶3β(glycogen synthase kinase-3β,GSK-3β)磷酸化[24],从而减轻GSK-3β对MPTP的磷酸化作用。以往研究发现,缺血预处理和缺血后处理的心肌保护作用均与RISK通路有关[25-26]。此外,使用GSK-3β抑制剂SB-216763可以改善缺血再灌注后心脏功能[27]。许多胞外信号可以通过受体介导方式激活RISK通路,一些药物也是通过激活RISK通路而发挥心脏保护作用,如他汀类药物。近期一项研究表明,匹伐他汀可以诱导GSK-3β磷酸化,进而抑制心肌缺血再灌注所致的炎症及心肌细胞凋亡[28]。
4.4 氧化呼吸链 在心肌缺血再灌注过程中,由于缺乏氧(O2)作为呼吸链的电子受体而导致活性氧大量产生。研究发现,一些呼吸链复合体是活性氧产生过程中的重要物质[29-30],如复合体Ⅰ抑制剂鱼藤酮[31]、复合体Ⅱ抑制剂二氮嗪、复合体Ⅲ抑制剂抗霉素A及复合体Ⅳ抑制剂CO等,而应用呼吸链抑制剂可以减轻心肌缺血再灌注损伤,其心肌保护机制与抑制活性氧爆发和钙超载有关。但呼吸链复合体药物的神经方面不良反应限制了其临床应用。此外,采用异戊巴比妥治疗心肌缺血可以保护心脏[32],这与其对复合体Ⅰ的抑制作用有关。除此之外,呼吸链解耦联剂同样具有心脏保护作用,其机制可能与抑制活性氧产生及钙超载有关[33]。
线粒体是缺血性心脏病药物研发的一个重要靶点,虽然多种实验室研究中表现良好的线粒体靶向药物未通过临床试验,但仍有很多有前景的药物值得探索。由于线粒体功能紊乱在心肌缺血损伤过程中发挥着重要作用,故线粒体靶向药物可能成为人类抗缺血性心脏病的一把“利剑”。
[1]GASPAR J A,DOSS M X,HENGSTLER J G,et al.Unique metabolic features of stem cells,cardiomyocytes,and their progenitors[J].Circ Res,2014,114(8):1346-1360.DOI:10.1161/CIRCRESAHA.113.302021.
[2]PORTER G A Jr,HOM J,HOFFMAN D,et al.Bioenergetics,mitochondria,and cardiac myocyte differentiation [J].Prog Pediatr Cardiol,2011,31(2):75-81.
[3]CHEN Y R,ZWEIER J L.Cardiac mitochondria and reactive oxygen species generation [J].Circ Res,2014,114(3):524-537.DOI:10.1161/CIRCRESAHA.114.300559.
[4]HEUSCH G.Molecular basis of cardioprotection:signal transduction in ischemic pre-,post-,and remote conditioning[J].Circ Res,2015,116(4):674-699.DOI:10.1161/CIRCRESAHA.116.305348.
[5]HEUSCH G,BOTKER H E,PRZYKLENK K,et al.Remote ischemic conditioning[J].J Am Coll Cardiol,2015,65(2):177-195.DOI:10.1016/j.jacc.2014.10.031.
[6]PEIYUAN H,JINGANG Y,HAIYAN X,et al.The Comparison of the Outcomes between Primary PCI,Fibrinolysis,and No Reperfusion in Patients≥75 Years Old with ST-Segment Elevation Myocardial Infarction:Results from the Chinese Acute Myocardial Infarction(CAMI)Registry[J].PLoS One,2016,11(11):e0165672.DOI:10.1371/journal.pone.0165672.
[7]OKORIE M I,BHAVSAR D D,RIDOUT D,et al.Postconditioning protects against human endothelial ischaemia-reperfusion injury via subtype-specific KATP channel activation and is mimicked by inhibition of the mitochondrial permeability transition pore[J].Eur Heart J,2011,32(10):1266-1274.DOI:10.1093/eurheartj/ehr041.
[8]TANG X L,TAKANO H,RIZVI A,et al.Oxidant species trigger late preconditioning against myocardial stunning in conscious rabbits[J].Am J Physiol Heart Circ Physiol,2002,282(1):H281-291.
[9]KOKOSZKA J E,WAYMIRE K G,LEVY S E,et al.The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore[J].Nature,2004,427(6973):461-465.
[10]BASSO E,FANTE L,FOWLKES J,et al.Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D[J].J Biol Chem,2005,280(19):18558-18561.
[11]HALESTRAP A P,PEREIRA G C,PASDOIS P.The role of hexokinase in cardioprotection - mechanism and potential for translation[J].Br J Pharmacol,2015,172(8):2085-2100.DOI:10.1111/bph.12899.
[12]REPALLI J.Translocator protein(TSPO)role in aging and Alzheimer′s disease[J].Curr Aging Sci,2014,7(3):168-175.
[13]BERNARDI P,DI LISA F.The mitochondrial permeability transition pore:molecular nature and role as a target in cardioprotection[J].J Mol Cell Cardiol,2015,78:100-106.DOI:10.1016/j.yjmcc.2014.09.023.
[14]PIOT C,CROISILLE P,STAAT P,et al.Effect of cyclosporine on reperfusion injury in acute myocardial infarction[J].N Engl J Med,2008,359(5):473-481.DOI:10.1056/NEJMoa071142.
[15]MEWTON N,CROISILLE P,GAHIDE G,et al.Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction[J].J Am Coll Cardiol,2010,55(12):1200-1205.DOI:10.1016/j.jacc.2009.10.052.
[16]WU N,LI W N,SHU W Q,et al.Blocking the mitochondrial permeability transition pore with cyclosporine-A can restore cardioprotection of ischemic postconditioning in hypercholesterolemic rat heart[J].Eur Rev Med Pharmacol Sci,2015,19(3):446-454.
[17]DUBE H,SELWOOD D,MALOUITRE S,et al.A mitochondrial-targeted cyclosporin A with high binding affinity for cyclophilin D yields improved cytoprotection of cardiomyocytes [J].Biochem J,2012,441(3):901-907.DOI:10.1042/BJ20111301.
[18]CUNG T T,MOREL O,CAYLA G,et al.Cyclosporine before PCI in Patients with Acute Myocardial Infarction [J].N Engl J Med,2015,373(11):1021-1031.DOI:10.1056/NEJMoa1505489.
[19]CHEN C H,BUDAS G R,CHURCHILL E N,et al.Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart[J].Science,2008,321(5895):1493-1495.DOI:10.1126/science.1158554.
[20]LI R J,JI W Q,PANG J J,et al.Alpha-lipoic acid ameliorates oxidative stress by increasing aldehyde dehydrogenase-2 activity in patients with acute coronary syndrome[J].Tohoku J Exp Med,2013,229(1):45-51.
[21]HE L,LIU B,DAI Z,et al.Alpha lipoic acid protects heart against myocardial ischemia-reperfusion injury through a mechanism involving aldehyde dehydrogenase 2 activation [J].Eur J Pharmacol,2012,678(1/3):32-38.DOI:10.1016/j.ejphar.2011.12.042.
[22]DUDEK M,KNUTELSKA J,BEDNARSKI M,et al.Alpha lipoic acid protects the heart against myocardial post ischemia-reperfusion arrhythmias via KATP channel activation in isolated rat hearts[J].Pharmacol Rep,2014,66(3):499-504.DOI :10.1016/j.pharep.2013.11.001.
[23]ONG S B,SAMANGOUEI P,KALKHORAN S B,et al.The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury[J].J Mol Cell Cardiol,2015,78:23-34.DOI:10.1016/j.yjmcc.2014.11.005.
[24]LI H,ZHANG C,SUN W,et al.Exogenous hydrogen sulfide restores cardioprotection of ischemic post-conditioning via inhibition of mPTP opening in the aging cardiomyocytes[J].Cell Biosci,2015,5:43.DOI:10.1186/s13578-015-0035-9.
[25]GOMEZ L,PAILLARD M,THIBAULT H,et al.Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion[J].Circulation,2008,117(21):2761-2768.DOI:1 0.1161/CIRCULATIONAHA.107.755066.
[26]FULLMER T M,PEI S,ZHU Y,et al.Insulin suppresses ischemic preconditioning-mediated cardioprotection through Akt-dependent mechanisms[J].J Mol Cell Cardiol,2013,64:20-29.DOI:10.1016/j.yjmcc.2013.08.005.
[27]TONG H,IMAHASHI K,STEENBERGEN C,et al.Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol-3-kinase--dependent pathway is cardioprotective[J].Circ Res,2002,90(4):377-379.
[28]NAGAOKA K,MATOBA T,MAO Y,et al.A New Therapeutic Modality for Acute Myocardial Infarction:Nanoparticle-Mediated Delivery of Pitavastatin Induces Cardioprotection from Ischemia-Reperfusion Injury via Activation of PI3K/Akt Pathway and Anti-Inflammation in a Rat Model[J].PLoS One,2015,10(7):e0132451.
[29]LINDSAY D P,CAMARA A K,STOWE D F,et al.Differential effects of buffer pH on Ca2+-induced ROS emission with inhibited mitochondrial complexesⅠand Ⅲ[J].Front Physiol,2015,6:58.DOI:10.3389/fphys.2015.00058.
[30]CHOUCHANI E T,PELL V R,GAUDE E,et al.Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS[J].Nature,2014,515(7527):431-435.DOI:10.1038/nature13909.
[31]LESNEFSKY E J,CHEN Q,MOGHADDAS S,et al.Blockade of electron transport during ischemia protects cardiac mitochondria[J].J Biol Chem,2004,279(46):47961-47967.DOI:10.1016/j.trsl.2012.01.024.
[32]TANAKA-ESPOSITO C,CHEN Q,LESNEFSKY E J.Blockade of electron transport before ischemia protects mitochondria and decreases myocardial injury during reperfusion in aged rat hearts [J].Transl Res,2012,160(3):207-216.
[33]BRENNAN J P,SOUTHWORTH R,MEDINA R A,et al.Mitochondrial uncoupling,with low concentration FCCP,induces ROS-dependent cardioprotection independent of KATP channel activation[J].Cardiovasc Res,2006,72(2):313-321.
(本文编辑:谢武英)
Progress on Mitochondrion-targeted Drugs in Treating Ischemic Heart Disease
WANGShuai,SUNTu-nan
TheFirstStudentBrigade,theFourthMilitaryMedicalUniversity,Xi′an710032,ChinaCorrespondingauthor:SUNTu-nan,E-mail:tunansun@126.com
Ischemic heart disease is one of major diseases that leading to human death in global.Thrombolysis and percutaneous coronary intervention are the main therapeutic strategies for ischemic heart disease at present,which can timely recover the myocardial perfusion and avoid myocardial infarction.Many studies confirmed that,some protective measures during myocardial ischemia reperfusion can effectively relive the myocardial ischemia reperfusion injury.Mitochondrial dysfunction is involved in myocardial ischemia and myocardial ischemia reperfusion injury,thus can be served as a target for treating myocardial ischemia reperfusion injury.Laboratory studies showed that,a variety of mitochondrion-targeted drugs can effectively relive the myocardial ischemia reperfusion injury,but most mitochondrion-targeted drugs can not get through the clinical trials,meaning mitochondrion-targeted drugs still have huge developing space.This paper reviewed the progress on mitochondrion-targeted drugs in treating ischemic heart disease.
Ischemic cardiac disease;Mitochondrion;Targeted therapy;Review
孙图南,E-mail:tunansun@126.com
R 542.2
A
10.3969/j.issn.1008-5971.2017.03.030
2016-12-15;
2017-03-10)
710032陕西省西安市,第四军医大学学员一旅