廖云杰,裴贻刚,李利丰,王维
对比剂增强磁共振血管成像(contrast enhanced magnetic resonance angiography,CE-MRA)和CT血管造影(CT angiography,CTA)是目前评估肾血管及其疾病的两种常用检查方法,但它们可能引起肾源性纤维化(nephrogenic systemic fibrosis,NSF)或对比剂肾病(contrast induced nephropathy,CIN)[1-2]。因此,用非对比剂血管成像(non-contrast enhanced magnetic resonance angiography,NCEMRA)为高血压患者显示肾动脉是全世界研究的热点。因为高血压患者有隐匿性肾功能受损的可能,使用NCE-MRA可以从根源上避免CIN或NSF的发生。因此用NCE-MRA序列来评估高血压患者的肾动脉及其病变具有重要的临床意义。在本研究中,对52例高血压患者,在1.5 T MRI上执行多翻转脉冲空间标记(spatial labeling with multiple inversion pulses,SLEEK)序列来显示肾动脉,并与CTA对照来探讨NCE-MRA SLEEK显示肾血管及其病变的能力。
收集中南大学湘雅医院2015年1月至 2016年8月行NCE-MRA SLEEK检查的52例高血压患者资料。在NCE-MRA SLEEK检查后1~10 d内所有患者行CTA检查。在NCE-MRA SLEEK检查前,对所有患者的肌酐进行评估,认为他们的肾功能可以安全接受对比剂型CTA检查。共收集男性22例,女性30例,年龄为(37±19)岁。所有参加本研究的高血压患者均签署了知情同意书。
符合要求的52例患者均在1.5 T HD MR (GE healthcare)上接受了NCE-MRA SLEEK检查。NCEMRA SLEEK的原理示意图见图1。采用8通道相控阵腹部线圈,采用3个不同的血液抑制反转时间(blood suppression inversion time,BSP TI)分别行NCE-MRA SLEEK冠状位扫描,扫描范围包括双肾及腹主动脉。扫描参数为BSP TI=800 ms、1100 ms、1400 ms,TE=2.0 ms,TR=3.9 ms,slice thickness=2 mm,Flip angle=75°,NEX=0.80,receiver bandwidth=±125 kHz,FOV=38 cm×30 cm,matrix=224×256。每例高血压患者接受NCE-MRA SLEEK总扫描时间约为10~12 min。
所有接受CT检查的患者检查前饮水800~1000 ml。采用GE Light Speed VCT CT99 64排螺旋CT行腹部增强扫描,扫描范围自右侧膈顶上缘到双侧髂嵴上缘。扫描参数如下:300 mA,140 KV,层间距1.25 mm,层厚1.25 mm,准直宽度20 mm,螺距1.375:1,床运行速度13.75 cm/s,机架转率1.25 r/s。采用高压注射器经肘静脉以速率4.0 ml/s注入350碘帕醇80 ml,然后以同样的速率注入生理盐水20 ml,采用自动触发技术,当监测的腹主动脉CT值达到200 Hu时,开始触发动脉期扫描;于注射对比剂50 s时行静脉期成像。
为了清楚显示肾动脉分支、副肾动脉及肾动脉病变,将NCE-MRA SLEEK和CTA的原始图像传至GE后处理工作站(AW4.4)进行图像后处理,主要方法为:①多平面重建(multiple planar reconstruction,MPR);②容积再现(volume rendering);③最大密度投影(maximum intensity projection,MIP)。
对每位患者的NCE-MRA SLEEK的原始图像和重建图像由两名放射科副主任医师进行质量评估,从3个用不同BSP TI的SLEEK图像中选出最好显示肾动脉的图像。评价的标准包括显示肾动脉信噪比,肾动脉的锐利度,显示肾动脉主干及肾实质内肾动脉分支显示情况及静脉系统的干扰情况(图2),分为:1:优秀图像(图2A);2:良好图像(图2B);3:模糊图像(图2C)。对于获得优秀和良好的NCE-MRA SLEEK图像,由两名放射科副主任医师共同评估NCE-MRA SLEEK图像,评价它们显示肾血管主干、分支及是否存在肾血管病变[包括正常肾动脉、肾动脉狭窄(renal artery stenoses,RAS)、肌纤维发育不良(fibromuscular dysplasia,FMD) ]的能力;对于模糊SLEEK图像不予评估(视为扫描失败)。
图1 NCE-MRA SLEEK利用流入增强效应显示肾动脉的原理图。SLEEK采用一个纵行翻转带翻转到其覆盖区域所有结构、组织和血液信号,再利用另外一个翻转带把肾上极上方的动脉血再次翻转回来,利用流入增强效应显示肾动脉及腹主动脉 图2 NCE-MRA SLEEK扫描后图像质量的评估标准。A:优秀图像:肾动脉主干肾实质内肾动脉分支清晰可见,轮廓清楚,无静脉干扰;B:良好图像:肾动脉主干清晰可见,轮廓清楚,肾实质内肾动脉分支较少或者无,较少的静脉系统干扰;C:模糊图像:肾动脉主干及肾实质内肾动脉分支显示不清,轮廓不清楚,或出现较多静脉的干扰 图3 女性,42岁,高血压患者(2年病史)。 A和B分别为NCE-MRA SLEEK和CTA的MIP图。NCE-MRA SLEEK在显示肾实质内的分支明显优于CTA (箭头);NCE-MRA SLEEK显示脊柱骨为低信号,避免了脊柱骨的干扰;NCE-MRA SLEEK在显示右侧肾动脉狭窄程度(Grade 3)时与CTA一致(箭) 图4 女性,24岁,高血压患者(病史7年)。A和B分别为NCEMRA SLEEK和CTA的MIP图。NCE-MRA SLEEK显示FMD (箭)和肾实质分支(箭头)优于CTA 图5 男性,52岁,高血压患者(病史10年)。A和B分别为NCE-MRA SLEEK和CTA的MIP图。NCE-MRA SLEEK在显示两侧肾动脉狭窄程度和CTA一致(右侧Grade 2,左侧Grade 3) (长箭);NCEMRA SLEEK不能显示血管壁粥样硬化钙化斑块(箭头),有利于腹主动脉及肾动脉的显示。另外,NCE-MRA SLEEK不能显示右侧副肾动脉(短箭)Fig.1 Schematic picture of NCE-MRA SLEEK (non-contrast magnetic resonance angiographyusing spatial labeling with multiple inversion pulses)for displaying renal artery. Two orthogonal SLEEK bands were geographically localized during scan prescription to image the renal artery dependent on the in-ぼow effect. One 50 cm width vertical broad SLEEK band covered the whole body to invert all signals within a coil region to -Mz longitudinal magnetization. The other 20 cm width transversal SLEEK band was located superior to the upper pole of kidneys to bring the in-ぼow artery blood back to +Mz direction. Fig. 2 Criteria for evaluating renal artery image quality with NCE-MRA SLEEK. A: Example of excellent image quality: sharp and complete delineation of vessel borders, including the main renal artery and segmental branches in renal parenchyma, and less interference from venous system were regarded as excellent images; B: Example of good image quality: those with homogeneous vessel signal intensity with slight ぼow artifacts,good delineation of vessel borders, including the main renal artery and segmental branches up to renal parenchyma, and less interference from venous system were regarded as good images; C: Example of indeterminate image quality: those with inhomogeneous vessel signal intensity, irregular delineation of vessel borders, and unclear presentation of the main renal artery were regarded as indeterminate images. Fig.3 A 42-year-old woman with 2-year history of hypertension. Coronal maximum intensity projections from spatial labeling with multiple inversion pulses (SLEEK) (A) and contrast-enhanced CT angiography (CTA) (B) show unanimity for presenting degree of right stenoses (arrows; grade 3). Note that SLEEK was superior to CTA for presenting detail of segmental branches in renal parenchyma (arrow heads). In addition, SLEEK is insensitive to vertebra. Fig.4 A 24-year-old woman withfibromuscular dysplasia (FMD) and 10-year history of hypertension. Axial maximum intensity projections from spatial labeling with multiple inversion pulses (SLEEK) (A) and contrast-enhanced CT angiography (CTA) (B) show concordance for presenting left renal artery FMD. Note that SLEEK was slightly superior to CTA in delineating appearance of "string-of-beads" in FMD (arrows) and segmental branches in renal parenchyma (arrows heads).Fig. 5 A 52-year-old man with more than 10 years history of hypertension. Coronal maximum intensity projections from spatial labeling with multiple inversion pulses (SLEEK) (A) and contrast-enhanced CT angiography (CTA) (B) show agreement for displaying degree of stenoses (long arrows) (right renal artery, grade 2; left renal artery, grade 3). Note that SLEEK is superior to CTA for its insensitivity to calcified plaques (arrow heads). However, SLEEK did not present right accessory renal artery (short arrows).
采用盲法和随机的原则分别记录NCE-MRA SLEEK和CTA显示肾动脉及其病变的能力,通过与CTA的结果比较,利用卡方检验对NCE-MRA SLEEK显示肾动脉及其病变的能力进行评估。在本研究中,通过公式(1-S/R)×100%计算肾动脉的狭窄程度,R和S分别代表狭窄近端1 cm内正常肾动脉的最大直径和狭窄处的最小直径;然后把肾动脉狭窄程度分为4级(4级,闭塞;3级,75%~99%;2级,50%~75%;1级,狭窄程度低于50%)。
总共收集的52例高血压患者中有46例获得优秀或良好的NCE-MRA SLEEK图像(优秀:24例;良好:22例)。2例患者因为幽闭恐惧症没有完成MRI检查,4例患者因为呼吸运动或者腹水而不能清楚显示肾动脉主干。在获得优秀或良好NCEMRA SLEEK图像的46例患者中,5根肾动脉(4根副肾动脉,1根FMD) NCE-MRA SLEEK未能显示。NCE-MRA SLEEK总共发现109根肾动脉(52根右肾动脉,57根左肾动脉,其中28根RAS,4根FMD);CTA发现114根肾动脉(54根右肾动脉,60根左肾动脉,其中27根RAS,6根FMD)。NCEMRA SLEEK和CTA显示肾动脉及肾动脉病变的结果见表1,其中1例为异位肾,2例为孤立肾。
除了上述5根肾动脉NCE-MRA SLEEK不能显示外,NCE-MRA SLEEK能较好地显示肾动脉主干,其能力与CTA相比基本一致,且无脊柱、钙化斑块和静脉系统的干扰(图3~5);对于显示肾实质内肾动脉分支能力方面,NCE-MRA SLEEK明显优于CTA(P=0.001) (见表2,图 3、4)。
在显示肾动脉病变方面,NCE-MRA SLEEK和CTA评估RAS的结果见表3及图3~5;对于RAS分级的评估,5根RAS的分级被NCE-MRA SLEEK高估(见表4),包括1根NCE-MRA SLEEK评为2级RAS (CTA:1级RAS),2根3级RAS (CTA:2级RAS),2根4级RAS (CTA:3级RAS)。另外,1根CTA表现为正常肾动脉被NCE-MRA SLEEK评为1级RAS,2根CTA表现为FMD而NCE-MRA SLEEK表现为闭塞,1根CTA表现为闭塞而NCEMRA SLEEK不能显示;除了这4根血管外,NCE-MRA SLEEK和CTA显示RAS具有很好的相关性(Rs=0.85,P<0.05)。NCE-MRA SLEEK较清楚地显示了6例FMD中的4例(优秀:2例;良好:2例;闭塞:2例) (图4)。
表1 NCE-MRA SLEEK和CTA显示肾动脉及其病变的比较Tab.1 Comparison of evaluation score of renal artery with NCE-MRA SLEEK and CTA
CTA和CE-MRA均能显示肾动脉和准确评估肾动脉病变,但是它们需要使用对比剂,对肾功能不良的患者可能引起对比剂肾病和肾源性纤维化。因此用NCE-MRA评估肾动脉越来越受到青睐。目前常用的时间飞跃法和相位对比法[3-4]已经广泛用于显示头部及颈部血管,但是它们由于受呼吸运动的影响不能准确显示或者评估肾动脉。近年来有一些NCE-MRA序列用于评估肾动脉病变,如时间-空间标记反转脉冲(time-spatial labeling inversion pulse,Time-SLIP)[5]、稳态自由进动(steady state free precession,SSFP)[6]及固有增强流入反转恢复(inflow inversion recovery,IFIR)[7],但它们仅用于肾动脉狭窄的评估及图像质量的提高[5-12],对显示肾动脉分支的能力未见报道,也未见用于FMD的显示。
在本研究中采用一个不需要对比剂的SLEEK序列(NCE-MRA)扫描来显示肾动脉。为了更好地显示动脉血管,所有患者行NCE-MRA SLEEK扫描之前均接受呼吸训练,使患者的呼吸频率和深度基本保持一致,确保扫描过程中肾脏基本位于同一位置,减少呼吸原因对血管成像的影响。在收集的资料中,24例NCE-MRA SLEEK获得优秀图像,22例获得良好的图像。
NCE-MRA SLEEK不同于NCE-MRA IFIR技术[7],NCE-MRA IFIR利用一个翻转带横轴位扫描显示肾动脉。由于肾脏的上下径大于前后径的解剖特点,NCE-MRA IFIR轴位扫描的范围较广,所花的时间较长,约为5~6 min,且显示腹主动脉的范围有限。而NCE-MRA SLEEK采用冠状位扫描,利用两个相互垂直的翻转显示肾动脉,使NCE-MRA SLEEK的扫描范围较小,时间较短,约为2~4 min,这样可以降低扫描过程中对患者均匀呼吸的长时间要求,利于NCE-MRA提高图像质量;同时,NCE-MRA SLEEK能较大范围显示腹主动脉,有利于副肾动脉、异位肾及相应血管的显示。笔者利用NCE-MRA SLEEK发现1例异位肾,2例孤立肾的患者并清楚显示其供血动脉[13-14]。在本研究中,发现NCE-MRA SLEEK不能显示4根副肾动脉,其原因为:(1) 4根副肾动脉全部起源于腹主动脉的远端,这样扫描过程中标记的血液从肾上极到达副肾动脉水平所花费的时间远远大于该标记的血液到达正常位置肾动脉水平所需要的时间,导致这些副肾动脉不能利用流入增强效应显示;(2)副肾动脉比正常肾动脉细而且流速比较慢,也不利于NCE-MRA SLEEK利用流入增强效应显示副肾动脉。因此,NCEMRA SLEEK存在对血流较慢的细小副肾动脉甚至迷走肾动脉显示不佳的局限性。在114根肾动脉中(60根左肾动脉,54根右肾动脉),NCE-MRA SLEEK显示了109根(57根左肾动脉,52根右肾动脉)。除了4根副肾动脉外,NCE-MRA SLEEK与CTA在显示肾动脉主干能力方面一致,说明NCEMRA SLEEK显示肾动脉主干的能力不亚于CTA,且脊柱和钙化斑块在NCE-MRA SLEEK显示为低信号,从而避免了它们对显示为高信号的肾动脉的干扰,因此NCE-MRA SLEEK能作为显示肾动脉和评估肾动脉病变的可靠的检查方法。在本研究中,发现NCE-MRA SLEEK在61根肾动脉分支的显示中优于CTA (P<0.05),可能与以下因素有关:(1) NCE-MRA SLEEK采用一个翻转脉冲抑制人体包括肾实质在内所有组织的信号,为清楚显示肾实质内肾动脉分支提供了低信号的背景,有利于流入增强表现为高信号的肾动脉显示;(2)在CTA中,由于对比剂到达肾动脉水平的时间受心率、呼吸等因素的影响[9],不同个体对比剂到达肾动脉水平的时间不一致,在实际扫描工作中很难把握精准扫描时间来清晰显示肾实质内肾动脉分支;(3) CTA由于动脉期肾实质本身的强化,这样必定会掩盖或者减弱肾实质内肾动脉分支的显示。相反,NCE-MRA SLEEK不需要使用对比剂、扫描中也无时间及动脉期的限制、可以多次采用不同的BSP TI时间(800 ms、1100 ms、1400 ms)进行反复扫描,从中选出一个显示肾动脉及其分支的最佳图像,可以有效避免血流速度不
同等个体差异而影响肾血管的显示。因此,NCEMRA SLEEK较CTA能更清楚地显示肾动脉分支,表明NCE-MRA SLEEK更有可能发现肾实质内肾动脉分支的血管病变,可以作为显示肾动脉和评估肾动脉病变的可靠检查方法。
表2 NCE-MRA SLEEK和CTA评估肾实质内肾动脉分支的比较Tab.2 Results of NCE-MRA SLEEK in comparison with CTA in displaying segment branches in renal parenchyma
表3 NCE-MRA SLEEK和CTA评估肾动脉狭窄程度的比较Tab.3 Results for renal artery stenosis (RAS) according to NCE-MRA SLEEK and CTA
表 4 NCE-MRA SLEEK和CTA诊断肾动脉狭窄程度的比较Tab.4 Comparison of NCE-MRA SLEEK and CTA in presenting degree of stenosis
在本研究中,28根肾动脉被NCE-MRA SLEEK诊断为RAS (CTA证实26根RAS;双侧5例,单侧16例),其中1根1级RAS在CTA上表现为正常,其原因可能与血液在肾动脉起始部突然发生少量湍流,NCE-MRA SLEEK不能采集到湍流血液的信号而导致信号丢失有关;2根肾动脉NCE-MRA SLEEK诊断为4级RAS,而CTA表现为FMD,其原因与FMD多处不同程度狭窄导致血液湍流的情况更加复杂,NCE-MRA SLEEK采集FMD病变处血液信号时全部丢失而显示为肾动脉的中断、闭塞;另外1根CTA显示为4级RAS的患者,NCEMRA SLEEK不能显示该肾动脉,其原因与肾动脉闭塞后血液流动明显变慢、甚至仅有少量血液流入,NCE-MRA SLEEK不能有效依赖血液的流入增强效应显示该肾动脉。除了上述4根肾动脉外,在评估肾动脉狭窄程度上NCE-MRA SLEEK和CTA具有很好的相关性(Rs=0.85,P<0.05),其结果与Mohrs等[6]报道一致,说明NCE-MRA SLEEK诊断RAS是可靠的,可以作为评估RAS的可靠检查方法。有文献报道NCE-MRA偶尔会夸大RAS的狭窄程度[15],其原因可能与肾动脉狭窄处血流信号部分丢失有关。在本研究中,笔者发现5根RAS的狭窄程度被NCE-MRA SLEEK夸大,包括1根2级RAS、2根3级RAS及2根4级RAS(CTA分别证实为1级RAS、2级RAS和3级RAS)。但是NCEMRA SLEEK诊断肾动脉狭窄的特异性不会受到影响,且RAS经常与高血压患者并存,因此笔者认为NCE-MRA SLEEK为高血压患者的肾动脉评估提供了一种非常好的无创检查方法,可以用NCEMRA SLEEK替代CTA作为无创性RAS筛查。
由于FMD病变处血液发生湍流比较复杂,故由于血流信号的丢失往往很难被NCE-MRA显示[8]。在本研究中,NCE-MRA SLEEK采用3个不同的BSP T1来分别显示肾动脉,从中选择最好的肾动脉的图像来判断是否存在FMD。NCE-MRA SLEEK显示4根FMD (CTA证实为6根FMD),另外2根被NCE-MRA SLEEK显示为肾动脉闭塞,NCEMRA SLEEK诊断FMD的准确率为66.7%。在6例FMD中,4例FMD获得了优秀或者良好的NCEMRASLEEK图像(优秀2例,良好2例),发现它们选择的BSP TI均为1400 ms,原因如下:虽然FMD血流复杂,但血液通过单位面积的净血流量减少,使血液流速相对变慢,这样需要一个相对较长的BSP TI来清楚显示FMD。
总之,NCE-MRA SLEEK是一种无创、相对经济且诊断可靠的检查方法。它能清楚地显示肾动脉主干及分支,能有效避免钙化斑块、脊柱骨,静脉系统的干扰,能准确评估肾动脉病变。同时,NCE-MRA SLEEK不需要使用对比剂、不受扫描期相的限制,显示肾动脉分支较好,不会引起肾源性纤维化,因此它比CTA更具有优势,可以替代CTA成为评估肾动脉病变的可靠检查方法。
[References]
[1] Tonelli M, Wiebe N, Culleton B, et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol, 2006, 17(7):2034-2047.
[2] Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med, 2004, 351(13): 1296-1305.
[3] Feng F, Zhao WY, Li ZH, et al. Comparison of three dimensional fast time-of-flightand standard time-of-flight MR angiography in intracranial arteries. Chin J Magn Reson Imaging, 2015, 6(6):422-425.冯飞, 赵武贻, 李中华, 等. 快速与标准三维时间飞跃法MRA在颅内动脉成像的对比研究. 磁共振成像, 2015, 6(6): 422-425.
[4] Liu S, Lin GY, Jiang J, et al. 2D-TOF MR and 3D-CE MRA scan method of intracranial venous sinus comparison study. Chin J Magn Reson Imaging, 2015, 6(3): 178-181.刘烁, 林光耀, 蒋杰, 等. 颅内静脉窦2D-TOFMR和3D-CEMRA扫描方法对比研究. 磁共振成像, 2015, 6(3): 178-181.
[5] Goetti R, Baumueller S, Alkadhi H, et al. Diagnostic performance of a non-contrast-enhanced magnetic resonance imaging protocol for potential living related kidney donors. Acad Radiol, 2013, 20(4):393-400.
[6] Mohrs OK, Petersen SE, Schulze T, et al. High-resolution 3D unenhanced ECG-gated respiratory-navigated MR angiography of the renal arteries: comparison with contrast-enhanced MR angiography.AJR Am J Roentgenol, 2010, 195(6): 1423-1428.
[7] Bultman EM, Klaers J, Johnson KM, et al. Non-contrast enhanced 3D SSFP MRA of the renal allograft vasculature: a comparison between radial linear combination and cartesian inflow-weighted acquisitions. Magn Reson Imaging, 2014, 32(2): 190-195.
[8] Tang H, Wang Z, Wang L, et al. Depiction of transplant renal vascular anatomy and complications: Unenhanced MR angiography by using spatial labeling with multiple inversion pulses. Radiology,2014, 271(3): 879-887.
[9] Pei YG, Li F, Shen H, et al. Optimal blood suppression inversion time based on breathing rates and heart rates to improve renal artery visibility in spatial labeling with multiple inversion pulses: A preliminary study. Korean J Radiol, 2016, 17(1): 69-78.
[10] Kawahara S, Isoda H, Ohno T, et al. Non-contrast-enhanced hepatic MR arteriography with balanced steady-state free-precession and time spatial labeling inversion pulse: optimization of the inversion time at 3.0 T. Acta Radiol Open, 2015, 4(12): 1-7.
[11] Kurata Y, Kido A, Fujimoto K, et al. Optimization of non-contrastenhanced MR angiography of the renal artery with three-dimensional balanced steady-state free-precession and time-spatial labeling inversion pulse (time-SLIP) at 3.0 T MRI, in relation to age and blood velocity. Abdominal Radiology (NY), 2016, 41(1): 119-126.
[12] Lanzman RS, Kropil P, Schmitt P, et al. Nonenhanced free-breathing ECG-gated steady-state free precession 3D MR angiography of the renal arteries: comparison between 1.5 T and 3.0 T. AJR Am J Roentgenol, 2010, 194(3): 794-798.
[13] Xu L, Rong Y, Wang W, et al. Percutaneous radiofrequency ablation with contrast-enhanced ultrasonography for solitary and sporadic renal cell carcinoma in patients with autosomal dominant polycystic kidney disease. World J Surg Oncol, 2016, 14(1): 193-198.
[14] Ramanathan S, Kumar D, Khanna M, et al. Multi-modality imaging review of congenital abnormalities of kidney and upper urinary tract.World J Radiol, 2016, 8(2): 132-141.
[15] Bley TA, Francois CJ, Schiebler ML, et al. Non-contrast-enhanced MRA of renal artery stenosis: validation against DSA in a porcine model. Eur Radiol, 2016, 26(2): 547-555.