王红磊
(家蚕基因组生物学国家重点实验室,农业部蚕桑生物学与遗传育种重点实验室,西南大学生物技术学院,重庆 400716)
家蚕Hox基因的功能及调控研究新进展*
王红磊
(家蚕基因组生物学国家重点实验室,农业部蚕桑生物学与遗传育种重点实验室,西南大学生物技术学院,重庆 400716)
Hox基因是重要的转录因子,是昆虫躯体模式发育中的主调控基因,并对附肢的发育有重要的作用。不同生物为适应自然环境进化出不同的躯体模式和附肢,这与Hox基因的进化存在内在的关联。家蚕(Bombyxmori)是鳞翅目的模式昆虫,其躯体模式及附肢的决定机制研究对其他鳞翅目昆虫具有重要参考意义。本文对家蚕Hox基因结构、功能和靶基因等方面的研究进展进行了综述。
家蚕;Hox基因;附肢;躯体模式
昆虫进化出各式各样的躯体模式以适应外界环境,而其中各种附肢的特化对昆虫的生存和繁衍有重要作用。昆虫附肢如何生成各种各样的形态、什么因子决定了附肢形成的空间性?一直是研究者关注的问题。从发育生物学角度来看,主要是进化过程中基因差异表达和功能变化的结果。附肢的发育是一个复杂的生理过程,由多层次的基因网络级联调控形成。同源异型基因(Homeotic gene, Hox)是首先在果蝇中发现的,是昆虫躯体模式发育的主要调控基因,按其在基因组上排列分别决定躯体从前到后不同体节的特征,特别是附肢发育部位和形态等特征,对研究附肢发育和分化有重要的意义。在昆虫中对Hox基因功能的研究已经有一定基础,研究发现由于不同物种中Hox基因功能在进化上差异分化生成各式各样的附肢。本文对家蚕中Hox基因的研究进展进行综述。
昆虫Hox基因在基因组上成簇排列,按其在基因组上排列的顺序从3’到5’依次表达,分别决定躯体从前到后不同体节的特征[1-3]。家蚕幼虫拥有3对胸足、4对腹足、尾角和尾足等附肢,成虫有两对翅膀等鳞翅目昆虫的典型特征,是鳞翅目的模式昆虫,与果蝇躯体模式有一定的分化。家蚕Hox基因串联排列于第6染色体,其中labial(Bmlab)和proboscipedia(Bmpb)基因间隔约为12M[4],在Bmpb和zerknullt(Bmzen)基因间有12个预测的含有同源异型结构域的基因specifichomeoboxgenes(Bmshx1-Bmshx12)。昆虫shx基因只在鳞翅目双孔亚目特异存在,是zen基因的随机重复,且其他鳞翅目双孔亚目昆虫都只有4个shx基因,即shxA、shxB、shxC和shxD[5-6]。
家蚕中Hox基因的功能有一定研究,目前已有不少关于其功能的报道。Antennapedia(BmAntp)功能缺失,会使第1胸足同源转换为触角且第2、3对胸足也不同程度带有触角的特征,BmAntp的表达变化还会影响幼虫眼状纹、丝腺的形态和成虫翅的形态与振动模式[7-9],BmAntp还能调控激素的合成,进而影响家蚕的蜕皮和变态[10]。Sexcombsreduced(BmScr)调控家蚕保幼激素的合成,进而影响家蚕的蜕皮和变态[11];BmScr还参与调控家蚕丝腺的形成,与在家蚕中部丝腺表达的BmAntp和后部丝腺表达的BmUbx一起调控丝腺特异形态的形成[12-13]。Ultrabithorax(BmUbx)能抑制第1、2腹节胸足和腹足的发育,Bmabd-A对第3-6腹节腹足的发育是必需的,Bmabd-B能抑制后腹腹足的发育[14-17]。家蚕BmUbx和abdominal-A(Bmabd-A)缺失突变体EN,在第1-7腹节长出胸足和介于胸-腹足之间附肢[18];Bmabd-A缺失的突变ECa腹部不长腹足,Bmabd-A异位表达的突变ECs-l在第2腹节有1对过剩腹足[18-19];BmUbx下调和Bmabd-A上调的突变EKh-l在第1腹节有1对类似胸足的附肢,第二腹节偶尔长出过剩腹足[20];Bmabd-B功能缺失的突变EMu,其突变纯合体在后腹有3对过剩腹足,杂合体有1对过剩腹足[17]。家蚕Bmabd-A除了调控胚胎的发育,还能参与家蚕变态发育的调控[21];abdominal-B(Bmabd-B)还参与生殖器官发育的调控[22]。
Hox基因是通过调控下游靶基因精确表达进而调控躯体模式的形成,Hox基因下游靶基因的鉴定和解析对研究昆虫躯体模式的形成有重要意义。家蚕Hox基因下游靶基因也有部分被鉴定。BmAntp能调控sericin-1、assericin-3、fhxh4和fhxh5在中部丝腺的特异表达[23-24];BmAntp和BmPOUM2相互作用调控Phantom(Phm)的表达参与家蚕蜕皮激素的合成,BmScr能和BmPOUM2相互作用调控JH-responsivegeneKrüppelhomolog1(Kr-h1)的表达参与保幼激素的合成调控,Bmabd-A能与BmPOUM2相互作用调控BmWCP4的表达影响家蚕的变态发育[10,11,21];BmUbx的下游靶基因也已经通过ChIP-seq进行鉴定,BmUbx调控翅模式发育的下游靶基因和果蝇相同,但是其他的靶基因进化出很大差异,特别是调控果蝇平衡棒的发育的下游基因[25];家蚕体色比野桑蚕要淡,分析发现野桑蚕在黑色素合成基因TH内含子有一个Bmabd-B的结合位点,但是在家蚕驯化过程结合位点丢失[26];在基因BmUSP和BmCarE-10座位都分析发现BmDfd作用位点[27-28]。
家蚕E群突变位于第6连锁群21.1位点,只包含BmUbx、Bmabd-A、Bmabd-B三个Hox基因[5,18,29],却具有30多个突变体。其突变表型大多与斑纹、附肢的过剩、缺失和神经发育异常有关,也可能牵涉到体节和生殖腺的分化,部分突变还伴有隐性纯合致死效应。且E群突变的形成与这三个Hox基因的异常表达有关,ECa突变缺失Bmabd-A,EN缺失BmUbx和Bmabd-A,EMu突变Bmabd-B功能缺失,ECs-l中Bmabd-A异位表达,EKh-l中BmUbx下调表达和Bmabd-A上调表达[17-20]。
E群突变是拟复等位基因群,其成员之间位点紧密相连,部分能够进行交换;不同位点的突变使不同环节出现突变表型。而E群位点只有3个Hox基因,大部分突变的形成可能不是由基因本身序列变化引起的,而是由调控这三个基因表达的功能元件发生变化引起的,如ECs-l的突变位点被定位在Bmabd-A上游约68 Kb的区域;EKh-l的突变位点被定位于包含BmUbx和Bmabd-A的约355 Kb的区域,且其定位区间内基因序列没有差异;Ekp-1的突变位点被定位于包含Bmabd-A的约220 Kb的区域,其定位区间内基因序列也没有差异[19,20,30]。
家蚕Hox基因簇中与果蝇BX-C基因簇同源的区域中miRNA也已经被鉴定,有家蚕特有的miR-2835,也有与果蝇BX-C基因簇同源的miRNAmiR-iab-4和miR-iab-4as,其中miR-iab-4也有miR-iab-4-3p和miR-iab-4-5p两种剪切形式,但这些miRNA对Hox基因的调节作用还没有被分析[31-33]。在家蚕中也有大量的lncRNA被鉴定,在家蚕E群位点中只有一个位于BmUbx和Bmabd-A之间的lncRNA被鉴定,但其功能却并不清楚[34-36]。家蚕E群位点可能和与其同源的果蝇BX-C基因簇一样,有大量顺式调控元件和ncRNA调控邻近Hox基因的表达,这些功能元件的突变会改变相关Hox的表达形成同源异型突变[4,18]。综上,家蚕Hox基因的表达可能受到复杂的调控。
家蚕不仅是重要的经济昆虫,还是鳞翅目的模式昆虫;鳞翅目昆虫又是农林害虫最多的一目。对家蚕躯体模式和附肢发育主要的调控基因——Hox基因的研究,在生命科学和农学领域都有重要的意义。鳞翅目昆虫为了生存和繁衍,进化出特异的躯体模式和附肢,而昆虫躯体模式和附肢的发育都是与Hox基因调控作用有关,所以我们推测不同生物为适应自然环境进化出不同的躯体模式和附肢,暗示着Hox基因的功能在进化中也会出现变化。家蚕Hox基因功能的研究可以为Hox基因功能进化分析提供理论基础。家蚕Hox基因的表达可能受到复杂的调控,家蚕是研究Hox基因表达调控的良好材料。
[1] LEWIS,E. B. A gene complex controlling segmentation inDrosophila[J]. Nature,1978,276(5688):565-570.
[2] SANCHEZ-HERRERO,E.,I. VERNOS,R. MARCO,G. MORATA. Genetic organization ofDrosophilabithoraxcomplex[J]. Nature,1985,313(5998):108-113.
[3] MCGINNIS,W.,R. KRUMLAUF. Homeobox genes and axial patterning[J]. Cell,1992,68(2):283-302.
[4] YASUKOCHI,Y.,L. A. ASHAKUMARY,C. WU,A. YOSHIDO,J. NOHATA,K. MITA,K. SAHARA. Organization of the Hox gene cluster of the silkworm,Bombyxmori:a split of the Hox cluster in a non-Drosophila insect[J]. Dev Genes Evol,2004,214(12):606-614.
[5] CHAI,C. L.,Z. ZHANG,F. F. HUANG,X. Y. WANG,Q. Y. YU,B. B. LIU,T. TIAN,Q. Y. XIA,C. LU,Z. H. XIANG. A genomewide survey of homeobox genes and identification of novel structure of the Hox cluster in the silkworm,Bombyxmori[J]. Insect Biochem Mol Biol,2008,38(12):1111-1120.
[6] FERGUSON,L.,F. MARLETAZ,J. M. CARTER,W. R. TAYLOR,M. GIBBS,C. J. BREUKER,P. W. HOLLAND. Ancient expansion of the hox cluster inlepidopteragenerated four homeobox genes implicated in extra-embryonic tissue formation[J]. PLoS Genet,2014,10(10):e1004698.
[7] SASAKI,K.,T. ABE,Y. YOSHIDA,K. ASAOKA. A homeotic mutation influences the wing vibration patterns during mating in males of the silkworm mothBombyxmori[J]. J Insect Physiol,2009,55(8):726-734.
[8] NAGATA,T.,Y. SUZUKI,K. UENO,H. KOKUBO,X. XU,C. HUI,W. HARA,M. FUKUTA. Developmental expression of theBombyxAntennapedia homologue and homeotic changes in the Nc mutant[J]. Genes Cells,1996,1(6):555-568.
[9] CHEN,P.,X. L. TONG,D. D. LI,M. Y. FU,S. Z. HE,H. HU,Z. H. XIANG,C. LU,F. Y. DAI. Antennapedia is involved in the development of thoracic legs and segmentation in the silkworm,Bombyxmori[J]. Heredity (Edinb),2013,111(3):182-188.
[10]MENG,M.,D. J. CHENG,J. PENG,W. L. QIAN,J. R. LI,D. D. DAI,T. L. ZHANG,Q. Y. XIA. The homeodomain transcription factors antennapedia and POU-M2 regulate the transcription of the steroidogenic enzyme gene Phantom in the silkworm[J]. J Biol Chem,2015,290(40):24438-24452.
[11]MENG,M.,C. LIU,J. PENG,W. QIAN,H. QIAN,L. TIAN,J. LI,D. DAI,A. XU,S. LI,Q. XIA,D. CHENG. Homeodomain Protein Scr Regulates the Transcription of Genes Involved in Juvenile Hormone Biosynthesis in the Silkworm[J]. Int J Mol Sci,2015,16(11):26166-26185.
[12]DHAWAN,S.,K. P. GOPINATHAN. Expression profiling of homeobox genes in silk gland development in the mulberry silkwormBombyxmori[J]. Dev Genes Evol,2003,213(11):523-533.
[13]KOKUBO,H.,K. UENO,K. AMANAI,Y. SUZUKI. Involvement of theBombyxScrgene in development of the embryonic silk gland[J]. Dev Biol,1997,186(1):46-57.
[14]MASUMOTO,M.,T. YAGINUMA,T. NIIMI. Functional analysis of Ultrabithorax in the silkworm,Bombyxmori,using RNAi[J]. Dev Genes Evol,2009,219(9-10):437-444.
[15]PAN,M. H.,X. Y. WANG,C. L. CHAI,C. D. ZHANG,C. LU,Z. H. XIANG. Identification and function of Abdominal-A in the silkworm,Bombyxmori[J]. Insect Mol Biol,2009,18(2):155-160.
[16]XIANG,H.,M. W. LI,J. H. GUO,J. H. JIANG,Y. P. Huang. Influence of RNAi knockdown for E-complex genes on the silkworm proleg development[J]. Arch Insect Biochem Physiol,2011,76(1):1-11.
[17]TOMITA,S.,A. KIKUCHI. Abd-B suppresses lepidopteran proleg development in posterior abdomen[J]. Dev Biol,2009,328(2):403-409.
[18]UENO,K.,C. C. HUI,M. FUKUTA,Y. SUZUKI. Molecular analysis of the deletion mutants in the E homeotic complex of the silkwormBombyxmori[J]. Development,1992,114(3):555-563.
[19]CHEN,P.,X. L. TONG,D. D. LI,P. F. LIANG,M. Y. FU,C. F. LI,H. HU,Z. H. XIANG,C. LU,F. Y. DAI. Fine mapping of a supernumerary proleg mutant (ECs-l) and comparative expression analysis of the abdominal-A gene in silkworm,Bombyxmori[J]. Insect Mol Biol,2013,22(5):497-504.
[20]TONG,X. L.,M. Y. FU,P. CHEN,L. CHEN,Z. H. XIANG,C. LU,F. Y. DAI.Ultrabithorax and abdominal-A specify the abdominal appendage in a dosage-dependent manner in silkworm,Bombyxmori[J]. Heredity (Edinb),2017.
[21]DENG,H.,J. ZHANG,Y. LI,S. ZHENG,L. LIU,L. HUANG,W. H. XU,S. R. PALLI,Q. FENG. Homeodomain POU and Abd-A proteins regulate the transcription of pupal genes during metamorphosis of the silkworm,Bombyxmori[J]. Proc Natl Acad Sci USA,2012,109(31):12598-12603.
[22]DUAN,J.,H. XU,S. MA,H. GUO,F. WANG,L. ZHANG,X. ZHA,P. ZHAO,Q. XIA. Ectopic expression of the male BmDSX affects formation of the chitin plate in femaleBombyxmori[J]. Mol Reprod Dev,2014,81(3):240-247.
[23]TSUBOTA,T.,S. TOMITA,K. UCHINO,M. KIMOTO,S. TAKIYA,H. KAJIWARA,T. YAMAZAKI,H. SEZUTSU. A Hox Gene,Antennapedia,Regulates Expression of Multiple Major Silk Protein Genes in the SilkwormBombyxmori[J]. J Biol Chem,2016,291(13):7087-7096.
[24]KIMOTO,M.,T. TSUBOTA,K. UCHINO,H. SEZUTSU,S. TAKIYA. Hox transcription factor Antp regulates sericin-1 gene expression in the terminal differentiated silk gland ofBombyxmori[J]. Dev Biol,2014,386(1):64-71.
[25]PRASAD,N.,S. TARIKERE,D. KHANALE,F. HABIB,L. S. SHASHIDHARA. A comparative genomic analysis of targets of Hox protein Ultrabithorax amongst distant insect species[J]. Sci Rep,2016,6:27885.
[26]YU,H. S.,Y. H. SHEN,G. X. YUAN,Y. G. HU,H. E. XU,Z. H.XIANG,Z. ZHANG. Evidence of selection at melanin synthesis pathway loci during silkworm domestication[J]. Mol Biol Evol,2011,28(6):1785-1799.
[27]ZHAO,G. D.,M. X. HUANG,Y. L. ZHANG,X. C. WANG,J. DU,B. LI,Y. H. CHEN,Y. X. XU,W. D. SHEN,Z. G. WEI. Expression analysis and RNA interference of BmCarE-10 gene fromBombyxmori[J]. Mol Biol Rep,2014,41(3):1607-1616.
[28]HUANG,M. X.,J. DU,B. J. SU,G. D. ZHAO,W. D. SHEN,Z. G. WEI. The expression profile and promoter analysis of ultraspiracle gene in the silkwormBombyxmori[J]. Mol Biol Rep,2014,41(12):7955-7965.
[29]XIA,Q.,Z. ZHOU,C. LU,D. CHENG,F. DAI,B. LI,P. ZHAO,X. ZHA,T. CHENG,C. CHAI,G. PAN,J. XU,C. LIU,Y. LIN,J. QIAN,Y. HOU,Z. WU,G. LI,M. PAN,C. LI,Y. SHEN,X. LAN,L. YUAN,T. LI,H. XU,G. YANG,Y. WAN,Y. ZHU,M. YU,W. SHEN,D. WU,Z. XIANG,J. YU,J. WANG,R. LI,J. SHI,H. LI,G. LI,J. SU,X. WANG,G. LI,Z. ZHANG,Q. WU,J. LI,Q. ZHANG,N. WEI,J. XU,H. SUN,L. DONG,D. LIU,S. ZHAO,X. ZHAO,Q. MENG,F. LAN,X. HUANG,Y. LI,L. FANG,C. LI,D. LI,Y. SUN,Z. ZHANG,Z. YANG,Y. HUANG,Y. XI,Q. QI,D. HE,H. HUANG,X. ZHANG,Z. WANG,W. LI,Y. CAO,Y. YU,H. YU,J. LI,J. YE,H. CHEN,Y. ZHOU,B. LIU,J. WANG,J. YE,H. JI,S. LI,P. NI,J. ZHANG,Y. ZHANG,H. ZHENG,B. MAO,W. WANG,C. YE,S. LI,J. WANG,G. K. WONG,H. YANG,G. Biology Analysis. A draft sequence for the genome of the domesticated silkworm (Bombyxmori)[J]. Science,2004,306(5703):1937-1940.
[30]XIANG,H.,M. LI,F. YANG,Q. GUO,S. ZHAN,H. LIN,X. MIAO,Y. HUANG. Fine mapping of Ekp-1,a locus associated with silkworm (Bombyxmori) proleg development[J]. Heredity (Edinb),2008,100(5):533-540.
[31]YU,X.,Q. ZHOU,S. C. LI,Q. LUO,Y. CAI,W. C. LIN,H. CHEN,Y. YANG,S. HU,J. YU. The silkworm (Bombyxmori) microRNAs and their expressions in multiple developmental stages[J]. PLoS One,2008,3(8):e2997.
[32]LIU,S.,D. LI,Q. LI,P. ZHAO,Z. XIANG,Q. XIA. MicroRNAs ofBombyxmoriidentified by Solexa sequencing[J]. BMC Genomics,2010,11:148.
[33]HUANG,Y.,Q. ZOU,S. M. TANG,L. G. WANG,X. J. SHEN. Computational identification and characteristics of novel microRNAs from the silkworm (BombyxmoriL.)[J]. Mol Biol Rep,2010,37(7):3171-3176.
[34]WU,Y.,T. CHENG,C. LIU,D. LIU,Q. ZHANG,R. LONG,P. ZHAO,Q. XIA. Systematic Identification and Characterization of Long Non-Coding RNAs in the Silkworm,Bombyxmori[J]. PLoS One,2016,11(1):e0147147.
[35]ZHOU,Q. Z.,B. ZHANG,Q. Y. YU,Z. ZHANG. BmncRNAdb:a comprehensive database of non-coding RNAs in the silkworm,Bombyxmori[J]. BMC Bioinformatics,2016,17(1):370.
[36]ZHOU,Q. Z.,S. M. FANG,Q. ZHANG,Q. Y. YU,Z. ZHANG. Identification and comparison of long non-coding RNAs in the silk gland between the domestic and wild silkworms[J]. Insect Sci,2017.
Summary of the Researches of Functions and Regulations of Hox Genes in Silkworm,Bombyxmori
WANG Hong-lei
(KeyLaboratoryofSericulturalBiologyandGeneticBreeding,CollegeofBiotechnology,SouthwestUniversity,Chongqing400716,China)
Hox genes are important transcription factors, and they are the major regulators in the development of insect body patterns and play an important role in the development of insect appendages. Different body patterns and appendages have been evolved in various species during their adaptation to the environment, which is associated with the evolution of Hox genes. The domesticated silkworm (Bombyxmori) is a model insect of Lepidoptera, and studies of the underlying mechanisms of its body pattern and appendages are of great significance to other lepidopteran insects. In this paper, we review the recent progress in the researches of the structure, functions and target genes of silkworm Hox genes.
Silkworm; Hox gene; Appendage; Body pattern
*资助项目:国家高技术研究发展(863)计划项目(No.2013AA102507),国家自然科学基金面上项目(No.31472153,No. 31372379),现代农业产业技术体系项目(CARS-22)。
王红磊(1987-),男,博士研究生。主要研究方向:家蚕分子遗传。E-mail: 277523472@qq.com