世界天然气水合物研究开发现状和前景
史斗,郑军卫
高被引论文摘要
被引频次:191
世界天然气水合物研究开发现状和前景
史斗,郑军卫
回顾了世界天然气水合物研究历史,分析了世界气水合物研究现状和开发前景,评价了全球天然气水合物资源潜势,提出了我国对天然气水合物的研究策略。
天然气水合物;研究现状;资源评价;开发前景;研究策略
来源出版物:地球科学进展, 1999, 14(4): 330-339
被引频次:185
青海祁连山冻土区发现天然气水合物
祝有海,张永勤,文怀军,等
摘要:祁连山冻土区位于青藏高原北缘,多年冻土面积约10×104km2,具有良好的天然气水合物形成条件和找矿前景。2008—2009年间中国地质调查局在青海省天峻县木里煤田聚乎更矿区施工“祁连山冻土区天然气水合物科学钻探工程”,迄今共完成钻探试验井4口,总进尺2059.13 m,分别在DK-1、DK-2和DK-3钻井中钻获天然气水合物实物样品,取得了找矿工作的重大突破。天然气水合物产于冻土层之下,埋深133~396 m。水合物呈白色、乳白色晶体,点火能燃烧,红外热像仪测温后呈明显的低温异常,放进水里强烈冒泡,水合物分解后能不断冒出气泡和水滴,并残留下特征的蜂窝状构造。激光拉曼光谱仪检测呈现特征的水合物光谱曲线,测井曲线也具有较明显的高电阻率和高波速标志。祁连山天然气水合物具有冻土层薄、埋深浅、气体组分复杂、以煤层气成因为主等明显特征,是一种新类型水合物。这是我国冻土区首次钻获的天然气水合物实物样品,也是全球首次在中低纬度高山冻土区发现天然气水合物实物样品,具有重要的科学意义和经济意义。
关键词:天然气水合物;冻土;祁连山
来源出版物:地质学报, 2009, 83(11): 1762-1771被引频次:162
南海北部陆缘天然气水合物初探
姚伯初
摘要:根据天然气水合物存在的温度—压力条件,研究了南海北部的地球物理资料,发现有些地方在地震剖面上出现似海底反射BSR,而在另一些地方海底第一层沉积的层速度偏高(1.95~2.45 km/s),比一般海洋沉积高0.2~0.64 km/s。将这些地方海底第一层沉积底界面处的温度—压力参数投于甲烷形成天然气水合物的温度—压力图上,发现它们均出现于水合物存在之区域中。由此可见,南海北部陆缘可能存在天然气水合物矿藏。
关键词:水合物;温度;压力;似海底反射;南海北部
来源出版物:油田化学, 1997, 14(2): 190-196
被引频次:143
青藏高原冻土带天然气水合物的形成条件与分布预测
陈多福,王茂春,夏斌
摘要:冻土带是天然气水合物发育的两个重要地质环境之一。青藏高原平均海拔在4000 m以上,多年冻土面积约1.4 × 106km2。本文根据青藏高原冻土层厚度和地温梯度特征,运用天然气水合物的热力学稳定域预测方法,确定中低纬度高海拔区冻土带天然气水合物的产出特征。青藏高原多年冻土带热成因和生物成因天然气水合物形成的热力学相平衡反映,水合物顶界埋深约27~560 m,底界埋深约77~2070 m。初步计算表明,青藏高原冻土带水合物天然气资源约 1.2 × 1011~2.4 × 1014m3。在冻土层越厚、冻土层及冻土层之下沉积层的地温梯度越小的地区,最有利于天然气水合物的发育。气温的季节性变化对天然气水合物影响不大。在全球气温快速上升的背景下,青藏高原天然气水合物将处于失稳状态,天然气水合物顶界下降、底界上升,与冻土带的退化相似,分布区逐渐缩小,最终将完全消失。
关键词:天然气水合物;中低纬度高原冻土带;青藏高原
来源出版物:地球物理学报, 2005, 48(1):165-172
被引频次:138
南海神狐海域天然气水合物成藏系统初探
吴能友,张海啟,杨胜雄,等
摘要:天然气水合物成藏系统是一个非常复杂的系统,过去的有关研究不多。为此,根据天然气水合物成藏基本条件、浅表层沉积物孔隙水地球化学特征及其所反映的气源和天然气水合物分布特征,结合刚刚结束的南海北部天然气水合物首次实钻采样成果,初步探讨了我国南海北部陆坡神狐海域天然气水合物成藏系统。结果认为:研究区温度、压力和气体组分有利于天然气水合物形成;天然气水合物在空间尺度上不均匀分布,纵向上主要分布于天然气水合物稳定带底界以上一定深度范围内;形成天然气水合物的甲烷气体很可能来源于原地微生物成因甲烷;扩散型原地生物成因甲烷产生低甲烷通量,形成了具有明显不同的分布和饱和度特征的分散型天然气水合物系统。
关键词:南海北部;神狐海域;天然气水合物;气藏形成;机理;成藏系统;钻探;样品
来源出版物:天然气工业, 2007, 27(9): 1-6
被引频次:132
中国天然气水合物调查研究现状及其进展
张洪涛,张海启,祝有海
摘要:天然气水合物大致经历了实验室研究、管道堵塞及防治、资源调查与开发利用4个发展阶段,中国目前正处于资源调查阶段的早期。自1999年开始,中国先后开展了南海、东海、陆上冻土区和国际海底区域天然气水合物的调查研究,相继发现了一系列地质、地球物理和地球化学异常标志,并在南海北部神狐地区成功采到水合物实物样品,取得了找矿工作的重大突破,显示出良好的找矿前景,但目前仍存在着调查研究程度较低、技术装备比较落后等问题。随着国家对天然气水合物重视程度的加强,中国天然气水合物的调查研究进程将会将进一步加快,并在不久的将来过渡到试生产阶段和商业性生产阶段。
关键词:天然气水合物;资源;南海;冻土
来源出版物:中国地质, 2007, 34(6): 953-961
被引频次:130
南海天然气水合物的成矿远景
张光学,黄永样,祝有海,等
摘要:通过对南海的中新生代区域构造、中上新世沉积、近—现代地貌及地温条件的分析,结合ODP184航次钻探成果和水合物最新调查资料,探讨了南海水合物的成矿条件,认为具有良好的成矿地质构造环境;通过对南海陆坡深水区现有大量多道地震调查资料的重新判读,发现南海地区存在多处水合物的地震标志——BSR,以活动边缘笔架增生楔和非活动边缘西沙—东沙为例,重点解剖水合物的地震特征,建立其成藏模式,总结其成矿规律,预测水合物资源远景,为今后在该海域寻找水合物矿床、预测水合物资源远景起到抛砖引玉作用。
关键词:天然气水合物;成矿条件;成藏机制;南海
来源出版物:海洋地质与第四纪地质, 2002, 22(1):75-81
被引频次:120
南海的天然气水合物矿藏
姚伯初
摘要:讨论了南海的地形地貌特征,以及中新生代的构造运动历程;认识到中中新世之前,这里经历了一系列构造运动,但在中中新世之后,这里无构造运动,只是发生了区域沉降。由此认为南海应有丰富的天然气水合物矿藏,进而估算了南海天然气水合物的总资源量达643.5亿~772.2亿t油当量。
关键词:地形地貌;构造运动;天然气水合物;资源量;南海
来源出版物:热带海洋学报, 2001, 20(2): 20-28
被引频次:116
南海北部东沙海域天然气水合物的初步研究
宋海斌,耿建华,WANG How-King,等
摘要:利用地震、测井与地温资料综合分析了南海北部东沙海域可能存在的天然气水合物的分布特征。研究表明,在东沙海域地震剖面上出现似海底反射层、弱振幅带等天然气水合物分布标志,在声波测井曲线上呈现高速、速度倒转等天然气水合物存在特征。似海底反射层的深度与 1144站位,及平均地温梯度资料得出的稳定带厚度较吻合。1144站位与1148站位似海底反射层距海底较深,分别为654 m与475 m。在1144站位附近,弱振幅带的顶界可能代表含天然气水合物沉积层的顶界,约在450 m左右。
关键词:天然气水合物;南海北部;似海底反射层;弱振幅带;声波测井;温压条件
来源出版物:地球物理学报, 2001, 44(05): 687-695
被引频次:115
祁连山冻土区天然气水合物及其基本特征
祝有海,张永勤,文怀军,等
摘要:2008年11月5日,由中国地质科学院矿产资源研究所、勘探技术研究所和青海煤炭地质局105勘探队施工的“祁连山冻土区天然气水合物科学钻探工程”DK-1孔取得重大突破,成功钻获天然气水合物实物样品。这是我国冻土区首次钻获并检测出的天然气水合物实物样品,也是世界上第一次在中低纬度高原冻土区发现的天然气水合物,具有重要的科学、经济和环境意义。目前钻获的天然气水合物均产于冻土层之下,产出深度133~396 m,其层位属于中侏罗统江仓组。水合物以薄层状、片状、团块状赋存于粉砂岩、泥岩、油页岩的裂隙中,或以浸染状赋存于细粉砂岩的孔隙中。祁连山冻土区天然气水合物具有埋深浅、冻土层薄、气体组分复杂、以煤层气为主等特征,应是一种新类型水合物。
关键词:天然气水合物;冻土;祁连山
来源出版物:地球学报, 2010, 31(1): 7-16
被引频次:741
来源出版物:Paleoceanography, 1995, 10(6): 965-971
被引频次:569
Methane hydrate: A major reservoir of carbon in the shallow geosphere?
Kvenvolden, KA
Abstract:Methane hydrates are solids composed of rigid cages of water molecules that enclose methane. Sediment containing methane hydrates is found within specific pressure-temperature conditions that occur in regions of permafrost and beneath the sea in outer continental margins.Because methane hydrates are globally widespread and concentrate methane within the gas-hydrate structure, the potential amount of methane present in the shallow geosphere at subsurface depths of < ∼2000 m is very large.However, estimates of the amount are speculative and range over about three orders of magnitude, from 2×103to 4 × 106Gt (gigatons = 1015g) of carbon, depending on the assumptions made. The estimate I favor is ∼ 1 × 104Gt of carbon. The estimated amount of organic carbon in the methane-hydrate reservoir greatly exceeds that in many other reservoirs of the global carbon cycle — for example,the atmosphere (3.6 Gt); terrestrial biota (830 Gt);terrestrial soil, detritus and peat (1960 Gt); marine biota (3Gt); and marine dissolved materials (980 Gt). In fact, the amount of carbon may exceed that in all fossil fuel deposits (5 × 103Gt). Because methane hydrates contain so much methane and occur in the shallow geosphere, they are of interest as a potential resource of natural gas and as a possible source of atmospheric methane released by global warming. As a potential resource, methane hydrates pose both engineering and production problems. As a contributor to a changing global climate, destabilized methane hydrates,particularly those in shallow, nearshore regions of the Arctic Ocean, may have some effect, but this effect will probably be minimal, at least during the next 100 years.
来源出版物:Chemical Geology, 1988, 71(1-3): 41-51
被引频次:521
Dissociation pressures of gas hydrates formed by gas mixtures
Parrish, WR; Prausnitz, JM
Abstract:Dissociation pressure data for single gas-hydrate systems are reduced by use of the van der Waals-Platteeuw theory with the Kihara spherical-core potential function.Kihara parameters are reported for 15 hydrate-forming gases, and new values of the thermodynamic properties of empty hydrates (Structures I and II) are determined. The analysis is extended to mixtures of hydrate-forming and nonhydrate-forming gases. The good agreement obtained between calculated and observed dissociation pressures of hydrates formed by gas mixtures illustrates the usefulness of this statistical thermodynamic model for process design.
来源出版物:Environmental Science & Policy, 2012, 17:12-23
被引频次:500
Formation of gas hydrates in natural gas transmission lines
Hammerschmidt, EG
Abstract:Ommited.
来源出版物:Industrial & Engineering Chemistry, 1934,26(8): 851-855
被引频次:483
Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event
Hesselbo, SP; Grocke, DR; Jenkyns, HC; et al.
Abstract: In the Jurassic period, the Early Toarcian oceanic anoxic event (about 183 million years ago) is associated with exceptionally high rates of organic-carbon burial, high palaeotemperatures and significant mass extinction. Heavy carbon-isotope compositions in rocks and fossils of this age have been linked to the global burial of organic carbon, which is isotopically light. In contrast,examples of light carbon-isotope values from marine organic matter of Early Toarcian age have been explained principally in terms of localized upwelling of bottom water enriched in12C versus13C. Here, however, we report carbon-isotope analyses of fossil wood which demonstrate that isotopically light carbon dominated all the upper oceanic, biospheric and atmospheric carbon reservoirs, and that this occurred despite the enhanced burial of organic carbon. We propose that—as has been suggested for the Late Palaeocene thermal maximum,some 55 million years ago—the observed patterns were produced by voluminous and extremely rapid release of methane from gas hydrate contained in marine continental-margin sediments.
来源出版物:Nature, 2000, 406(6794): 392-395
被引频次:475
Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity
Collins, PLF
Abstract:During cooling of CO2-bearing fluid inclusions the clathrate compound carbon dioxide hydrate(CO2.5.75 H2O) freezes out prior to the freezing of the remaining aqueous solution to ice. When crystallized in aqueous solution, gas hydrates form pure compounds of the encaged species and H2O molecules and reject from the hydrate lattice any salts or ions in solution. Thus the residual aqueous solution, after clathration, is more saline than the original solution, and measurement of the salinity using depression of the fusion temperature of ice by salt will give an inaccurate estimate of the salinity of that solution. Although the formation of CO2hydrate in CO2-bearing fluid inclusions, or any gas hydrates in fluid inclusions, invalidates use of the depression of the fusion temperature of ice for estimating the salinity of the aqueous solution, the depression of the temperature of decomposition of the CO2hydrate in the presence of CO2liquid and CO2gas can be a useful measure of salinity,provided CH4and other gases are not present in the inclusion.
来源出版物:Economic Geology, 1979, 74(6): 1435-1444
被引频次:430
A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate
Dickens, GR; Castillo, MM; Walker, JCG
Abstract:Carbonate and organic matter deposited during the latest Paleocene thermal maximum is characterized by a remarkable –2.5‰ excursion in δ13C that occurred over ~104yr and returned to near initial values in an exponential pattern over ~2×105yr. It has been hypothesized that this excursion signifies transfer of 1.4 to 2.8 × 1018g of CH4from oceanic hydrates to the combined ocean-atmosphere inorganic carbon reservoir. A scenario with 1.12 × 1018g of CH4is numerically simulated here within the framework of the present-day global carbon cycle to test the plausibility of the hypothesis. We find that(1) the δ13C of the deep ocean, shallow ocean, and atmosphere decreases by –2.3‰ over 104yr and returns to initial values in an exponential pattern over ~2 × 105yr;(2) the depth of the lysocline shoals by up to 400 m over 104 yr, and this rise is most pronounced in one ocean region; and (3) global surface temperature increases by~2 °C over 104yr and returns to initial values over ~2 ×106yr. The first effect is quantitatively consistent with the geologic record; the latter two effects are qualitatively consistent with observations. Thus, significant CH4release from oceanic hydrates is a plausible explanation for observed carbon cycle perturbations during the thermal maximum. This conclusion is of broad interest because the flux of CH4invoked during the maximum is of similar magnitude to that released to the atmosphere from present-day anthropogenic CH4sources.
来源出版物:Geology, 1997, 25(3): 259-262
被引频次:381
Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises
Shipley, TH; Houston, MH; Buffler, RT ; et al.
Abstract:Anomalous reflections in marine seismic
reflection data from continental slopes are often correlated with the base of gas hydrated sedimentary rocks. Examination of University of Texas Marine Science Institute reflection data reveals the possible presence of such gas hydrates along the east coast of the United States, the western Gulf of Mexico, the coasts of northern Colombia and northern Panama, and along the Pacific side of Central America in areas extending from Panama to near Acapulco, Mexico. Suspected hydrates are present in water depths of 700 to 4400 m and extend from 100 to 1100 m subbottom. Geometric relations,reflection coefficients, reflection polarity, and pressuretemperature relations all support the identification of the anomalous reflections as the base of gas hydrated sediments. In most places, gas hydrate association is related to structural anomalies (anticlines, dipping strata), which may allow gas to concentrate and migrate updip into pressure and temperature conditions suitable for hydrate formation. The gas hydrate boundary can be used to estimate thermal gradients. In general, thermal gradients estimated from the gas hydrate phase boundary are higher than reported thermal gradients measured by conventional means.
来源出版物:AAPG Bulletin, 1979, 63(12): 2204-2213
被引频次:336
Biogeographical distribution and diversity of microbes inmethane hydrate-bearing deep marine sediments, on the Pacific Ocean Margin
Inagaki, F; Nunoura, T; Nakagawa, S; et al.
Abstract:The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes and their phylogenetic diversities in deeply buried marine sediments of the Pacific Ocean Margins. During the Ocean Drilling Program Legs 201 and 204, we obtained sediment cores from the Peru and Cascadia Margins that varied with respect to the presence of dissolved methane and methane hydrate. To examine differences in prokaryotic distribution patterns in sediments with or without methane hydrates, we studied > 2800clones possessing partial sequences (400–500 bp) of the 16S rRNA gene and 348 representative clone sequences(≈1 kbp) from the two geographically separated subseafloor environments. Archaea of the uncultivated Deep-Sea Archaeal Group were consistently the dominant phylotype in sediments associated with methane hydrate. Sediment cores lacking methane hydrates displayed few or no Deep-Sea Archaeal Group phylotypes. Bacterial communities in the methane hydrate- bearing sediments were dominated by members of the JS1 group, Planctomycetes, and Chloroflexi.Results from cluster and principal component analyses,which include previously reported data from the West and East Pacific Margins, suggest that, for these locations in the Pacific Ocean, prokaryotic communities from methane hydrate-bearing sediment cores are distinct from those in hydrate-free cores. The recognition of which microbial groups prevail under distinctive subseafloor environments is a significant step toward determining the role these communities play in Earth’s essential biogeochemical processes.
来源出版物:Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(8):2815-2820
被引频次:318
Kinetics of formation of methane and ethane gas hydrates
Englezos, P; Kalogerakis, N; Dholabhai, PD; et al.
Abstract:An intrinsic kinetic model with only one adjustable parameter is proposed for the formation of methane and ethane gas hydrates. Experimental formation data were obtained in a semi-batch stirred tank reactor.The experiments were conducted at four temperatures from 274 to 282 K and at pressures ranging from 0.636 to 8.903 MPa. The kinetic model is based on the crystallization theory, while the two-film theory model is adopted for the interfacial mass transfer. Experiments were performed at various stirring rates to define the kinetic regime. The study reveals that the formation rate is proportional to the difference in the fugacity of the dissolved gas and the three-phase equilibrium fugacity at the experimental temperature. This difference defines the driving force which incorporates the pressure effects. The gas consumption rate is also proportional to the second moment of the particle size distribution. The rate constants indicate a very weak temperature dependence.
来源出版物:Chemical Engineering Science, 1987,42(11): 2647-2658
Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene
Dickens, GR; Oneil, JR; Rea, DK; et al.
Isotopic records across the “Latest Paleocene Thermal Maximum” (LPTM) indicate that bottom water temperature increased by more than 4°C during a brief time interval (<104years) of the latest Paleocene (∼55.6 Ma).There also was a coeval −2 to −3‰ excursion in the δ13C of the ocean/atmosphere inorganic carbon reservoir. Given the large mass of this reservoir, a rapid δ13C shift of this magnitude is difficult to explain within the context of conventional hypotheses for changing the mean carbon isotope composition of the ocean and atmosphere. However,a direct consequence of warming bottom water temperature from 11 to 15°C over 104years would be a significant change in sediment thermal gradients and dissociation of oceanic CH4hydrate at locations with intermediate water depths. In terms of the present-day oceanic CH4hydrate reservoir, thermal dissociation of oceanic CH4hydrate during the LPTM could have released greater than 1.1 to 2.1 × 1018g of carbon with a δ13C of approximately −60‰.The release and subsequent oxidation of this amount of carbon is sufficient to explain a −2 to −3‰ excursion in δ13C across the LPTM. Fate of CH4in oceanic hydrates must be considered in developing models of the climatic and paleoceanographic regimes that operated during the LPTM.