线粒体钙蛋白酶系统

2017-04-02 04:14常泓尹淑琴袁建琴
关键词:细胞质亚基蛋白酶

常泓,尹淑琴,袁建琴

(1.山西农业大学期刊社,山西 太谷 030801; 2.山西农业大学 生命科学学院,山西 太谷 030801)

线粒体钙蛋白酶系统

常泓1,尹淑琴2,袁建琴2

(1.山西农业大学期刊社,山西 太谷 030801; 2.山西农业大学 生命科学学院,山西 太谷 030801)

[目的]综述线粒体蛋白酶系统的成员、功能及调控。[方法]文献综述法。[结果]钙蛋白酶一直被看作是细胞质酶,但是近几年的研究证明CAPN1、CAPN2和CAPN10存在于线粒体中,并在坏死和凋亡细胞死亡等一系列病理生理情况下起重要作用。[结论]本文概述了线粒体蛋白酶系统的主要特征及它在细胞、普通生化和病理生理学中的一些作用。

线粒体; CAPN1; CAPN2; CAPN10; 钙蛋白酶抑制蛋白; 细胞凋亡

钙蛋白酶是钙激活半胱氨酸蛋白酶的一个成员,它广泛分布于细胞和亚细胞器中,同时存在的还有它们的内源性抑制剂:钙蛋白酶抑制蛋白和它们的激活因子UK114和ACBP。钙蛋白酶家族是由普遍存在的钙蛋白酶如:CAPN1(也称μ钙蛋白酶),CAPN2(也称m钙蛋白酶),CAPN10和组织特异性钙蛋白酶CAPN3(也称为p94)即特异性肌蛋白,CAPN8(胃nCl-2),CAPN9(消化细管nCl-4)等15种钙蛋白酶组成的[1]。最近的研究已经证明了CAPN1、CAPN2、CAPN10和它们的内源性抑制剂钙蛋白酶抑制蛋白存在于线粒体中[2,3]。

线粒体参与许多不同的过程,如凋亡、新陈代谢、疾病、老化、贮存和Ca2+的释放等[2]。在不同的病理生理环境下,[Ca2+]m浓度的增加会引发一系列破坏性的循环,对细胞的破坏是不可逆的。[Ca2+]i浓度的增加会造成钙蛋白酶活性的增加,随后细胞内的一些蛋白质会被限制性蛋白酶降解,这种影响会比其他可逆的钙依赖过程如磷酸化和去磷酸化产生更大的破坏[4]。在缺血时,细胞内Ca2+的动态平衡改变,但是线粒体能够在一定程度上使细胞质中Ca2+的浓度得到缓冲,这就表明线粒体具有运输Ca2+的能力[5,6]。

在线粒体中,Ca2+主要由钌红敏感性转运体通过质子电化学梯度驱动,并主要由钠钙交换体介导Ca2+流动,从而导致连续的Ca2+再循环穿过线粒体膜,造成细胞质和线粒体中Ca2+水平的不断改变[7]。钠钙交换体介导的线粒体释放Ca2+是在生理学和病理生理学环境下[Ca2+]i浓度做出回应的一种形式[7],Drumond[8]等人证明了[Ca2+]i的增加会造成[Ca2+]m的增加。在非正常生理环境下,[Ca2+]i浓度的升高导致线粒体失调,进而导致细胞机能失调[8,9]。在细胞凋亡中,广泛表达的CAPN1和CAPN2不断活化,使[Ca2+]i浓度增加。特别是,CAPN1导致的线粒体膜内钠钙离子交换体的蛋白水解作用,在使Ca2+增加,通过凋亡诱导因子(AIF)的释放导致细胞的死亡中起到非常重要的作用[10,11]。因此,线粒体钙蛋白酶介导细胞死亡和一些病理生理学环境下的许多疾病有密切的联系。

1 线粒体中的钙蛋白酶

虽然钙蛋白酶已经被看作是细胞质酶,但是在最近的研究中表明钙蛋白酶也存在于线粒体中,且参与线粒体中天冬氨酸转氨酶(AAT)和凋亡诱导因子的切割[12,13]。线粒体中CAPN1的生化特征和细胞质中CAPN1相似[2,3],线粒体CAPN1包含有一个80 kDa的起催化作用的大亚基以及一种28 kDa起调节作用的小亚基[3,14]。大量研究表明,CAPN10存在于线粒体中,并且参与调节钙诱导的线粒体机能失调,是通过电子传递链将复合亚基分开来调节的[15]。Badugu[16]等人已经证明了目前位于线粒体膜间隙的CAPN1包括大亚基和小亚基,大亚基的N端存在一种线粒体靶位序列,同时小亚基在线粒体中依附在大亚基上。Arrington[17]等人也证明了CAPN10也有靶位序列,线粒体CAPN10不包含结构域IV,说明CAPN10和CAPN1、CAPN2存在本质上的不同。Ozaki[3]等人最近也报道了CAPN2目前也存在于线粒体膜间隙,它包含有80 kDa的起催化作用的大亚基,同时也存在30 kDa起调节作用的小亚基。Beer[18]等人的研究表明有两种活化的钙蛋白酶存在于鼠肝线粒体中,一种是由25 μmol·L-1Ca2+激活的活性为最大活性一半的钙蛋白酶,另一种则由750 μmol·L-1Ca2+激活的。此外,Tavares[19]等人发现,膜间隙存在两种有活性的钙蛋白酶,还有3种存在于鼠肝线粒体基质中。

2 线粒体钙蛋白酶的调控

最近,Kar[20]等人报道了肺动脉平滑肌线粒体中含有145 kDa的钙蛋白酶抑制剂(clpastatin),有XL结构域;还含有120 kDa和110 kDa钙蛋白酶抑制剂分子,没有XL结构域,但有L结构域。Kar[2]等人证明了,在生理环境下Ca2+条件下,CAPN1-钙蛋白酶抑制剂复合体存在于线粒体中,表明线粒体CAPN1被钙蛋白酶抑制剂严格调控。

Ozaki[13]等人证明了线粒体CAPN1被ERP57调节,ERp57(亦称为ER60,ERp60,ERp61,GRp58)是蛋白二硫键异构酶(PDI)的一种家族成员。最初被发现存在于鼠肝的内质网中[21],ERp57也被发现存在于细胞质[22]和细胞核中[23],并且参与糖蛋白的正确折叠以及对错误折叠的二硫键进行重排[24,25]。最近的研究发现,ERp57还具有内质网分子伴侣的功能[26~28]。ERp57在MHC I类2肽转运中起重要作用,通过结合一种转运体参与抗原处理TAP复合体[29,30]。Ozaki[13]等人还证明了ERp57主要存在于线粒体OM中,且与目前存在于细胞质中的ERp57不同,他们也证明了线粒体CAPN1与ERp57结合,但是细胞质中的CAPN1和CAPN2不能与ERp57结合。这些研究者还证明了ERp57在再折叠线粒体CAPN1大亚基中发挥重要功能,即参与二硫键结构和功能的形成。Herrmann[31]等人的研究表明线粒体膜间隙蛋白(IMS)需折叠形成二硫键,因为蛋白质在ISM中会氧化。总之,线粒体CAPN1可与ERp57结合,为理解线粒体中CAPN1的定位和调节机制提供了重要的线索[13]。

最近的研究也表明了线粒体中也包含了CAPN2,它和ERp57有关,且对切割从线粒体中释放的AIF起重要作用[3]。ERp57是一种重要的分子伴侣,属于热激蛋白70家族[32~34]。它具有多种功能,包括进入线粒体;适当折叠新合成的细胞核和线粒体编码的蛋白质;在一些遭受压力的情况下做出反应,如葡萄糖匮乏、丧失氧化性及紫外线放射等[35]。ERp75在折叠线粒体CAPN2大亚基中起重要作用,这种折叠可能参与二硫键的形成以形成功能性的构象[3]。

线粒体中除了CAPN1和CAPN2外,还有CAPN10[17],CAPN10是一种非典型的钙蛋白酶,且最近由于与II型糖尿病有密切关系而倍受关注。Giguere[36]等人确定钙蛋白酶存在于兔中,小鼠、大鼠肾线粒体有大量75 kDa(CAPN10a),56 kDa(CAPN10c或10 d)和50 kDa(CAPN10e)剪接变异体分子。CAPN10的可变剪接已被证明可产生8种不同大小的基因产品[36]。Arrington[17]等人还证明了兔子线粒体CAPN10是Ca2+诱导复合体I蛋白质分裂的原因。虽然一些研究已经证明CAPN10存在于线粒体基质中,但是CAPN10的作用机制目前尚不清楚[17,36]。

3 线粒体钙蛋白酶的功能

[Ca2+]i的增加导致线粒体中Ca2+超载,使线粒体钙蛋白酶激活,最终导致细胞凋亡[11]。Kar[10]等人认为线粒体中Ca2+的主要排出方式为钠钙离子交换体,在[Ca2+]m增加时被线粒体CAPN1切割,且在平滑肌细胞凋亡中起重要作用[10,11]。实验表明,主要的凋亡信号是从线粒体跨膜间隙释放凋亡蛋白,如细胞色素C、AIF、Smac/DIABLD和Omi/HtrA2。在释放这些蛋白质时,可以通过活化依赖性和非依赖性半胱氨酸蛋白酶路径促进细胞凋亡。细胞色素C和Apaf1、dATP和酶原9一起形成凋亡复合体,在细胞质中引发酶原9的自催化活化和启动下游半胱氨酸蛋白酶级联反应。与细胞色素C相比,AIF是一种非依赖性半胱氨酸蛋白酶死亡因子,在释放时可能迁移到细胞核中,且参与细胞质凝集和大规模的DNA分解[37~39]。

线粒体钙蛋白酶通过非依赖性半胱氨酸蛋白酶程序性细胞凋亡路径在细胞凋亡中发挥重要作用,另外可促进通透性转换孔的形成,钙蛋白酶在AIF的释放中起直接的作用。钙蛋白酶现已被证明参与AIF的切割并诱导其从线粒体中释放[15,40,41]。线粒体中AIF的释放与凋亡蛋白酶12的活化有关,凋亡蛋白酶12是另一个钙蛋白酶底物[42],因此即使钙蛋白酶出现下调形成凋亡蛋白酶调节细胞死亡,由于AIF诱导机制,它也可能同时促进凋亡蛋白酶非依赖程序性细胞死亡。

AIF核转位作为凋亡蛋白酶非依赖性细胞死亡这一通路最近已在神经元损伤中建立,包括视网膜感光细胞凋亡[41,43]和脑组织缺氧或缺血[15,44]。近期,Okiza[13]等人还证明了线粒体CAPN1切割成熟的AIF(62 kDa)并将tAIF(57 kDa)从线粒体IM释放到IMS[13]。这就表明线粒体CAPN1是AIF诱导细胞死亡信号通路的一种引发剂。最近,Joshi[45]证明了线粒体CAPN1不参与AIF使用SH-SY5 Y神经瘤细胞的程序,因此,线粒体CAPN1在特异性组织或特异性病理下切割AIF。

Ozaki[3]等人做了一项研究表明线粒体CAPN2在tAIF通过VDAC的蛋白酶加工而释放进入细胞质中起非常重要的作用,AIF的释放也发生在一些步骤中。首先,线粒体CAPN1切割与IM整合的AIF,且释放进IMS;第二,通过线粒体CAPN2的活化,通过切割VDAC和线粒体中凋亡蛋白的积累,IMS中可溶性的tAIF被释放到细胞质中。这样,AIF从线粒体中释放可能不仅被线粒体CAPN1限制,而且也被线粒体CAPN2限制[3]。这些观察结果表明线粒体钙蛋白酶的抑制作用可能对一些失调症状如色素性视网膜炎、视网膜变性或脑出血有一种潜在的治疗作用[3]。

线粒体钙蛋白酶在凋亡蛋白酶依赖和非依赖途径的细胞凋亡中起重要作用。

3.1 依赖凋亡蛋白酶的细胞程序性死亡

钙蛋白酶可能在细胞凋亡中发挥重要作用,通过凋亡蛋白酶家族成员的蛋白酶直接或间接地相互作用。现已证明凋亡蛋白酶激活因子1将细胞色素C与活化的凋亡蛋白酶相结合,可被钙蛋白酶切断[46]。失去凋亡蛋白酶激活因子-1的原因是正确地诱导类凋亡蛋白酶3的活性,凋亡蛋白酶9中的钙蛋白酶也导致了凋亡蛋白酶3活化能力的丢失。相反地,钙蛋白酶裂解血小板7转换为活化形式,不依赖于凋亡蛋白的活化。钙蛋白酶和凋亡蛋白酶系统总是通过钙蛋白酶抑制剂进行调节[46]。凋亡蛋白酶已经被证明能够切割钙蛋白酶抑制剂且降低它的抑制活性,由此在钙蛋白酶和该蛋白酶抑制剂系统之间建立起一种复杂的互动,虽然钙蛋白酶抑制剂的过度表达起初能够增加凋亡蛋白酶3的活性,可能通过阻止钙蛋白酶介导的凋亡蛋白酶9和凋亡蛋白酶3的降解,钙蛋白酶抑制剂自身被凋亡蛋白酶3降解,导致钙蛋白酶活性第二次增加[46]。

3.2 凋亡蛋白酶非依赖的程序性死亡

除了促进线粒体通透性转换孔的形成,钙蛋白酶可能在AIF的释放中也起直接的作用[5,40]。最近已有研究证明钙蛋白酶能切割AIF,且能诱导其从线粒体中释放。从线粒体中释放的AIF最近已被观察到与另一种钙蛋白酶底物凋亡蛋白酶12的活性有关[42]。因此,尽管钙蛋白酶出现了凋亡蛋白酶诱导细胞死亡形式的下调,但是它可能也同时通过AIF诱导机制促进凋亡蛋白酶非依赖的程序性死亡[42]。钙蛋白酶的Ca2+活化对生理学功能非常重要,但是过多的Ca2+会产生导致蛋白水解酶异常活性、细胞损伤甚至死亡[47]。MPT是由于Ca2+超载导致线粒体机能失调的一种形式,腺嘌呤核苷酸浓度降低,线粒体膜电位下降,氧化应激性增加,以张开毛孔和线粒体肿胀为特征[48~50]。CAPN10的过度表达已经被证明可以诱导线粒体分裂和增大,这与MPT一致,且这种线粒体形态学的改变被MPT抑制剂阻止[51]。另外,高水平CAPN10的表达可诱导线粒体自我吞噬,这一过程被3-甲基腺嘌呤阻止,且被MPT诱导刺激[50,52,53]。Arrington[17]等人证明30%的MPT被钙蛋白酶抑制剂抑制,和Gores[54,55]等人观点一致。Gores等人证明了肝脏线粒体类钙蛋白酶激活调节MPT,他们也证明了CAPN10不能直接调节MPT,且线粒体分裂可能被除CAPN10之外的其他钙蛋白酶调节。因此,当CAPN10的生理学和病理生理学没有被广泛研究,它在兰尼碱诱导细胞凋亡,GLUT4囊泡转运,胰腺的β细胞外排,白内障,高甘油三酯血症和II型糖尿病中起作用[17,56~59]。线粒体越来越被认为是细胞死亡的检测点,是细胞坏死和凋亡被送去下游加工的信号。CAPN10在这些疾病中发挥重要的作用,可通过它进行疾病干预,处理细胞内Ca2+动态平衡失调所诱导的疾病[17]。

4 线粒体钙蛋白酶与神经元细胞死亡

在过去的十年中,越来越多的证据表明凋亡蛋白酶非依赖性在神经元细胞死亡中起到了极其重要的作用,AIF发挥主导中介作用[60.61]。关于AIF从线粒体中释放有两种机制,一是涉及到一种DNA修复酶聚合物活化的副产品PARP-1(poly(ADP-ribose)polymerase-1),PARP-1的活化是AIF释放的基础[62,63],且结果是产生高水平的毒害神经的PAR(poly(ADP-ribose))聚合物[64]。此外,PAR聚合物和AIF迁移的诱导相关联,这样就提供了一种死亡信号机制,即将细胞核和神经元线粒体连接起来[65]。第二种假设是控制AIF释放和运输必需钙蛋白酶的激活[15],钙失调广泛存在于神经元损伤和生理学的神经元退行性疾病中[66]。基于这些事实,最近已经证明了钙蛋白酶在切割AIF,和从独立性脑和肝线粒体中释放AIF起重要作用[40]。钙蛋白酶活化和AIF N端分裂已被证明是AIF转运和缺血所致的神经元死亡的原因[15]。最近,Vosler[67]等人证明了PARP-1诱导AIF释放与钙蛋白酶依赖AIF释放紧密相连,PARP-1和钙蛋白酶一致,在钙失调时诱导缺血时AIF释放[62,63,68~70]。除去现有概念外,重要的是依次激活PARP-1和钙蛋白酶,PARP-1通过PAR聚合物诱导线粒体Ca2+失调而激活钙蛋白酶。通过PAR聚合物诱导线粒体中Ca2+水平改变的机制目前还不清楚。一种机制认为:PAR聚合物诱导线粒体透气孔的形成导致Ca2+超载,有一项研究支持这一机制,即线粒体透气孔抑制剂环孢霉素A介导的钙诱导AIF从线粒体中释放[40]。这种假设即PARP-1诱导线粒体Ca2+失调的有效性而诱导钙蛋白酶活化是依赖于线粒体钙蛋白酶。事实上,CAPN1拥有一段线粒体定位序列,且已经在线粒体膜间隙发现[15,16,71]。Cao[15]等人证明了钙蛋白酶是目前在线粒体膜内或膜外伴随着缺血性损伤,尤其是AIF是正常地存在于线粒体膜内,因此,缺血损伤导致钙蛋白酶和AIF共存。

当[Ca2+]i增加到400 μmol·L-1时,线粒体Ca2+开始积累[72],缓冲能力增大,线粒体基质变得几乎饱和,自由的线粒体Ca2+也将增加,自由的线粒体Ca2+的持续增加导致通透性转换孔的开放和AIF的释放。有NMDA毒性诱导的神经元压力使线粒体Ca2+增加,造成线粒体诱导POS产生和PARP活化[73]。在认同这项研究的基础上,Vosler[67]等人提出了两种模型如图5所示。首先,NMDA受体过度激活导致大量Ca2+内流,线粒体作为一个水槽吸收过剩的Ca2+,然而,随着[Ca2+]m的增加,氧气增加,线粒体产能减少,这导致了超氧化物自由基释放到胞质中,细胞内超氧化物可以与NO反应,随着引起NMDA受体的活化而形成过氧化亚硝酸盐[72~77],一种已知的分子可能对DNA产生严重的损伤[78]。

DNA损伤活化PARP-1产生PAR聚合物导致NAD严重减少,PAR聚合物水平超过了PAR聚合物分解酶的分解能力,已经证明PARG能造成第二线粒体Ca2+凋亡[59,79],或者,NAD耗尽可能引起严重的能量危机造成线粒体Ca2+失调[80,81]。Ca2+动态平衡导致线粒体钙蛋白酶活化,切割线粒体内的AIF,切割后从线粒体中释放运输到细胞核内,最后的阶段是AIF诱导DNA加工和神经最终死亡。因此,PARP-1活化伴随着NMDA的暴露诱导线粒体Ca2+失调,随后钙蛋白酶活化且从线粒体中释放。

5 结语与展望

本综述着重于线粒体钙激活酶系统,一个新兴的钙蛋白酶的研究领域,最近的研究表明,线粒体内含有CAPN1,CAPN2和CAPN10。迄今为止,在已知的15种钙蛋白酶中,这些线粒体钙蛋白酶被钙蛋白酶抑制剂-ERp复合蛋白、ERp57、ERp75调节[2,3,13]。最近,Kar[2]等人报道了线粒体钙蛋白酶CAPN1被它的内源性抑制剂钙蛋白酶抑制剂所调节。Ozaki[3,13]等人证明了CAPN1和CAPN2目前存在于线粒体中代替钙蛋白酶抑制剂,他们观察到ERp57、ERp75分别和CAPN1、CAPN2相连。可以预测,未来的研究一定会有CAPN1-钙蛋白酶抑制剂相关晶体的研究,CAPN1-ERp57和CAPN2-ERp75晶体的研究可能对理解通过钙蛋白酶抑制剂和ERp57、ERp75在线粒体中活化时对CAPN1或CAPN2的调节更起作用。

最近的研究证明了平滑肌和鼠肝线粒体没有CAPN10[2,3],有趣的是,Arringto[17]等人证明了肾线粒体仅包含钙蛋白酶10,而不包含CAPN1和CAPN2,因此,可以研究在特异性组织和特异性生理学线粒体钙蛋白酶体系的功能。

[1]Yasuko Ono, Hiroyuki Sorimachi. Calpains-An elaborate proteolytic system[J]. Biochimica Et Biophysica Acta (BBA)-Proteins and Proteomics, 2012(1):224-236.

[2]Kar P, Samanta K, Shaikh S, et al. Mitochondrial calpainsystem:Anoverview[J].Archives of Biochem and Biophy, 2010:495:1-7.

[3]Ozaki T, Yamashita T, Ishiguro S. Mitochondrial m-calpain plays a role in the release of truncated apoptosis-inducing factor from the mitochondria[J]. Biochimica Et Biophysica Acta, 2009 (12):1848-1859.

[4]Takano J, Tomioka M, Tsubuki S, et al. Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains: evidence from calpastatin mutant mice[J]. Journal of Biological Chemistry, 2005,280(16):16175-16184.

[5]Ferrari R. The role of mitochondria in ischemic heart disease[J]. Journal of Cardiovascular Pharmacology, 1996, 28(S 1):1-10.

[6]Chalmers S, Nicholls D G. The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria[J]. Journal of Biological Chemistry, 2003, 278(21):19062-19070.

[7]Gobbi P, Castaldo P, Minelli A, et al. Mitochondrial localization of Na+/Ca2+, exchangers NCX1-3 in neurons and astrocytes of adult rat brain in situ[J]. Pharmacological Research, 2007, 56(6):556-565.

[8]Drummond RM, Tuft RA. Release of Ca2+, from the sarcoplasmic reticulum increases mitochondrial [Ca2+]in rat pulmonary artery smooth muscle cells[J]. Journal of Physiology, 1999, 516(1):139-147.

[9]Reynolds I J. Mitochondrial Membrane Potential and the Permeability Transition in Excitotoxicity[J]. Annals of the New York Academy of Sciences, 1999, 893:33-41.

[10]Kar P, Chakraborti T, Samanta K, et al. μ-Calpain mediated cleavage of the Na+/Ca2+exchanger in isolated mitochondria under A23187 induced Ca2+ stimulation[J]. Archives of Biochemistry & Biophysics, 2009, 482(1-2):66-76.

[11]Norberg E, Gogvadze V, Ott M, et al. An increase in intracellular Ca2|[plus]| is required for the activation of mitochondrial calpain to release AIF during cell death[J]. Cell Death & Differentiation, 2008, 15(12):1857-1864.

[12]Endo S, Ishiguro SI, Tamai M. Possible mechanism for the decrease of mitochondrial aspartate aminotransferase activity in ischemic and hypoxic rat retinas[J]. Biochimica Et Biophysica Acta, 1999, 1450(3):385-396.

[13]Taku Ozaki, Tetsuro Yamashita, Sei-ichi Ishiguro. ERp57-associated mitochondrial μ-calpain truncates apoptosis-inducing factor[J]. Biochimica Et Biophysica Acta Molecular Cell Research. 2008, 1783(10):1955-1963.

[14]Yoshimura N, Kikuchi T, Sasaki T, et al. Two distinct Ca2+proteases (calpain I and calpain II) purified concurrently by the same method from rat kidney[J]. Journal of Biological Chemistry, 1983, 258(14):8883-8889.

[15]Cao G, Xing J, Xiao X, et al. Critical role of calpain I in mitochondrial release of apoptosis-inducing factor in ischemic neuronal injury[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 2007, 27(35):9278-9293.

[16]Badugu R, Garcia M, Bondada V, et al. N terminus of calpain 1 is a mitochondrial targeting sequence[J]. Journal of Biological Chemistry, 2008, 283(6):3409-3417.

[17]Arrington DD, Van Vleet TR, Schnellmann RG. Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction[J]. American Journal of Physiology Cell Physiology, 2006, 291(6):1159-1171.

[18]Beer DG, Hjelle JJ, Petersen DR, et al. Calcium-activated proteolytic activity in rat liver mitochondria[J]. Biochemical & Biophysical Research Communications, 1982, 109(4):1276-1283.

[19]Tavares A, Duque-magalhàes MC. Demonstration of three calpains in the matrix of rat liver mitochondria[J]. Biomedica Biochimica Acta, 1991, 50(4-6):523-529.

[20]Kar P, Samanta K, Samanta K, et al. Submitochondrial localization of associated mu-calpain and calpastatin[J]. Archives of Biochemistry & Biophysics,2008, 470(2):176-186.

[21]Urade R, Nasu M, Moriyama T, et al. Protein degradation by the phosphoinositide-specific phospholipase C-alpha family from rat liver endoplasmic reticulum[J]. Journal of Biological Chemistry, 1992, 267(21):15152-15159.

[22]Jessop CE, Chakravarthi S, Garbi N, et al. ERp57 is essential for efficient folding of glycoproteins sharing common structural domains[J]. Embo Journal, 2007, 26(1):28-40.

[23]Grillo C, D'Ambrosio C, Consalvi V, et al. DNA-binding activity of the ERp57 C-terminal domain is related to a redox-dependent conformational change[J]. Journal of Biological Chemistry, 2007, 282(14):10299-10310.

[24]Elliott JG, Oliver JD, High S. The thiol-dependent reductase ERp57 interacts specifically with N-glycosylated integral membrane proteins[J]. Journal of Biological Chemistry, 1997, 272(21):13849-13855.

[25]Molinari M, Helenius A. Glycoproteins form mixed disulphides with oxidoreductases during folding in living cells[J]. Nature, 1999, 402(6757):90-93.

[26]Silvennoinen L, Myllyharju J, Ruoppolo M, et al. Identification and characterization of structural domains of human ERp57: association with calreticulin requires several domains[J]. Journal of Biological Chemistry, 2004, 279(14):13607-13615.

[27]Frickel EM, Frei P, Bouvier M, et al. ERp57 is a multifunctional thiol-disulfide oxidoreductase[J]. Journal of Biological Chemistry, 2004, 279(18):18277-18287.

[28]Pollock S, Kozlov G, Pelletier MF, et al. Specific interaction of ERp57 and calnexin determined by NMR spectroscopy and an ER two-hybrid system[J]. Embo Journal, 2004, 23(5):1020-1029.

[29]Peaper DR, Wearsch PA, Cresswell P. Tapasin and ERp57 form a stable disulfide-linked dimer within the MHC class I peptide-loading complex[J]. Embo Journal, 2005, 24(20):3613-3623.

[30]Santos SG, Campbell EC, Lynch S, et al. Major histocompatibility complex class I-ERp57-tapasin interactions within the peptide-loading complex[J]. Journal of Biological Chemistry, 2007, 282(24):17587-17593.

[31]Herrmann JM, Köhl R. Catch me if you can! Oxidative protein trapping in the intermembrane space of mitochondria[J]. The Journal of Cell Biology, 2007, 176(5):559-563.

[32]Mizzen LA, Chang C, Garrels JI, et al. Identification, characterization, and purification of two mammalian stress proteins present in mitochondria, grp 75, a member of the hsp 70 family and hsp 58, a homolog of the bacterial groEL protein[J]. Journal of Biological Chemistry, 1989, 264(34):20664-20675.

[33]Bhattacharyya T, Karnezis AN, Murphy SP, et al. Cloning and subcellular localization of human mitochondrial hsp70[J]. Journal of Biological Chemistry, 1995, 270(4):1705-1710.

[34]Mizzen LA, Kabiling AN, Welch WJ. The two mammalian mitochondrial stress proteins, grp 75 and hsp 58, transiently interact with newly synthesized mitochondrial proteins[J]. Cell Regul, 1991, 2(2):165-179.

[35]Liu Y, Liu W, Song XD, et al. Effect Of Grp75/Mthsp70/Pbp74/Mortalin Overexpression On Intracellular Atp Level, Mitochondrial Membrane Potential And Ros Accumulation Following Glucose Deprivation In Pc12 Cells[J]. Molecular and Cellular Biochemistry, 2005, 268(1):45-51.

[36]Giguere CJ, Covington MD, Schnellmann RG. Mitochondrial calpain 10 activity and expression in the kidney of multiple species[J]. Biochemical & Biophysical Research Communications, 2008, 366(1):258-262.

[37]Du C, Fang M, Li Y, et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition[J]. Cell, 2000, 102(1):33-42.

[38]Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor[J]. Nature International Weekly Journal of Science, 1999, 397(6718):441-446.

[39]Suzuki Y, Imai Y, Nakayama H, et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death[J]. Molecular Cell, 2001, 8(3):613-621.

[40]Polster BM, Basaez G, Etxebarria A, et al. Calpain I Induces Cleavage and Release of Apoptosis-inducing Factor from Isolated Mitochondria[J]. Journal of Biological Chemistry, 2005, 280(8):6447-6454.

[41]Sanges D, Comitato A, Tammaro R, et al. Apoptosis in retinal degeneration involves cross-talk between apoptosis-inducing factor (AIF) and caspase-12 and is blocked by calpain inhibitors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(46):17366-17371.

[42]Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis[J]. Journal of Cell Biology, 2000, 150(150):887-894.

[43]Murakami Y, Ikeda Y, Yonemitsu Y, et al. Inhibition of Nuclear Translocation of Apoptosis-Inducing Factor Is an Essential Mechanism of the Neuroprotective Activity of Pigment Epithelium-Derived Factor in a Rat Model of Retinal Degeneration[J]. American Journal of Pathology, 2008, 173(5):1326-1338.

[44]Zhu C, Wang X, Huang Z, et al. Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia-ischemia[J]. Cell Death & Differentiation, 2007, 14(4):775-784.

[45]Joshi A, Bondada V, Geddes JW. Mitochondrial μ-calpain is not involved in the processing of apoptosis-inducing factor[J]. Experimental Neurology, 2009, 218(2):221-227.

[46]Bevers MB, Neumar RW. Mechanistic role of calpains in postischemic neurodegeneration[J]. Journal of Cerebral Blood Flow & Metabolism, 2008, 28(4):655-673.

[47]Liu X, Schnellmann RG. Calpain mediates progressive plasma membrane permeability and proteolysis of cytoskeleton-associated paxillin, talin, and vinculin during renal cell death[J]. Journal of Pharmacology & Experimental Therapeutics, 2003, 304(1):63-70.

[48]Akopova OV, Sagach VF. [Effect of Ca2+on induction of the mitochondrial pore opening in the rat myocardium][J]. Ukrainskii Biokhimicheskii Zhurnal, 2004, 76(1):48-55.

[49]Halestrap AP, Kerr PM, Javadov S, et al. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart[J]. Biochimica Et Biophysica Acta, 1998, 1366(1-2):79-94.

[50]Lemasters JJ, Qian T, He L, et al. Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy[J]. Antioxidants & Redox Signaling, 2002, 4(5):769-781.

[51]Pariat M, Carillo S, Molinari M, et al. Proteolysis by calpains: a possible contribution to degradation of p53[J]. Molecular & Cellular Biology, 1997, 17(5):2806-2815.

[52]Lemasters JJ, Qian T, Elmore SP, et al. Confocal microscopy of the mitochondrial permeability transition in necrotic cell killing, apoptosis and autophagy[J]. Biofactors, 1998, 8(3-4):283-285.

[53]Rodriguez-Enriquez S, He L, Lemasters JJ. Role of mitochondrial permeability transition pores in mitochondrial autophagy[J]. International Journal of Biochemistry & Cell Biology, 2004, 36(12):2463-2472.

[54]Aguilar HI, Botla R, Arora AS, et al. Induction of the mitochondrial permeability transition by protease activity in rats: A mechanism of hepatocyte necrosis[J]. Gastroenterology, 1996, 110(2):558-566.

[55]Gores G J, Miyoshi H, Botla R, et al. Induction of the mitochondrial permeability transition as a mechanism of liver injury during cholestasis: a potential role for mitochondrial proteases[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1998, 1366(1-2):167-175.

[56]Carlsson E, Fredriksson J, Groop L, et al. Variation in the Calpain-10 Gene Is Associated with Elevated Triglyceride Levels and Reduced Adipose Tissue Messenger Ribonucleic Acid Expression in Obese Swedish Subjects[J]. Journal of Clinical Endocrinology & Metabolism, 2004, 89(7):3601-3605.

[57]Harris F, Chatfield L, Singh J, et al. Role of calpains in diabetes mellitus: A mini review[J]. Molecular & Cellular Biochemistry, 2004, 261(1-2):161-167.

[58]Johnson JD, Han Z, Otani K, et al. RyR2 and calpain-10 delineate a novel apoptosis pathway in pancreatic islets[J]. Journal of Biological Chemistry, 2004, 279(23):24794-24802.

[59]Ma H, Fukiage C, Kim YH, et al. Characterization and Expression of Calpain 10[J]. Journal of Biological Chemistry, 2001, 276(30):28525-28531.

[60]Culmsee C, Landshamer S. Molecular insights into mechanisms of the cell death program: role in the progression of neurodegenerative disorders[J]. Current Alzheimer Research, 2006, 3(4):269-283.

[61]Boujrad H, Gubkina O, Robert N, et al. AIF-mediated programmed necrosis: a highly regulated way to die[J]. Cell Cycle, 2007, 6(21):2612-2619.

[62]Wang H, Yu SW, Koh DW, et al. Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 2004, 24(48):10963-10973.

[63]Culmsee C, Zhu C, Landshamer S, et al. Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia[J]. Journal of Neuroscience, 2005, 25(44):10262-10272.

[64]Yu SW, Andrabi SA, Wang H, et al. Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(48):18314-18319.

[65]Judith A. Klaus, David W. Koh, Valina L. Dawson, et al. Poly(ADP-ribose) (PAR) polymer is a death signal[J]. Proceedings of the National Academy of Sciences, 2006, 103(48):18308-18313.

[66]Vosler PS, Brennan CS, Chen J. Calpain-Mediated Signaling Mechanisms in Neuronal Injury and Neurodegeneration[J]. Molecular Neurobiology, 2008,38(1): 78-100.

[67]Vosler PS, Sun D, Wang S, et al. Calcium dysregulation induces apoptosis-inducing factor release: Cross-talk between PARP-1-and calpain-signaling pathways[J]. Experimental Neurology, 2009, 218(2):213-220.

[68]Cregan SP, Fortin A, Maclaurin JG, et al. Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death[J]. Journal of Cell Biology, 2002, 158(3):507-517.

[69]Yu SW, Wang H, Poitras MF, et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor[J]. Science, 2002, 297(5579):259-63.

[70]Zhu C, Qiu L, Wang X, et al. Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain[J]. Journal of Neurochemistry, 2003, 86(2):306-317.

[71]Garcia M, Bondada V, Geddes JW. Mitochondrial localization of mu-calpain[J]. Biochemical Biophysical Research Communications, 2005, 338(2):1241-1247.

[72]Szabadkai G, Duchen MR. Mitochondria: The hub of cellular Ca2+ signaling (vol 23, pg 84, 2008)[J].Physiology, 2008, 23 (94):84.

[73]Duan Y, Gross RA, Sheu SS. Ca2+-dependent generation of mitochondrial reactive oxygen species serves as a signal for poly(ADP-ribose) polymerase-1 activation during glutamate excitotoxicity[J]. J Physiol, 2007, 585(3):741-758.

[74]Dawson VL, Dawson TM, London ED, et al. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(14):6368-6371.

[75]Dawson VL, Kizushi VM, Huang PL, et al. Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice[J]. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 1996, 16(8):2479-2487.

[76]Stout AK, Raphael HM, Kanterewicz BI, et al. Glutamate-induced neuron death requires mitochondrial calcium uptake[J]. Nature Neuroscience, 1998, 1(5):366-373.

[77]Makoto Urushitani MD, Dr. Shun Shimohama MD PhD, Takeshi Kihara MD, et al. Mechanism of selective motor neuronal death after exposure of spinal cord to glutamate: Involvement of glutamate-induced nitric oxide in motor neuron toxicity and nonmotor neuron protection[J]. Annals of Neurology, 1998, 44(5):796-807.

[78]Hara MR, Snyder SH. Cell signaling and neuronal death[J]. Annual Review of Pharmacology, 2007, 47(47):117-141.

[79]Cozzi A, Cipriani G, Fossati S, et al. Poly(ADP-ribose) accumulation and enhancement of postischemic brain damage in 110-kDa poly(ADP-ribose) glycohydrolase null mice[J]. Journal of Cerebral Blood Flow & Metabolism, 2006, 26(5):684-695.

[80]Eliasson MJ, Sampei K, Mandir AS, et al. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia[J]. Nature Medicine, 1997, 3(10):1089-1095.

[81]Endres M, Wang ZQ, Namura S, et al. Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase[J]. Journal of Cerebral Blood Flow & Metabolism Official Journal of the International Society of Cerebral Blood Flow & Metabolism, 1997, 17(11):1143-1151.

(编辑:马荣博)

Mitochondrial calpain system

Chang Hong1, Yin Shuqin2, Yuan Jianqin2

(1.PeriodicalPressofShanxiAgriculturalUniversity,Taigu030801,China; 2.CollegeofLifeScience,ShanxiAgriculturalUniversity,Taigu030801,China)

[Objective]The aim of this article was to overview the members, functions and regulations of calpains in mitochondrial. [Method] Literature review method. [Results]Calpain have previously been considered as the cytoplasmic enzymes, research in the recent past demonstrated that CAPN1, CAPN2 and CAPN10 are present in mitochondria, which play important roles in a variety of pathophysiological conditions including necrotic and apoptotic cell death phenomena. [Conclusion]This review outlined the key features of the mitochondrial calpain system, and its roles in several cellular and biochemical events under normal and some pathophysiological conditions.

Mitochondria, CAPN1, CAPN2, CAPN10, Calpastatin, Apoptosis

2017-01-06

2017-06-10

常泓(1968-),女(汉),山西榆次人,博士后,教授,研究方向:食品生物化学与分子生物学

国家自然科学基金(30271003);山西省科技攻关项目(20090311037);山西省青年基金项目(20021038)

Q55

A

1671-8151(2017)07-0469-08

特约稿件

猜你喜欢
细胞质亚基蛋白酶
动物细胞里的成员
心脏钠通道β2亚基转运和功能分析
Nav1.5与β亚基互作:结构、功能和相关疾病
思乡与蛋白酶
多胚蛋白酶 高效养畜禽
节水抗旱细胞质雄性不育系沪旱7A 的选育与利用
IgA蛋白酶在IgA肾病治疗中的潜在价值
洋葱细胞质雄性不育基因分子标记研究进展
坛紫菜细胞质型果糖1,6-二磷酸酶基因的克隆及表达分析
钙蛋白酶在心肌重构中的作用