CeO2/Al2O3催化剂的制备表征及在污水处理中的应用

2017-01-17 15:15张兰河郭映辉张海丰贾艳萍王旭明
农业工程学报 2017年1期
关键词:香豆素表面积去除率

张兰河,周 靖,郭映辉,张海丰,贾艳萍,王旭明

(1. 东北电力大学化学工程学院,吉林 132012;2. 北京农业生物技术研究中心,北京 100089)

·农业生物环境与能源工程·

CeO2/Al2O3催化剂的制备表征及在污水处理中的应用

张兰河1,周 靖1,郭映辉1,张海丰1,贾艳萍1,王旭明2

(1. 东北电力大学化学工程学院,吉林 132012;2. 北京农业生物技术研究中心,北京 100089)

为了提高臭氧催化氧化污水深度处理的效率,分别利用CeO2和Al2O3作为活性组分和载体制备掺杂型CeO2/Al2O3催化剂,通过X-射线衍射、透射电镜、N2吸附脱附曲线、X射线光电子能谱等方法对催化剂性能进行表征,考察CeO2/Al2O3催化活性的变化,分析催化臭氧化去除有机物的作用机制。结果表明,制备的掺杂型CeO2/Al2O3催化剂具有较大的比表面积、孔容和孔径,分别达到125 m2/g、0.242 2 cm3/g和7.777 8 nm。催化剂的活性组分主要为高度结晶化立方萤石结构的CeO2,煅烧并未改变CeO2的结构晶型。当进水化学需氧量(Chemical oxygen demand)为70~80 mg/L,催化剂用量为110 g/L,臭氧浓度为18 g/m3,pH值为7.8时,COD去除率最高42.8%。较高的催化效率归功于活性物质CeO2中同时具有 C e3+和 C e4+,加速了臭氧生成更多的强氧化性·OH,催化剂的多孔结构为有机物的降解提供了充足的反应空间。催化剂使用寿命长,当催化剂重复使用5次后,COD去除率仍保持40%以上。

污水;催化剂;臭氧;CeO2/Al2O3;催化臭氧化;污水深度处理

0 引 言

臭氧(O3)具有强氧化性和环境友好性,在污水深度处理中被广泛应用[1-2]。然而,单独使用O3氧化有机物存在耗能高、选择性强、易生成小分子副产物等问题[3-5]。催化臭氧化技术利用催化剂促进臭氧分解形成氧化性更强的羟基自由基(·OH),可以实现对有机物的彻底氧化[6]。催化臭氧化技术分为均相催化臭氧化和多相催化臭氧化,均相催化臭氧化技术易导致催化剂在水体中的流失[7]。多相催化臭氧化利用固体作为催化剂,可以克服均相催化臭氧化的缺点,催化剂易于回收再利用,不会造成二次污染[8]。Al2O3具有较大的比表面积和良好的催化性能,被广泛用作催化剂的载体,Al2O3与水交界面发生吸附和催化氧化,O3的分解发生在Al2O3表面,O3和Al2O3表面·OH的共同作用促进了难降解有机物的去除[9-12]。稀土元素Ce是镧系金属中自然丰度最高的一种元素,具有特殊的4f轨道结构和较高的储氧和释氧能力,经高温还原后,易形成氧空位;CeO2具有较强的氧化还原能力,可以加快 O3分子分解为·OH,加速有机物的矿化[13-14]。一些学者采用浸渍法、水热法和溶胶凝胶法制备了CeO2-MnO2、CeO2/AC、CeO2-ZrO2等复合催化剂,这些制备方法利用高分子有机聚合物作为模板,反应温度较高,操作条件严格,且制备的催化剂均用于单一成分有机物的催化降解[15-17]。目前,亟需开发制备方法简单、催化效率高、使用寿命长的催化剂,深入研究催化剂催化降解含复杂组分有机污染物实际废水的作用机制。

本研究分别利用CeO2和Al2O3作为活性组分和载体,通过掺杂法制备掺杂型CeO2/Al2O3催化剂,利用X-射线衍射(X ray diffraction,XRD)、透射电镜(transmission electron microscope,TEM)、N2吸附脱附和X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)等方法揭示催化剂的结构和性能,并以实际化工污水处理厂二级生化处理出水为研究对象,考察掺杂型CeO2/Al2O3催化臭氧化体系对实际污水的深度处理效果,分析CeO2/Al2O3的催化性能和使用寿命,探讨催化臭氧化体系去除有机物的作用机制,为提高催化剂的催化效率和工业应用提供理论依据。

1 试验材料和方法

1.1 试验装置

试验装置主要由气源、臭氧发生器、催化臭氧化反应柱和尾气吸收装置4部分组成,如图1所示。利用纯氧作为气源,通过氧气瓶将其引入臭氧发生器(中德安思罗斯公司生产的COM-AD-01)产生O3。由气体流量计控制O3流量,O3经气室、砂芯曝气板均匀分布于反应器内,剩余尾气由2%的KI溶液吸收。反应器采用有机玻璃制成,高75 cm,直径6 cm,有效容积为1.5 L。为了分析和采样方便,反应器上部进水,下部出水,设 3 个取样口,催化剂填充容积为0.15 L。采用吉林市某化工污水处理厂二沉池出水作为试验装置的进水水源,进水化学需氧量(chemical oxygen demand,COD)为70~80 mg/L,pH值为7.8。

图1 催化臭氧化反应装置图Fig.1 Schematic diagram of catalytic ozonation setup

1.2 催化剂的制备

将Al(OH)3粉末与CeO2按9.4:0.6比例混合,采用铝溶胶作为助剂,Ce(NO3)3·6H2O作为强化剂,制成粒径为(3±1)mm球形催化剂。室温风干后利用110 ℃鼓风干燥箱烘干,然后将干燥后的催化剂在马弗炉中以100 ℃/h速度升温至550 ℃,保温4 h后下降至室温,制成掺杂型CeO2/Al2O3催化剂,催化剂的制备流程如图2所示。采用同样的方法,单独使用Al(OH)3和铝溶胶,制备Al2O3催化剂。

1.3 主要分析项目及检测方法

COD测定采用重铬酸钾法(GB 11914-89)。pH值测定采用pH计(PSH-3C型,上海雷磁仪器厂,中国)。采用日本岛津生产的X-射线衍射仪(XRD,Maxima X XRD-7000(S/L))对粉末状样品进行物相分析,管电压为40 kV,管电流为30 mA,其中X射线源为Cu靶的Kα射线(λ=0.154 056 nm),扫描范围为10°~80°。利用美国FEI公司生产的TECNAI G2F20S型双床,高分辨透射电镜(TEM,工作电压为200 kV)分析样品的粒径和形貌。采用N2吸附脱附法,利用美国Micro-meritics公司生产的ASAP-2020M全自动比表面积和微孔分析仪测定催化剂的比表面积、孔容和孔径。催化剂表面元素化合价通过XPS(Thermon ESCALAB 250)分析仪进行测试分析。催化臭氧化过程中产生的·OH通过香豆素荧光探测技术检测[18],其中以香豆素作为·OH的捕获剂,生成具有强荧光特性的7-羟基香豆素。7-羟基香豆素的荧光浓度采用日本岛津公司生产的RF-5301PC分子荧光光谱仪测定,7-羟基香豆素的最大吸收激发波长和发射波长分别为325和452 nm,狭缝宽度设为5 nm。

图2 催化剂制备流程Fig.2 Flow chart of catalyst preparation

2 结果与分析

2.1 催化剂的表征

通过TEM、N2吸附脱附和XRD等手段分析催化剂结构和催化特性,结果如图3所示。经烘焙煅烧后的Al2O3与CeO2/Al2O3催化剂均呈白色球状,粒径为(3±1)mm(图3a,b)。TEM分析发现,单独Al2O3焙烧晶体呈现10~20 nm的长方体结构(图3c),具有明显的分界线,CeO2晶体为不规则球形颗粒,直径为100 nm左右。添加CeO2后,Al2O3分散度提高(图3d)。

图3 Al2O3和CeO2/Al2O3催化剂的表征Fig.3 Characteristics of Al2O3and CeO2/Al2O3catalysts

为了分析掺杂CeO2后Al2O3的比表面积、孔容和孔径的变化,分别对Al2O3和CeO2/Al2O3进行N2吸附脱附试验(图3e,f),可以发现Al2O3和CeO2/Al2O3均属于Ⅳ-型等温线方程(IUPAC system),低分压区吸附曲线增长迅速,微孔发生填充。随着分压的增加,发生毛细凝聚现象,当相对压力P/P0=0.4~0.9时,N2的吸附量和滞后线增加,出现H1型滞留环,这2种催化剂均属于介孔结构。催化剂孔结构的均匀性决定滞后环的宽窄[19],与Al2O3相比,掺杂型CeO2/Al2O3分散度高(图3d),在P/P0=0.5~0.7附近,掺杂型CeO2/Al2O3催化剂滞后环较窄。

利用XRD分析Al2O3与CeO2/Al2O3催化剂的表面结构。从图3g~h可以看出,CeO2/Al2O3催化剂在2θ=66.983°附近存在Al2O3的特征衍射峰,这说明Al(OH)3经煅烧后生成Al2O3,保持了Al2O3的骨架结构。查键等[20]将CeO2/Al2O3催化剂经500 ℃煅烧后,也在2θ=67°观察到Al2O3的特征衍射峰,这与本文研究结果相一致。本研究制备的CeO2/Al2O3催化剂在2θ=28.549°、33.077°、47.498°和56.32°处有极强的衍射峰(图3h),与CeO2晶体相的特征峰(JCPDS No.04-0593){(111),(200),(220),(222)}相一致,这证明制备的催化剂活性组分主要为高度结晶化立方萤石结构的 C eO2,煅烧并未改变 C eO2的结构晶型。此外,在XRD谱图上并未发现类似于CeAlO3相的衍射峰,CeO2与Al2O3之间无新物质生成,制备的CeO2催化剂为纳米立方体结构。何丽芳等[21]研究了利用不同形貌纳米棒CeO2、纳米颗粒CeO2和纳米立方体CeO2制备的催化剂催化臭氧化甲苯的效率,发现不同形貌的CeO2对甲苯的氧化分解无明显影响。

Al2O3和CeO2/Al2O3比表面积、孔容和孔径的大小,如表1所示。负载后的Al2O3比表面积减少,孔容和孔径增加,这主要由于:1)煅烧过程中一些微孔坍塌而形成介孔;2)CeO2的加入占据Al2O3的部分表面积。金明善等[22]将CeO2分别负载在Al2O3和TiO2载体上发现,CeO2/Al2O3比CeO2/TiO2具有更大的比表面积,Al2O3更适合用于催化剂的载体。

表1 催化剂的结构特征Table 1 Structure characteristics of Al2O3and CeO2/Al2O3catalysts

2.2 催化臭氧化有机物的去除效果

试验所用废水取自某化工污水处理厂二级生化处理出水,成分复杂,COD为70~80 mg/L。在进水COD为73 mg/L,温度为293 K,催化剂用量为110 g/L,O3投加量为18 mg/m3,pH值为7.8的条件下,O3、Al2O3+O3和CeO2/Al2O3+O3去除有机物的效果,如图4a所示。

随着反应时间的增加,COD去除率提高,不同体系去除COD的趋势:Al2O3吸附<CeO2/Al2O3吸附<O3<Al2O3+O3<CeO2/Al2O3+O3,当反应时间为80 min时,COD去除率分别为3.7%、5.6%、15.6%、22.1%和42.8%。Al2O3和CeO2/Al2O3吸附体系中,有机物吸附量在3%~6%之间;催化臭氧化体系,COD去除率高于单独O3体系。掺杂了CeO2的催化剂比单独Al2O3催化剂的催化效率高20.7%,该催化剂中主要的活性物质为CeO2,掺杂的金属氧化物为有机物和O3的反应提供了反应空间,O3在催化剂上被吸附后产生了氧化性更强的·OH,去除有机物的反应由直接臭氧化为主转变为间接臭氧化为主,CeO2/Al2O3催化性能更高,催化剂表面的活性位点增加。Beltrán等[23]利用 T iO2/Al2O3催化臭氧化降解草酸时也发现,TiO2/Al2O3催化剂对草酸去除率比Al2O3催化剂高40%。

图4 不同运行条件下化学需氧量(COD)去除率的变化Fig.4 Changes of removal efficiency of chemical oxygen demand(COD) under different operation conditions

O2-·是O3发生链式分解生成·OH的重要引发物质[24]。磷酸盐和叔丁醇都可作为自由基抑制剂,二者对自由基的抑制能力各不相同。采用CeO2/Al2O3作为催化剂的催化臭氧化体系中加入磷酸盐(3 g/L)和叔丁醇(3 g/L)后,COD明显降低,如图4b所示;当加入磷酸盐后,COD去除率受到明显抑制,这由于具有Lewis位点的磷酸根与Al2O3表面的·OH发生取代反应,磷酸离子与Al3+之间具有较高的亲和力[25],利用Al2O3表面羟基吸附作用去除有机物的能力受到限制。此外,叔丁醇的加入阻碍了有机污染物的降解,反应80 min后,COD去除率由原来的40.80%下降至12.89%。由此可见,·OH在非均相催化臭氧化过程中起到关键作用。虽然·OH的氧化作用被抑制,但是仍有小部分有机物被去除,这一方面由于O3对有机物直接进行了氧化,另一方面由于Al2O3的多孔结构也吸附了一部分有机物。当单独臭氧化体系加入叔丁醇后,COD去除率保持稳定,这说明无催化剂时O3通过直接氧化去除水中有机物。

为了考察水力冲刷后催化剂活性位点的变化,进行催化剂重复使用试验(图4c)。随着使用次数的增加,有机污染物去除效果稍有下降。这主要由于:1)曝气过程中污水、O3、催化剂相互接触或发生摩擦,引起反应物分子的脱附和催化剂活性组分的流失;2)有机污染物降解过程中产生的中间物质在催化剂表面或孔道内沉积,掩盖或占据了催化剂的活性中心,造成某些催化剂或催化剂的某些部位失活。本研究制备的CeO2/Al2O3催化剂重复使用5次后(反应降解80 min),COD去除率仍高于40%,催化臭氧化降解有机污染物具有较好的稳定性。

2.3 催化臭氧化有机物的作用机制

与单独 A l2O3臭氧化体系相比,掺杂型 C eO2/Al2O3催化臭氧化体系的有机物去除率明显提高,还原性催化剂(Mered)表面更易产生·OH[26]。如图5a所示,Ce3+被氧化为Ce4+,Mered转变为氧化性催化剂(Meox),Meox吸附有机酸(HA)发生电子转移,Meox又被还原为Mered-A·。董玉明等[27]利用 α -FeOOH作为催化剂催化臭氧化降解苯酚时发现,较高的氧化效率归功于O3与氧化铁表面·OH的共同作用。Yang等[28]采用MnO2/Al2O3催化臭氧化制药废水,也提出了相似的氧化过程。有机自由基A·易在催化剂上被脱附,随后被O3或·OH氧化,最终释放至水体。本研究通过对比试验发现,CeO2/Al2O3+O3体系去除COD的效果最佳,主要因为该过程包含氧化过程。

为了分析催化臭氧化过程中·OH浓度的变化,利用香豆素荧光探测技术捕捉催化氧化过程中产生的·OH,结果如图5b所示。单独O3体系产生的·OH浓度很低,以直接氧化为主;利用CeO2/Al2O3作为催化剂的催化臭氧化体系,产生大量的·OH,·OH氧化起到主导作用。催化剂的加入促进了臭氧体系中·OH的生成,加快有机物的降解。但是,反应器运行30 min后,·OH浓度开始下降,这可能有2方面的原因:1)随着反应的进行,7-羟基香豆素被体系内剩余的 O3氧化,导致荧光强度减弱;2)形成了7-羟基香豆素的同分异构体(如5-羟基香豆素、6-羟基香豆素、8-羟基香豆素),使被检测到的·OH的浓度降低[29-30]。

通过XPS(X射线光电子能谱)分析CeO2/Al2O3中各元素化合价的变化,结果如图6所示。谱图6a表明,CeO2/Al2O3催化剂包含C、Ce、O、Al 4种元素,其中C来自空气中的碳氢化合物[31]。谱图6b表明,当结合能为528.7、531.3和532.7 eV时出现氧信号,528.7 eV处的结合能主要由金属氧化物中的晶格氧产生,531.3 eV处的结合能归因于化学吸附氧和弱的氧自由基,532.8 eV 处的结合能主要是·OH的氧或吸附水中的氧而产生。Al 2p高分辨能谱图6c表明,仅在73.8 eV处出现结合能(Al2O3标准结合能为73.7 eV),这说明Al(OH)3经煅烧后仅生成Al2O3,且与CeO2未发生反应。图6d为Ce的高分辨能谱,Ce为4f族过渡金属,受到激发而发射3d电子,由于自旋轨道相互作用对结合能产生影响(3d 3/2和3d 5/2),当配位体O(2p)向Ce(4f)传送电荷时也会造成多电子激发,一般认为884.1和900.0 eV 处为典型的Ce(Ⅳ)2p 5/2和2p 3/2,其自旋轨道分裂能为15.9 eV(这与Vindigni等[32]的研究结果相一致)。此外,通过谱图还发现Ce(Ⅲ)的特征峰(即904.3和916.8 eV),表明该催化剂可在三价与四价间转换。

图5 CeO2催化臭氧氧化机理及不同体系·OH浓度的变化Fig.5 Mechanism of CeO2catalytic ozonation and changes of ·OH concentration under different systems

图6 CeO2的XPS能谱图Fig.6 XPS spectrum of CeO2

3 结 论

采用多相催化臭氧化污水深度处理技术,具有有机物去除率高、无二次污染、催化剂易回收等优点,催化剂的性能对·OH的产生起到关键作用。本研究利用掺杂法制备的CeO2/Al2O3催化剂具有较大的比表面积、孔容和孔径,分别达到125 m2/g、0.242 2 cm3/g和7.777 8 nm,其活性组分主要是高度结晶化立方萤石结构的CeO2。

通过O3、Al2O3+O3和CeO2/Al2O3+O3三组工艺对污水深度处理,COD去除率均较高。当进水COD浓度为70~80 mg/L,O3流量为18 g/m3,催化剂投加量为110 g/L,pH值为7.8时,CeO2/Al2O3+O3催化体系处理效果最好,COD去除率为42.8%的强氧化性·OH,催化剂的多孔结构为有机物的降解提供了充分的反应空间。

制备的CeO2/Al2O3催化剂具有较强的稳定性,在连续利用5次后,催化效率仍高于40%,表明掺杂型催化剂具有良好的应用前景。

[1] Huang C P,Dong C D,Tang Z H. Advanced chemical oxidation:Its present role and potential future in hazardous waste treatment[J]. Waste Management,1993,57(13):361-377.

[2] Chang Chiachi,Chiu Chunyu,Chang Chingyuan. Combined photolysis and catalytic ozonation of dimethyl phthalate in a high-gravity rotating packed bed[J]. Journal of Hazardous Materials,2009,161(1):287-293.

[3] Gunten U V. Ozonation of drinking water:Part I. Oxidation kinetics and product formation[J]. Water Research,2003,37(7):1443-1467.

[4] Sui Minghao,Xing Sichu,Sheng Li. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst[J]. Journal of Hazardous Materials,2012,227/228(227/228):227-236.

[5] Huang Haibao,Ye Xingguo,Huang Wenjun,et al. Ozonecatalytic oxidation of gaseous benzene over MnO2/ZSM-5 at ambient temperature:Catalytic deactivation and its suppression[J]. Chemical Engineering Journal,2014,264(3):24-31.

[6] Nawrocki J,Kasprzyk-hordern B. The efficiency and mechanisms of catalytic ozonation[J]. Applied Catalysis B:Environmental,2010,99(1):27-42.

[7] Huang Yuanxing,Cui Chenchen,Zhang Daofang,et al. Heterogeneous catalytic ozonation of dibutyl phthalate in aqueous solution in the presence of iron-loaded activated carbon[J]. Chemosphere,2014,119(3):295-301.

[8] 潘璐阳,王树涛,张兰河,等. 掺杂型纳米MnO2/Al2O3催化剂的制备及催化臭氧化处理驱油污水二级出水[J].硅酸盐通报,2015,34(8):2260-2266. Pan Luyang,Wang Shutao,Zhang Lanhe,et al. Preparation of doped nano-MnO2/Al2O3catalyst and catalytic ozonation of secondary effluent of oil extraction wastewater for advanced treatment[J]. Bulletin of the Chinese Ceramic Society,2015,34(8):2260-2266.(in Chinese with English abstract)

[9] Ernst M,Lurot F,Christophe J. Catalytic ozonation of refractory organic model compounds in aqueous solution by aluminum oxide[J]. Applied Catalysis B:Environmental,2004,47(1):15-25.

[10] Hordern K. Chemistry of alumina reactions in aqueous solution and its application in water treatment[J]. Advances in Colloid and Interface Science,2004,110(1):19-48.

[11] Cooper C,Burch R. An investigation of catalytic ozonation for the oxidation of halocarbons in drinking water preparation[J]. Water Research,1999,33(18):3695-3700.

[12] Lim H,Lee J,Jin S,et al. Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica[J]. Chemical Communications,2006,4(4):463-465.

[13] 沈良,吴铭. CeO2-TiO2复合催化剂催化臭氧化丁二酸性能的研究[J]. 广东化工,2013,40(9):1-2. Shen Liang,Wu Ming. Preparation of CeO2-TiO2and its activity in catalytic ozonation[J]. Guangdong Chemical Industry,2013,40(9):1-2.(in Chinese with English abstract)

[14] 詹望成,郭耘,龚学庆,等. 二氧化铈表面氧的活化及对氧化反应的催化作用[J]. 中国科学:化学,2012,42(4):433-445. Zhan Wangcheng,Guo Yun,Gong Xueqing,et al. Ceria surface activation of oxygen and catalyst of oxidation reaction[J]. Scientia Sinica Chimica,2012,42(4):433-445.(in Chinese with English abstract)

[15] Zahra J,Jafar S. Ozonation of oxalic acid with an effective catalyst based on mesoporous MCM-41 supported manganese and cerium oxides[J]. Journal of Water Process Engineering,2016,12(1):127-134.

[16] Dai Qizhou,Wang Jiayu,Chen Jun,et al. Ozonation catalyzed by cerium supported on activated carbon for the degradation of typical pharmaceutical wastewater[J]. Separation and Purification Technology,2014,127(127):112-120.

[17] 杨志柏,林培琰,肖莉,等. 改进的溶胶-凝胶法制备CeO2-ZrO2固溶体及其物性表征[J]. 功能材料,2000,31(6):657-659. Yang Zhibai,Lin Peiyan,Xiao Li,et al. CeO2-ZrO2solid solutions prepared by modified sol-gel method and their characteristics[J]. Journal of Functional Materials,2000,31(6):657-659.(in Chinese with English abstract)

[18] Czili H,Horváth A. Applicability of coumarin for detecting and measuring hydroxyl radicals generated by photoexcitation of TiO2nanoparticles[J]. Applied Catalysis B:Environmental,2008,81(3):295-302.

[19] Zhao Hui,Dong Yuming,Jiang Pingping,et al. ZnAl2O4as a novel high-surface-area ozonation catalyst:One-step green synthesis,catalytic performance and mechanism[J]. Chemical Engineering Journal,2015,260(1):623-630.

[20] 查键,周宏仓,何都良,等. CuO(-CeO2)/Al2O3催化剂对萘催化氧化性能研究[J]. 环境科学,2014,35(10):3984-3990. Cha Jian,Zhou Hongcang,He Duliang,et al. Catalytic degradation of naphthalene by CuO(-CeO2)/Al2O3[J]. Environmental Science,2014,35(10):3984-3990.(in Chinese with English abstract)

[21] 何丽芳,廖银念,陈礼敏,等. 纳米CeO2催化氧化甲苯的形貌效应研究[J]. 环境科学学报,2013,33(9):2412-2421. He Lifang,Liao Yinnian,Chen Limin,et al. Shape effect of ceria nanocrystals with various morphologies on toluene catalytic oxidation[J]. Acta Scientiae Circumstantiae,2013,33(9):2412-2421.(in Chinese with English abstract)

[22] 金明善,徐秀峰,翁永根,等. CeO2在Al2O3及TiO2载体上的分散[J]. 烟台大学学报,2003,16(1):49-53. Jin Mingshan,Xu Xiufeng,Weng Yonggen,et al. Dispersion of CeO2on Al2O3and TiO2Supports[J]. Journal of YantaiUniversity,2003,16(1):49-53.(in Chinese with English abstract)

[23] Beltan F J,Rivas F J,Ramon M E. A TiO2/Al2O3catalyst to improve the ozonation of oxalic acid in water[J]. Applied Catalysis B:Environmental,2004,47(2):101-109.

[24] Bai Zhiyong,Yang Qi,Wang Jianlong. Catalytic ozonation of sulfamethazine using Ce0.1Fe0.9OOH as catalyst:Mineralization and catalytic mechanisms[J]. Chemical Engineering Journal,2016,300(9):169-176.

[25] Akhter J,Saidins N A,Aris A. Combined adsorption and catalytic ozonation for removal of sulfamethoxazole using Fe2O3/CeO2loaded activated carbon[J]. Chemical Engineering Journal,2011,170(170):136-144.

[26] Kannadasan N,Shannugamn N,Cholan S,et al. The effect of Ce4+incorporation on structural,morphological and photocatalytic characters of ZnO nanoparticles[J]. Materials Characterization,2014,97(1):37-46.

[27] 董玉明,蒋平平,张爱民. 介孔结构的α-FeOOH对苯酚的催化臭氧化降解[J]. 无机化学学报,2009,25(9):1595-1600. Dong Yuming,Jiang Pingping,Zhang Aimin. Catalytic ozonation degradation of phenol in water by mesoporous α-FeOOH[J]. Chinese Journal of Inorganic Chemistry,2009,25(9):1595-1600.(in Chinese with English abstract)

[28] Yang Li,Hu Chun,Nie Yulun,et al. Catalytic ozonation of selected pharmaceuticals over mesoporous alumina-supported mangaese oxide[J]. Environmental Science and Technology,2009,43(7):2525-2529.

[29] Louit G,Foley S,Cabillic J,et al. The reaction of coumarin with OH radical revisited:Hydroxylation product analysis determined by fluorescence and chromatography[J]. Radiation Physics and Chemistry,2005,72(2):119-124.

[30] Li Zaixing,Zhao Junna,Zhong Weizhang,et al. Efficiency and kinetics of catalytic ozonation of acid red B over Cu-Mn/γ-Al2O3catalysts[J]. Ozone:Science &Engineering,2014,37(3):287-293.

[31] Xu Bingbing,Qi Fei,Sun Dezhi,et al. Cerium doped red mud catalytic ozonation for bezafibrate degradation in wastewater:Efficiency,intermediates,and toxicity[J]. Chemosphere,2016,146(1):22-31.

[32] Vindigni F,Manzoli M,Damin A,et al. Surface and inner defects in Au/CeO2WGS catalysts:Relation between Raman properties,reactivity and morphology[J]. Chemistry-A European Journal,2011,17(16):4356-4361.

Preparation and characterization of CeO2/Al2O3and its application on advanced treatment of wastewater

Zhang Lanhe1,Zhou Jing1,Guo Yinghui1,Zhang Haifeng1,Jia Yanping1,Wang Xuming2
(1. School of Chemical Engineering,Northeast Electric Power University,Jilin 132012,China;2. Beijing Agro-Biotechnology Research Center,Beijing 100089,China)

Ozone has been widely applied in the advanced wastewater treatment due to its high oxidation ability and environmental-friendly characteristics. However,the sole application of ozone in the removal of organic pollutants was limited by the problems such as large energy consumption,high selectivity and the tendency of the production of small molecular byproducts. By the application of catalyst,catalytic ozonation technology could promote the decomposition of ozone and produce hydroxyl radicals(·OH) with higher oxidation ability,which would make the thorough oxidation of organics possible. Compound catalysts such as CeO2-CuO2/Al2O3,CeO2/AC and CeO2-ZrO2had been prepared by immersion method,hydro-thermal method and sol-gel method in the previous researches. These methods applied macromolecular organic polymers as the templates,which required high reaction temperature and strict operational conditions. Meanwhile,the application of these prepared catalysts was directed against the catalysis and decomposition of single organic pollutants. The rare earth element Cerium(Ce) is a kind of element with the highest natural abundance among lanthanide series metals. CeO2has a strong redox ability and can speed up the decomposition of the ozone molecules and generate reactive free radicals ·OH. Due to its large specific surface area and good catalytic performance,Al2O3has been widely adopted as an ideal carrier for catalyst. To improve the catalysis and oxidation performances of the ozonation system in the advanced treatment of wastewater,the doped CeO2/Al2O3catalyst was prepared by using CeO2and Al2O3as active component and carrier,respectively. The catalyst was characterized by X-ray diffraction(XRD),transmission electron microscope(TEM),nitrogen adsorption/ desorption isotherms and X-ray photoelectron spectroscopy(XPS). The performance of the CeO2/Al2O3catalytic ozonation system for the advanced wastewater treatment was investigated by applying the secondary effluent from a real chemical wastewater treatment plant. The action mechanisms of the catalytic ozonation for the removal of organics were also analyzed. The results showed that the main active component of the catalyst was highly crystallized CeO2with cubic fluorite structure and this structure remained after incineration processing. The dosage of CeO2enhanced the d2ispersibility of Al2O3and increased th3e pore volume and diameter,which resulted in a high specific surface area of 125 m/g,a huge pore volume of 0.242 2 cm/g and a pore diameter of 7.777 8 nm. The highest removal efficiency of chemical oxygen demand(COD)(42.8%) was obtained under the3following conditions:influent COD concentration of 70-80 mg/L,catalyst dose of 110 g/L,ozone concentration of 18 g/m and pH value of 7.8,respectively. The removal efficiencies of COD remained higher than 40% after 5 repeated uses,which indicated that the catalyst was stable and could serve a relatively longer time. The coexistences of Ce(Ⅲ) and Ce(Ⅳ) in the CeO2speeded up the decomposition of ozone and more ·OH with higher oxidation ability were generated. The predominant reaction contributed to the removal of organics thus changed from direct ozone oxidation to ·OH oxidation. The results obtained in the present study demonstrated that the CeO2/Al2O3catalyst had excellent catalytic characteristics and the catalytic ozonation system was promising in the advanced treatment of wastewater.

wastewater;catalysts;ozone;CeO2/Al2O3;catalytic ozonation;wastewater advanced treatment

10.11975/j.issn.1002-6819.2017.01.030

X703

A

1002-6819(2017)-01-0219-06

张兰河,周 靖,郭映辉,张海丰,贾艳萍,王旭明. CeO2/Al2O3催化剂的制备表征及在污水处理中的应用[J]. 农业工程学报,2017,33(1):219-224.

10.11975/j.issn.1002-6819.2017.01.030 http://www.tcsae.org

Zhang Lanhe,Zhou Jing,Guo Yinghui,Zhang Haifeng,Jia Yanping,Wang Xuming. Preparation and characterization of CeO2/Al2O3and its application on advanced treatment of wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(1):219-224.(in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.01.030 http://www.tcsae.org

2016-06-20

2016-11-11

吉林省科技发展计划项目(20150519020JH,20160101295JC)

张兰河,男,博士,教授,主要从事水处理理论和技术的研究。吉林 东北电力大学化学工程学院,132012。Email:zhanglanhe@163.com

猜你喜欢
香豆素表面积去除率
A2/O工艺处理污水的效果分析
基于混凝沉淀法的某磷矿反浮选回水中Ca2+及Mg2+处理
巧求表面积
求正方体的表面积
1-[(2-甲氧基-4-乙氧基)-苯基]-3-(3-(4-氧香豆素基)苯基)硫脲的合成
基于遗传BP神经网络的内圆磨削ZTA陶瓷材料去除率预测
枳中异戊烯基化的黄酮及香豆素类成分
GPR35受体香豆素类激动剂三维定量构效关系研究
香豆素类化合物的抑菌活性研究
表面积是多少