王巨澜
摘 要:现浇混凝土模板支撑体系的优化是当前建筑工程施工至为关键的一项内容。笔者将不同模板支撑体系予以对比分析,综合提出一种较为新颖的框式盘口梁板模板支撑体系,它能够满足不同模板跨度的实际需求,针对塔柱位置进行适当调节实现梁构件下部自由变跨,而板构件则通过调节桁架位置达到各类水平支撑跨度要求。
关键词:框式盘扣梁板模板;模板支撑体系;有限元分析;桁架试验
中图分类号:TU731 文献标识码:A
1.新型框式盘扣梁板模板支模体系的总体构想与基本组成
1.1 总体构想
笔者根据实际工程专门提出一种新型的框式盘扣梁板模板支撑体系,主要作为承载主体结构自重,且形成一种可充分利用V型支撑体系的空间塔柱结构。该类模板支撑体系可调节塔柱位置实现梁构件下部自由变跨,以此满足各类模板跨度要求。同时,又可按照建筑结构层标高选用与之匹配的V形模板支架组合,模板支架顶底两端均可设置调托部件,用作梁板模板支架的微调,板构件则通过调节桁架位置达到各类水平支撑跨度要求。因梁板模板支撑体系是多个独塔扣件的组合单元,板构件以下可专门配置若干桁架完成整个支模过程,自始至终可增大横向的支撑跨度,并能很好地利用竖向的支持构建实现主体结构自重承载,这将优化梁板模板支撑体系。
1.2 基本组成
框式盘扣梁板模板支撑体系的基本组成包括4组单横杆H型盘扣架和4组双横杆H形盘扣架,将其于盘扣节点位置相互套插。另外,为了保证塔柱具有足够的稳定性能,可在高支模中增大架体单元,增设一定数量的斜杆,且于支架顶底两端专门增设调托(主要由螺纹杆和调节螺母构成),螺纹杆被套设于V形支架顶、底端,可通过调节螺母予以紧固,如图1所示。
2.某项目框式盘扣梁板模板支撑的应用
2.1 相关计算参数
盘扣式脚手架立杆钢管强度为3N/mm2,水平杆钢管强度为205.0N/mm2,钢管强度折减系数取1。框式盘扣梁板模板支撑构件的总体高度约为10.0m,梁构件的横向截面积约为3×6cm,而立杆纵向距离约为0.8m,脚手架的平均步距同为1.8m。
立杆钢管类型选择:
A-LG-30(Φ60× 3.2×30)
横向水平杆钢管类型选择:
A-SG-9(Φ48× 2.5×840)
纵向水平杆钢管类型选择:
A-SG-9(Φ48× 2.5×840)
横向跨间水平杆钢管类型选择:
A-SG-9(Φ48× 2.5×840)
梁构件底部增设立两只立杆用于结构承重。面板构件的厚度则设计为1.8cm,相关力学性能则包括1.4N/mm2的剪切强度、15N/mm2的抗弯强度、 60N/mm2的弹性模量等。方木垫块的外观尺寸为6×8cm,其相关力学性能则包括1.3N/mm2、13N/mm2的抗弯强度、 90N/mm2的弹性模量等。梁构件底部支撑方木的外观长度约为80cm。梁构件顶部托物同样选用方木,其外观尺寸约为10×10cm,一般于梁构件底部以均匀分布的形式安置两根承重杆。通常,模板的自重参数约为0.2kN/mm2,钢筋砼的自重则为25.5kN/m3。倾倒混凝土荷载标准值1kN/m2,而施工过程中的平均分布荷载约为2kN/m2。另外,地基承载起初值约为1702kN/m2,基础的地面外延值约为0.252m2,而地基的承载能力的调整参数则为0.4。框式盘扣梁板模板支撑体系的扣件在计算过程中的折减系数取值为1.0。
钢管惯性矩计算采用:
I=π(D4-d4)/64
抵抗距计算采用:
W=π(D4-d4)/32D
2.2 梁底支撑木方的计算
钢筋砼梁构件的自重计算(kN/m):
q1=25.5×0.6×0.4=6.120kN/m
模板构件的自重线荷载计算(kN/m):
q2=0.2×0.4×(2×0.6+0.3)/0.3= 0.4kN/m
活动荷载(kN)通常是指施工过程产生标准荷载值和混凝土振捣过程产生活动荷载的总和,其计算如下:
活动荷载标准值:
P1=(2+1)×0.3×0.4=0.36kN
平均分布荷载值:
q=1.2×6.12+1.2×0.4=7.824kN/m
集中性荷载值:P=1.4×0.36=0.504kN(如图2所示)。
经计算得到从左到右各支座力分别为:N1=1.426kN,N2=1.426kN(如图3所示),最大支座F=1.426kN。
经计算得到最大弯矩:
M=0.339kN·m(如图4所示)
由本案例情况及图5可知,梁构件的横向截面自身惯性弯矩I与抵抗弯矩W经计算可得:
自身惯性弯矩:
I=6×8×8×8/12=256cm4
抵抗弯矩:W=6×8×8/6=64cm4
由此可见,该体系可满足基本的稳定要求。
2.3 梁构件顶、底部托物的力学计算
梁构件托物可根据集中性荷载值和平均分布荷载值的计算公式获知多跨连续梁构件的相关力学参数值。平均分布荷载值设计取托物自重q=0.096kN/m。
由如图6、图7和图8所示,变形过程中托物力学参数的技术可根据相关设计规范的要求利用静荷载标准予以确定,与之相应的荷载图和运算结果如图9、图10所示。
根据如上计算原理获得其最大的弯矩值约为0.199kN·m,最大的支座反应力约为3.065kN·m,最大的变形量约为0.077mm。
由本案例的情况来看,梁构件顶、底部托物的惯性矩I与抵抗弯矩W分别为:
I=10×10×10×10/12=833.33cm4
W=10×10×10/6=166.67cm4
由此可见,该体系可满足基本的稳定要求。
2.4 梁模板支架整体稳定性计算
依据盘扣式规范JGJ231-2010和混凝土施工规范GB50666-2011:盘扣式梁模板支架应按混凝土浇筑前和混凝土浇筑时两种工况进行抗倾覆验算。
支架的抗倾覆验算应满足下式要求:MT 上式中:MT-支架的倾覆力矩设计值;MR-支架的抗倾覆力矩设计值。 支架自重产生抗倾覆力矩:MG1=0.9×1.087/0.8×6.0×6.0/2=22.020kN·m; 模板自重产生抗倾覆力矩:MG2=0.9×0.2×0.3×0.8×6.0/2=0.130kN·m; 钢筋混凝土自重产生抗倾覆力矩:MG3=0.9×25.5×0.3×0.6×0.8×6.0/2= 9.914kN·m; 风荷载产生的倾覆力矩: wk=0.3×0.6×0.6=0.108kN/m2 Mw=1.4×0.108×0.8×10.02/2= 6.048kN·m 附加水平荷载产生倾覆力矩(附加水平荷载取永久荷载的2%): 永久荷载(包括支架、梁模板、钢筋混凝土自重)为11.876kN; 附加水平荷载: Fsp=11.876×2%=0.238kN Msp=1.4×0.238×10.0= 3.325kN·m 工况一:混凝土浇筑前:倾覆力矩MT=1.0× 6.048=6.048 kN·m;抗倾覆力矩MR= 22.020+0.130=22.150kN·m;浇筑前抗倾覆验算MT 工况二:混凝土浇筑时:倾覆力矩MT=1.0× 3.325=3.325kN·m;抗倾覆力矩MR=22.020+0.130+ 9.914=32.064kN·m;浇筑时抗倾覆验算MT 由此可见,该体系可满足基本的稳定要求。 结语 综上所述,本文对新型框式盘扣式梁板模板支撑体系予以剖析,将利用一种较为新颖的框架式盘扣塔式基础竖向单元,同时以可调式桁架作为水平方向的支撑基础,二者共同构成梁板模板支撑体系。新型框式盘扣架节点刚度相对于普通盘扣式模板支撑结构更好,对于改进整体结构承载能力具有奇效。同时,本文所述新型框式盘扣式梁板模板支撑体系在一定程度上具有良好的通用性原则,此点也是它能够在未来建筑施工行业大范围推广的一方面原因,主要在现浇混凝土结构工程中较为常见。除此以外,为了能够大幅提升可调式桁架结构的整体稳定性,多采用异形压型薄钢板作为主要原材料,同时又利用扩大外桁架并将其套插于端部或底部,最终通过紧固螺栓的做法将水平方向的局部应力予以降低,从而可以有效避免钢板的屈曲问题。新型模板支撑体系可作为专用梁板模板支撑结构建设,其形式简单,适用范围广和装拆便利都是其未来良好发展的基础。 参考文献 [1]徐蓉,刘碧波,马荣全.承插型盘扣式模板支架体系试验研究[J].施工技术,2014(5):77-81. [2]齐继策,鲁爱创.盘扣式模板支撑体系施工技术[J].中国科技期刊数据库,2015(48):47-49. [3]柯尊鸿.浅谈某磁悬浮工程连续梁梁柱式支架施工设计[J].价值工程,2015(16):92-94.