连翘中具有抗菌活性的苯乙醇苷类化学成分研究△

2017-01-15 12:11姜醒鲁丽敏张春蕾王兴焱孙琦王佳天苑光军
中国现代中药 2017年5期
关键词:核磁连翘色谱法

姜醒,鲁丽敏,张春蕾,王兴焱,孙琦,王佳天,苑光军

(黑龙江中医药大学 佳木斯学院,黑龙江 佳木斯 154007)

·基础研究·

连翘中具有抗菌活性的苯乙醇苷类化学成分研究△

姜醒,鲁丽敏,张春蕾,王兴焱,孙琦,王佳天,苑光军*

(黑龙江中医药大学 佳木斯学院,黑龙江 佳木斯 154007)

目的:研究连翘中具有抗菌活性的苯乙醇苷类化合物,探讨连翘抗菌药效物质基础。方法:采用有机溶剂提取药材,不同极性有机溶剂萃取提取液,抗菌活性跟踪结合各种色谱法,获得活性化合物。与文献报道谱学数据对比确定化合物的结构。结果:从该药材中分离获得9个化合物,分别鉴定为6′-O-(顺式-1,4-二羟基环己乙酰基)-类叶升麻苷(1),4-O-鼠李糖基-7S,8R-7′,8′-赤式-蒜芥茄脂素(2),毛花球花苷A (3),黄花马缨丹苷B (4),石蚕苷B (5),紫茎女贞苷J (6),厚朴苷F (7),松果菊苷(8),异厚叶车前苷 (9)。化合物1、6、8对金黄色葡萄球菌(ATCC 33591)生长具有中等强度抑制作用,MIC值分别为8.0、16.0、4.0 μg·mL-1。结论:8个苯乙醇苷类化合物(1,3~9)和1个木脂素类化合物(2)系首次从该植物中获得。

连翘;苯乙醇苷类化合物;抗菌活性

连翘为木犀科 (Oleaceae) 植物连翘Forsythiasuspensa(Thunb.)Vahl 的干燥成熟果实,又名落翘,《中华人民共和国药典》2015版收载[1]。连翘在全国范围内均有种植,野生多生于河边,商品药材以野生为主,有“老翘”、“青翘”之分。连翘主要分布于秦岭、太行山一带,主产于陕、晋、川等地。其味苦,性微寒,归肺、心、小肠经,具有清热解毒、消肿散结、疏散风热等功效,可以与金银花、牡丹皮、栀子、大黄等多种中药配伍,如复方银翘散、凉隔散等,多数用于疮、痈、瘰疬、热毒的治疗,为“疮家之圣药”。连翘中主要的成分为苯乙烯及其苷类、黄酮类、香豆素类、酚酸类等多种成分,具有很强的抗菌、抗炎、抗病毒等作用[2]。以往研究表明苯乙醇苷类是连翘主要的抗菌活性成分[3-4],已经作为先导化合物应用于寻找新药[5]。本文继续寻找连翘中具有抗菌活性的苯乙醇苷类化合物,结果从该植物中首次分离得到9个苯乙醇苷类化合物并进行了抗菌活性研究。

1 仪器与材料

BRUKER AV500型核磁共振仪(德国布鲁克公司),溶剂峰为内标;岛津 LC-6AD (日本岛津公司);岛津Shim-pack PREP-ODS制备色谱柱(250 mm×25 mm,日本岛津公司);所用试剂为色谱纯或分析纯。

金黄色葡萄球菌ATCC 33591、ATCC 33591,大肠埃希菌(ATCC 25922),粪肠球菌(ATCC 29212),购于中国医学科学院生物技术研究所。

样品于2013年6月购于河北省安国中药材集散中心,经黑龙江中医药大学赵喜副教授鉴定为木犀科植物连翘Forsythiasuspensa(Thunb.)Vahl的干燥成熟果实。

2 提取、分离

甲醇作为提取溶剂进行回流提取药材(8 kg),提取物减压回收后分散于水中,先后采用石油醚、乙酸乙酯和正丁醇进行萃取,分别得到石油醚部分(300 g)、乙酸乙酯部分(500 g)、正丁醇部分(350 g)。其中,乙酸乙酯部分在质量浓度为100 μg·mL-1时显示出抗菌活性;因此,选择硅胶柱色谱法对乙酸乙酯部分进行下一步分离,洗脱剂采用三氯甲烷-甲醇溶剂系统(100∶1~1∶1),极性由低到高进行梯度洗脱。在薄层色谱法的跟踪检测下,共收集到了10个流分(Fr.1~Fr.10)。Fr.3部分(17.2 g),先后采用硅胶柱色谱法和高效液相色谱法(反相柱:流动相为乙腈-水溶剂系统)进行分离纯化,分别得到化合物1(10 mg)和2(5 mg)。Fr.6 部分(15 g)先后采用硅胶和高效液相柱色谱法进行分离纯化,分别得到化合物3(12 mg)、4(8 mg)、5(3 mg)。Fr.7 部分(20 g) 先后采用硅胶和高效液相柱色谱法进行分离纯化,分别得到化合物6(353 mg),7(206 mg)和8(62 mg).Fr.9部分 (10 g) 采用中压制备色谱和高效液相色谱法进行分离纯化,得到化合物9(8 mg)。

3 结构鉴定

化合物1:白色粉末。ESI-MS:m/z779[M-1]-;1H-NMR (CD3OD,500 MHz)δ:acetylcyclohexyl:1.80 (2H,m,H-2,6),1.54 (2H,m,H-2,6),1.68 (4H,m,H-3,5),3.53 (1H,m,H-4),2.49 (2H,s,H-7);glycosyl:4.43 (1H,d,J=8.3 Hz,H-1′),3.44 (1H,m,H-2′),3.86(1H,t,J=9.0 Hz,H-3′),5.03 (1H,t,J=9.5 Hz,H-4′),3.77 (1H,m,H-5′),4.24 (1H,dd,J=11.7,2.7 Hz,H-6′a),4.15 (1H,dd,J=11.7,5.1 Hz,H-6′b);aglycone:6.71 (1H,d,J=2.4 Hz,H-2″),6.70 (1H,d,J=8.3 Hz,H-5″),6.60 (1H,dd,J=8.3,2.0 Hz,H-6″),3.99 (1H,m,H-αa),3.74 (1H,m,H-αb),2.83 (2H,m,H-β);caffeoyl:7.09 (1H,d,J=1.9 Hz,H-2‴),6.81 (1H,d,J=8.3 Hz,H-5‴),6.99 (1H,dd,J=8.3,1.9 Hz,H-6‴),6.31 (1H,d,J=16.1 Hz,H-α),7.63 (1H,d,J=15.6 Hz,H-β);rhamnosyl:5.21 (1H,d,J=1.5 Hz,H-1″″),3.94 (1H,m,H-2″″),3.59 (1H,m,H-3″″),3.32 (1H,m,H-4″″),3.61 (1H,d,J=2.9 Hz,H-5″″),1.13 (3H,d,J=6.4 Hz,H-6″″);13C-NMR (CD3OD,125 MHz)δ:acetylcyclohexyl:70.6 (C-1),36.1 (C-2,6),31.6 (C-3,5),70.7 (C-4),48.5 (C-7),172.7 (C-8);glycosyl:104.4 (C-1′),76.3 (C-2′),81.5 (C-3′),73.2 (C-4′),73.9 (C-5′),63.9 (C-6′);aglycone:131.8 (C-1″),117.4 (C-2″),146.4 (C-3″),145.1 (C-4″),116.6 (C-5″),121.5 (C-6″),37.0 (C-7″),72.8(C-8″);caffeoyl:127.9 (C-1‴),115.6 (C-2‴),147.2 (C-3‴),150.3 (C-4‴),116.8 (C-5‴),123.5 (C-6‴),148.4 (C-7‴),114.9 (C-8‴),168.3 (CO),103.4 (C-1″″),72.6(C-2″″),70.8 (C-3″″),74.1 (C-4″″),72.3 (C-5″″),18.8 (C-6″″)。以上核磁数据与文献报道的一致[6],所以化合物1鉴定为6′-O-(cis-1,4-dihydroxycyclohexanacetyl)-acteoside,为首次从该植物中分离得到。

化合物2:白色粉末。ESI-MS:m/z537[M-1]-;1H-NMR (CD3OD,500 MHz)δ:7.05 (1H,d,J=2.0 Hz,H-2),7.09 (1H,d,J=8.3 Hz,H-5),6.93 (1H,dd,J=8.3,2.0,H-6),5.62 (1H,d,J=5.9 Hz,H-7),3.49 (1H,m,H-8),3.87 (1H,m,H-9a),3.79 (1H,m,H-9b),3.81 (3H,s,3-OMe),6.97 (1H,br s,H-2′),6.91 (1H,br s,H-6′),4.59 (1H,d,J=5.9 Hz,H-7′),3.69 (1H,m,H-8′),3.55 (1H,dd,J=11.5,4.2 Hz,H-9′a),3.40 (1H,dd,J=11.2,6.4 Hz,H-9′b),3.91 (3H,S,3′-OMe),5.36 (1H,d,J=1.5 Hz,H-1″),4.08 (1H,dd,J=3.2,1.7 Hz,H-2″),3.87 (1H,m,H-3″),3.49 (1H,m,H-4″),3.78 (1H,m,H-5″),1.24 (3H,d,J=6.4 Hz,H-6″);13C-NMR (CD3OD,125 MHz)δ:138.9 (C-1),111.6 (C-2),152.4 (C-3),146.7 (C-4),119.9 (C-5),119.3 (C-6),89.1 (C-7),55.8 (C-8),65.3 (C-7),56.8 (3-OMe),137.4 (C-1′),112.9 (C-2′),145.6 (C-3′),149.3 (C-4′),129.8 (C-5′),116.9 (C-6′),75.8 (C-7′),77.7 (C-8′),64.5 (C-9′),57.1 (3′-OMe),101.7 (C-1″),72.3 (C-2″),72.5 (C-3″),74.1 (C-4″),71.1 (C-5″),18.3 (C-6″)。以上核磁数据与文献报道的一致[6],所以化合物2鉴定为4-O-rhamnosyl-7S,8R-7′,8′-erythro-sisymbrifolin,为首次从该植物中分离得到。

化合物3:白色粉末。ESI-MS:m/z257[M+1]+;1H-NMR (CD3OD,500 MHz)δ:aglycon:6.72 (1H,d,J=2.0 Hz,H-2),6.71 (1H,d,J=8.0 Hz,H-5),6.59 (1H,dd,J=8.0,2.0 Hz,H-6),4.07 (1H,m,H-αa),3.74 (1H,m,H-αb),2.82 (1H,m,H-β);glucosyl:4.41 (1H,d,J=7.9 Hz,H-1′),3.43 (1H,dd,J=7.9,9.1 Hz,H-2′),3.87 (1H,t,J=9.1 Hz,H-3′),4.95 (1H,t,J=9.5 Hz,H-4′),3.55 (1H,m,H-5′),3.70 (1H,H-6′a),3.63 (1H,H-6′b);rhamnosyl:5.27 (1H,d,J=1.7 Hz,H-1″),3.96 (1H,dd,J=1.7,3.2 Hz,H-2″),3.79 (1H,dd,J=3.2,9.5 Hz,H-3″),3.48 (1H,t,J=9.5 Hz,H-4″),3.66 (1H,H-5″),1.18 (3H,d,J=6.2 Hz,H-6″);xylopentaose:4.41 (1H,d,J=7.7 Hz,H-1‴),3.04 (1H,dd,J=7.7, 9.0 Hz,H-2‴),3.26 (1H,t,J=9.0 Hz,H-3‴),3.39 (1H,m,H-4‴),3.75(1H,H-5‴a),3.10 (1H,dd,J=11.2,10.4 Hz,H-5‴b);caffeoyl:7.09 (1H,d,J=2.0 Hz,H-2″″),6.82 (1H,d,J=8.3 Hz,H-5″″),6.98 (1H,dd,J=8.3,2.0 Hz,H-6″″),6.28 (1H,d,J=15.9 Hz,H-α′),7.60 (1H,d,J=15.9 Hz,H-β′);13C-NMR (CD3OD,125 MHz)δ:aglycon:131.42 (C-1),117.09 (C-2),146.10 (C-3),144.64 (C-4),116.29 (C-5),121.25 (C-5),72.20 (C-α),36.54 (C-β);glucosyl:104.15 (C-1′),76.31 (C-2′),80.64 (C-3′),70.43 (C-4′),75.92 (C-5′),62.28 (C-6′);rhamnosyl:102.35 (C-1″),72.10 (C-2″),72.27 (C-3″),83.64 (C-4″),68.70 (C-5″),18.41 (C-6″);xylopentaose:106.52 (C-1‴),75.71 (C-2‴),78.03 (C-3‴),70.96 (C-4‴),67.05 (C-5‴);caffeoyl:127.65 (C-1″″),115.36 (C-2″″),146.75 (C-3″″),149.76 (C-4″″),116.52 (C-5″″),123.37 (C-6″″),114.55 (C-α′),148.20 (C-β′),168.14 (C=O)。以上核磁数据与文献报道的一致[7],所以化合物3鉴定为trichosanthoside A,为首次从该植物中分离得到。

化合物4:白色粉末。ESI-MS:m/z741[M-1]-;1H-NMR (CD3OD,500 MHz)δ:aglycone:6.74 (1H,d,J=1.7 Hz,H-2),6.72 (1H,d,J=7.9 Hz,H-5),6.62 (1H,dd,J=7.9,1.7 Hz,H-6),4.09 (1H,m,H-αa),3.75 (1H,m,H-αb),2.83 (2H,m,H-β);glucosyl:4.55 (1H,d,J=7.6 Hz,H-1′),3.68 (1H,dd,J=7.6,9.4 Hz,H-2′),3.93 (1H,t,J=9.4 Hz,H-3′),4.94 (1H,t,J=9.4 Hz,H-4′),3.60 (1H,m,H-5′),3.61 (1H,dd,J=12.0,5.0 Hz,H-6′a),3.75 (1H,dd,J=12.0,3.8 Hz,H-6′b);xylopentaose:4.64 (1H,d,J=7.4 Hz,H-1″),3.26 (1H,dd,J=7.4,8.9 Hz,H-2″),3.37 (1H,dd,J=8.9,8.9 Hz,H-3″),3.58 (1H,m,H-4″),3.20 (1H,dd,J=11.0,2.5 Hz,H-5″a),3.91 (1H,dd,J=11.0,5.0 Hz,H-5″b);apiosyl:5.34 (1H,d,J=3.2 Hz,H-1‴),3.99 (1H,d,J=3.2 Hz,H-2‴),3.77 (1H,d,J=9.8 Hz,H-4‴a),4.14 (1H,d,J=9.8 Hz,H-4‴b),3.53 (2H,br s,H-5‴);caffeoyl:7.08 (1H,d,J=2.0 Hz,H-2″″),6.82 (1H,d,J=8.2 Hz,H-5″″),6.98 (1H,dd,J=8.2,2.0 Hz,H-6″″),6.31 (1H,d,J=15.9 Hz,H-α″″),7.63 (1H,d,J=15.9 Hz,H-β″″);13C-NMR (CD3OD,125 MHz)δ:aglycone:132.9 (C-1),117.5 (C-2),147.5 (C-3),145.8 (C-4),117.2 (C-5),122.1 (C-6),72.3 (C-α),36.2 (C-β);glucosyl:103.5 (C-1′),82.7 (C-2′),83.6 (C-3′),71.3 (C-4′),76.0 (C-5′),62.8 (C-6′);xylopentaose:105.9 (C-1″),76.2 (C-2″),77.9 (C-3″),71.5 (C-4″),67.5 (C-5″);apiosyl:112.3 (C-1‴),78.8 (C-2‴),81.8 (C-3‴),75.2 (C-4‴),65.6 (C-5‴);caffeoyl:124.1 (C-1″″),115.6 (C-2″″),149.9 (C-3″″),147.6 (C-4″″),117.1(C-5″″),123.2 (C-6″″),116.1 (C-α″″),148.5 (C-β″″),169.2 (C=O)。以上核磁数据与文献报道的一致[8],所以化合物4鉴定为fucatoside B,为首次从该植物中分离得到。

化合物5:白色粉末。 ESI-MS:m/z925[M+Na]+;1H-NMR (CD3OD,500 MHz)δ:caffeoyl:7.06 (1H,s,H-2),6.79 (1H,d,J=8.1 Hz,H-5),6.96 (1H,dd,J=8.1,1.2 Hz,H-6),7.65 (1H,d,J=15.7 Hz,H-7),6.29 (1H,d,J=15.7 Hz,H-8);phenylethylalcohol:6.72 (1H,s,H-2),6.68 (1H,d,J=8.0 Hz,H-5),6.58 (1H,dd,J=1.2,8.0 Hz,H-6),3.99 (1H,m,H-αa),3.75 (1H,m,H-αb),2.81 (2H,m,H-β):glycosyl:4.39 (1H,d,J=7.9 Hz,H-1′),3.39 (1H,H-2′),3.77 (1H,H-3′),5.01 (1H,t,J=9.9 Hz,H-4′),3.70 (1H,m,H-5′),3.49 (1H,dd,J=11.4,5.6 Hz,H-6′a),3.77 (1H,H-6′b);rhamnosyl I:4.63 (1H,d,J=1.4 Hz,H-1″),3.85 (1H,H-2″),3.69 (1H,H-3″),3.37 (1H,H-4″),3.61 (1H,H-5″),1.22 (3H,d,J=6.1 Hz,H-6″);rhamnosyl II:5.49 (1H,d,J=1.4 Hz,H-1‴),3.96 (1H,dd,J=1.4,3.2 Hz,H-2‴),3.66 (1H,H-3‴),3.29 (1H,t,J=8.6 Hz,H-4‴),3.55 (1H,H-5‴),1.08 (3H,d,J=6.1 Hz,H-6‴);arabinosyl:4.31 (1H,d,J=7.3 Hz,H-1″″),3.60 (1H,H-2″″),3.51 (1H,H-3″″),3.79 (1H,H-4″″),3.55 (1H,H-5″″a),3.87 (1H,H-5″″b);13C-NMR (CD3OD,125 MHz)δ:caffeoyl:127.7 (C-1),115.1 (C-2),147.2 (C-3),150.1 (C-4),116.4 (C-5),123.1 (C-6),147.9 (C-7),114.5 (C-8),167.7 (C-9);phenylethylalcohol:131.3 (C-1),117.0 (C-2),147.1 (C-3),144.9 (C-4),116.3 (C-5),121.1 (C-6),72.8 (C-α),36.5 (C-β);glycosyl:104.2 (C-1′),75.9 (C-2′),82.2 (C-3′),70.1 (C-4′),74.5 (C-5′),67.4 (C-6′);rhamnosyl I:102.0 (C-1″),71.8 (C-2″),71.9 (C-3″),73.9 (C-4″),69.9 (C-5″),17.9 (C-6″);rhamnosyl II:101.8 (C-1‴),82.8 (C-2‴),72.1 (C-3‴),73.9 (C-4‴),70.3 (C-5‴),18.5 (C-6‴),arabinosyl 107.3 (C-1″″),72.6 (C-2″″),74.2 (C-3″″),69.8 (C-4″″),67.3 (C-5″″)。以上核磁数据与文献报道的一致[9],所以化合物5鉴定为poliumoside B,为首次从该植物中分离得到。

化合物6:白色粉末。ESI-MS:m/z793[M+Na]+;1H-NMR (MeOD,500 MHz)δ:6.68 (1H,d,J=2.0 Hz,H-2),6.63 (1H,d,J=8.0 Hz,H-5),6.55 (1H,dd,J=8.0,2.0 Hz,H-6),2.79 (2H,t,J=7.4 Hz,H-7),3.96 (1H,m,H-8a),3.74 (1H,m,H-8b),4.34 (1H,d,J=8.0 Hz,H-1′),3.32 (1H,m,H-2′),3.51 (1H,m,H-3′),3.42 (1H,m,J=9.9 Hz,H-4′),3.55 (1H,m,H-5′),4.50 (1H,dd,J=11.9,1.7 Hz,H-6′a),4.34 (1H,J=11.9,6.2 Hz,H-6′b),5.19 (1H,s,H-1″),3.98 (1H,m,H-2″),3.87 (1H,m,H-3″),3.53 (1H,m,H-4″),4.12 (1H,dd,J=9.5,6.2 Hz,H-5″),1.25 (3H,d,J=6.2 Hz,H-6″),5.19 (1H,s,H-1‴),3.88 (1H,m,H-2‴),3.59 (1H,m,H-3‴),3.41 (1H,m,H-4‴),3.72 (1H,m,H-5‴),1.29 (3H,d,J=6.2 Hz,H-6‴),7.04 (1H,d,J=1.9 Hz,H-2″″),6.79 (1H,d,J=8.3 Hz,H-5″″),6.89 (1H,dd,J=8.3,1.9 Hz,H-6″″),7.57 (1H,d,J=15.9 Hz,H-7″″),6.29 (1H,d,J=15.9 Hz,H-8″″);13C-NMR (MeOD,125 MHz)δ:131.4 (C-1),117.3 (C-2),144.7 (C-3),146.4 (C-4),116.7 (C-5),121.3 (C-6),36.8 (C-7),72.6 (C-8),104.7 (C-1′),75.9 (C-2′),83.6 (C-3′),70.6 (C-4′),75.5 (C-5′),64.9 (C-6′),103.3 (C-1″),72.6 (C-2″),73.1 (C-3″),81.3 (C-4″),68.5 (C-5″),18.8 (C-6″),102.5 (C-1‴),73.2 (C-2‴),72.5 (C-3‴),73.9 (C-4‴),70.6 (C-5‴),17.9 (C-6‴),127.9 (C-1″″),115.4 (C-2″″),146.9 (C-3″″),149.8 (C-4″″),116.4 (C-5″″),123.5 (C-6″″),147.4 (C-7″″),115.0 (C-8″″),169.3 (C-9″″)。以上核磁数据与文献报道的一致[10],所以化合物6鉴定为ligupurpuroside J,为首次从该植物中分离得到。

化合物7:白色粉末。ESI-MS:m/z785[M-1]-;1H-NMR (CD3OD,500 MHz)δ:7.31 (1H,d,J=1.8 Hz,H-2),7.21 (1H,overlap,H-5),6.82 (1H,dd,J=7.8,1.2 Hz,H-6),3.06 (2H,t,J=7.2 Hz,H-β),4.39 (1H,m,H-αa),3.82 (1H,dt,J=9.6,7.8 Hz,H-αb),5.46 (1H,d,J=7.8 Hz,H-1′),4.20 (1H,dd,J=7.8,2.4 Hz,H-2′),5.19 (1H,t,J=2.4 Hz,H-3′),5.51 (1H,dd,J=9.6,2.4 Hz,H-4′),4.86 (1H,ddd,J=9.6,5.4,1.8 Hz,H-5′),4.59 (1H,overlap,H-6′a),4.12 (1H,dd,J=11.4,5.4 Hz,H-6′b);glucosyl: 4.98 (1H,d,J=7.8 Hz,H-1″),4.06 (1H,dd,J=8.4,7.8 Hz,H-2″),4.25 (1H,dd,J=9.6,8.4 Hz,H-3″),4.27 (1H,dd,J=9.6,9.0 Hz,H-4″),3.94 (1H,m,H-5″),4.53 (1H,dd,J=11.4,1.8 Hz,H-6″a),4.38 (1H,overlap,H-6″b);rhamnosyl:5.68 (1H,br s,H-1‴),4.57 (1H,overlap,H-2‴),4.69 (1H,dd,J=9.6,3.0 Hz,H-3‴),4.33 (1H,t,J=9.6 Hz,H-4‴),4.78 (1H,m,H-5‴),1.70 (3H,d,J=6.0 Hz,H-6‴),7.54 (1H,d,J=1.2 Hz,H-2″″),7.21 (1H,overlap,H-5″″),7.11 (1H,dd,J=8.4,1.2 Hz,H-6″″),7.97 (1H,d,J=15.6 Hz,H-7″″),6.58 (1H,d,J=15.6 Hz,H-8″″);13C-NMR (CD3OD,125 MHz)δ:130.9 (C-1),117.8 (C-2),147.8 (C-3),145.9 (C-4),116.8 (C-5),120.8 (C-6),36.6 (C-β),71.8 (C-α);glucosyl:100.5 (C-1′),74.1 (C-2′),65.6 (C-3′),70.9 (C-4′),72.1 (C-5′),69.6 (C-6′),105.8 (C-1″),75.4 (C-2″),78.4 (C-3″),71.7 (C-4″),78.6 (C-5″),62.9 (C-6″);rhamnosyl:97.8 (C-1‴),72.6 (C-2‴),72.8 (C-3‴),74.3 (C-4‴),69.9 (C-5‴),18.8 (C-6‴),126.9 (C-1″″),116.1 (C-2″″),147.0 (C-3″″),150.8 (C-4″″),116.8 (C-5″″),122.3 (C-6″″),146.7 (C-7″″),114.8 (C-8″″),166.9 (C-9″″)。以上核磁数据与文献报道的一致[11],所以化合物7被鉴定为magnoloside F,为首次从该植物中分离得到。

化合物8:白色粉末。ESI-MS:m/z785[M-1]-;1H-NMR (CD3OD,500 MHz)δ:aglycone:6.73 (1H,d,J=2.1 Hz,H-2),6.69 (1H,d,J=8.0 Hz,H-5),6.58 (1H,dd,J=8.0,2.0 Hz,H-6),2.81 (2H,t,J=7.4 Hz,H-7),4.04(1H,m,H-8a),3.75 (1H,m,H-8b);glucosyl (glc):4.40 (1H,d,J=7.9 Hz,H-1′),3.41 (1H,dd,J=7.9,9.2 Hz,H-2′),3.83 (1H,t,J=9.2 Hz,H-3′),5.01 (1H,dd,J=9.9,9.3 Hz,H-4′),3.78 (1H,m,H-5′),3.92 (1H,dd,J=11.5,2.5 Hz,H-6′a),3.66 (1H,m,H-6′b);rhamnosyl:5.19 (1H,d,J=1.8 Hz,H-1″),3.93 (1H,dd,J=3.3,1.8 Hz,H-2″),3.57 (1H,dd,J=9.6,3.3 Hz,H-3″),3.30 (1H,m,H-4″),3.57 (1H,m,H-5″),1.09 (3H,d,J=6.2 Hz,H-6″);caffeoyl:6.28 (1H,d,J=15.9 Hz,H-α‴),7.61 (1H,d,J=15.9 Hz,H-β‴),7.07 (1H,d,J=2.1 Hz,H-2‴),6.79 (1H,d,J=8.2 Hz,H-5‴),6.98 (1H,dd,J=8.3,2.1 Hz,H-6‴);6′-O-glc:4.34 (1H,d,J=7.7 Hz,H-1″″),3.26 (1H,dd,J=9.0,7.8 Hz,H-2″″),3.48 (1H,m,H-3″″),3.55 (1H,m,H-4″″),3.34 (1H,m,H-5″″),3.84 (2H,m,H-6″″);4Glc-O-6′-O-glc:4.37 (1H,d,J=7.9 Hz,H-1″″′),3.23 (1H,dd,J=8.9,7.9 Hz,H-2″″′),3.38 (1H,m,H-3″″′),3.35 (1H,m,H-4″″′),3.34 (1H,m,H-5″″′),3.86 (1H,m,H-6″″′a),3.68 (1H,m,H-6″″′b);13C-NMR(CD3OD,125 MHz)δ:aglycone:131.8 (C-1),117.5 (C-2),146.4 (C-3),144.9 (C-4),116.7 (C-5),121.6 (C-6),36.9 (C-7),72.7 (C-8);glucosyl:104.5 (C-1′),76.4 (C-2′),81.9 (C-3′),71.1 (C-4′),75.0 (C-5′),69.8 (C-6′);rhamnosyl:103.3 (C-1″),72.6 (C-2″),72.3 (C-3″),74.1 (C-4″),70.7 (C-5″),18.6 (C-6″);caffeoyl:114.9 (C-α‴),148.5 (C-β‴),168.8 (C=O),127.9 (C-1‴),115.7 (C-2‴),147.1 (C-3‴),150.2 (C-4‴),116.9 (C-5‴),123.5 (C-6‴);6′-O-Glc:104.6 (C-1″″),75.2 (C-2″″),76.4 (C-3″″),80.7 (C-4″″),76.8 (C-5″″),62.1 (C-6″″);4Glc-O-6′-O-Glc:104.8 (C-1″″′),75.1 (C-2″″′),78.1 (C-3″″′),71.5 (C-4″″′),78.4 (C-5″″′),62.6 (C-6″″′)。以上核磁数据与文献报道的一致[12],所以化合物8被鉴定为echinacoside,为首次从该植物中分离得到。

化合物9:白色粉末。ESI-MS:m/z769[M-1]-;1H-NMR (CD3OD,500 MHz)δ:aglycone:6.69 (1H,d,J=1.9,H-2),6.64 (1H,d,J=8.1 Hz,H-5),6.55 (1H,dd,J=8.1,1.9 Hz,H-6),2.81 (2H,m,H-7),3.96 (1H,m,H-8a),3.73 (1H,m,H-8b);caffeoyl:7.04 (1H,d,J=1.9 Hz,H-2′),6.79 (1H,d,J=8.2 Hz,H-5′),6.88 (1H,dd,J=8.2,1.9 Hz,H-6′),7.58 (1H,d,J=15.9 Hz,H-7′),6.29 (1H,d,J=15.9 Hz,H-8′);glucosyl:4.46 (1H,d,J=7.7 Hz,H-1″),3.47 (1H,dd,J=8.9,7.7 Hz,H-2″),3.62 (1H,dd,J=8.9,8.9 Hz,H-3″),3.46 (1H,H-4″),3.54 (1H,H-5″),4.52 (1H,dd,J=11.7,1.7 Hz,H-6″a),4.36 (1H,dd,J=11.7,5.9 Hz,H-6″b);rhamnosyl-I:4.95 (1H,brs,H-1‴),3.91 (1H,H-2‴),3.73 (1H,H-3‴),3.43 (1H,H-4‴),3.99 (1H,H-5‴),1.21 (3H,d,J=6.0 Hz,H-6‴);rhamnosyl-II:4.99 (1H,brs,H-1″″),3.91 (1H,H-2″″),3.74 (1H,H-3″″),3.44 (1H,H-4″″),3.99 (1H,H-5″″),1.24 (3H,d,J=6.0 Hz,H-6″″);13C-NMR (CD3OD,125 MHz)δ:aglycone:131.3 (C-1),117.3 (C-2),146.2 (C-3),144.9 (C-4),116.8 (C-5),121.5 (C-6),36.8 (C-7),72.6 (C-8);caffeoyl:127.8 (C-1′),115.4 (C-2′),146.9 (C-3′),149.7 (C-4′),116.8 (C-5′),123.4 (C-6′),147.5 (C-7′),115.1 (C-8′),169.3 (C-9′);glucosyl:102.9 (C-1″),80.3 (C-2″),87.4 (C-3″),70.8 (C-4″),75.4 (C-5″),64.7 (C-6″);rhamnosyl-I:103.9 (C-1‴),72.6 (C-2‴),72.5 (C-3‴),74.1 (C-4‴),70.9 (C-5‴),18.0 (C-6‴);rhamnosyl-II:103.1 (C-1″″),72.6 (C-2″″),72.4 (C-3″″),73.7 (C-4″″),70.3 (C-5″″),18.2 (C-6″″)。以上核磁数据与文献报道的一致[13],所以化合物9被鉴定为isocrassifolioside,为首次从该植物分离得到。

4 活性测定

采用二倍稀释法(将待测样品分别设定为64、32、16.0、4.0、2.0 μg·mL-1)对分离到的化合物分别进行金黄色葡萄球菌ATCC 33591、ATCC 33591,大肠埃希菌(ATCC 25922),粪肠球菌(ATCC 29212)抑菌活性测试。结果表明化合物1、6、8对金黄色葡萄球菌(ATCC 33591)生长具有中等强度抑制作用,MIC值分别为8.0、16.0、4.0 μg·mL-1。

5 讨论

本文报道从连翘干燥果实中分离鉴定了9个化合物,均为首次从该植物中分离得到,并发现其中的3个化合物具有抑制金黄色葡萄球菌(ATCC 33591)生长的作用。连翘具有清热解毒的功效,已经制成包括双黄连在内的多种制剂。本文的研究成果进一步明确了连翘清热解毒的药效物质,为该药的进一步开发奠定了理论基础。

[1] 国家药典委员会.中华人民共和国药典:一部[S].北京:中国医药科技出版社,2015:170-171.

[2] 胡静,马琳,张坚,等.连翘的研究进展[J].中南药学,2012,10(10):760-764.

[3] Ming D S,Yu D Q,Yu S S.Two new caffeyol glycosides fromForsythiasuspensa[J].J Asian Nat Prod Res,1999,1(4):327-335.

[4] Nishibe S,Okabe K,Tsukamoto H,et al.The structure of forsythiaside isolated fromForsythiasuspensa[J].Chem Pharm Bull,1982,30(3):1048-1050.

[5] 吴培培,闫明,霍仕霞.苯乙醇苷类化合物的研究进展[J].医药导报,2011,30(10):1316-1319.

[6] Martin F,Hay A E,Cressend D,et al.Antioxidant phenylethanoid glycosides and a neolignan fromJacarandacaucana[J].J Nat Prod,2009,72(5):852-856.

[7] Ihsan Çalis,Hasan Kirmizibekmez,Heinz Rüegger A,et al.Phenylethanoid glycosides fromGlobulariatrichosantha[J].J Nat Prod,1999,62(8):1165-1168.

[8] Julião L D S,Piccinelli A L,Marzocco S,et al.Phenylethanoid glycosides fromLantanafucataLindl.withinvitroantiinflammatory activity[J].J Nat Prod,2009,72(8):1424-1428.

[9] Marino S D,Festa C,Zollo F,et al.Antioxidant activity of phenolic and phenylethanoid glycosides fromTeucriumpoliumL.[J].Food Chem,2012,133(1):21-28.

[10]Fan L,Liao C H,Li S G,et al.Phenylethanoid and secoiridoid glycosides from the leaves ofLigustrumpurpurascens[J].Phytochem Lett,2015,13:177-181.

[11]Xue Z,Yan R,Yang B.Phenylethanoid glycosides and phenolic glycosides from stem bark ofMagnoliaofficinalis[J].Phytochemistry,2016,127:50-62.

[12]Porter E A,Kite G C,Veitch N C,et al.Phenylethanoid glycosides in tepals ofMagnoliasalicifolia,and their occurrence in flowers of Magnoliaceae[J].Phytochemistry,2015,117:185-193.

[13]Phakeovilay C,Disadee W,Sahakitpichan P,et al.Phenylethanoid and flavone glycosides fromRuelliatuberosaL.[J].J Nat Med,2013,67(1):228-233.

AntibacterialPhenylethanoidGlycosidesfromFruitsofForsythiasuspensa

JIANG Xing,LU Limim,ZHANG Chunlei,WANG Xingyan,SUN Qi,WANG Jiatian,YUAN Guangjun*

(iamusiCollege,HeilongjiangUniversityofChineseMedicine,Jiamusi154007,China)

Objective:To Study on the antibacterial phenylethanoids from the fruits ofForsythiasuspensa.Methods:The plant materials were extracted with organic solvent.The extract was extracted by different polarity organic solvents again.Compounds were obtained by comprehensive chromatography.The structures were identified by NMR.Results:Nine compounds were isolated and identified from the fruits ofF.suspensa,including 6′-O-(cis-1,4-dihydroxycyclohexanacetyl)-acteoside (1),4-O-rhamnosyl-7S,8R-7′,8′-erythro-sisymbrifolin (2),trichosanthoside A (3),fucatoside B (4),poliumoside B (5),ligupurpuroside J (6),magnoloside F (7),echinacoside (8),and isocrassifolioside (9).Compounds1,6,8showed antibacterial activity againstStaphylococcusaureuswith MICs of 8.0,16.0 and 4.0 μg·mL-1,respectively.Conclusion:Eight phenylethanoide glycosides (1,3-9) and a neolignan (2) were obtained from the plant firstly.

Forsythiasuspensa;phenylethanoide glycosides;antibacterial activity

黑龙江省自然基金项目 (H201464)

] 苑光军,副教授,研究方向:中草药药效物质;Tel:(0554)6103868,E-mail:yuanguangjun@sina.com

10.13313/j.issn.1673-4890.2017.5.010

2016-08-01)

*[

猜你喜欢
核磁连翘色谱法
上海某三甲医院CT、核磁大型影像设备的管理、配置和使用分析
小连翘撑起富民兴企大产业
基于低场核磁成像的银杏胚检测及分类
固相萃取-高效液相色谱法测定水产品中四环素类的含量
老人摔倒为何需要拍核磁?
饮一杯尧羽连翘茶 品太行山河之精华
高效液相色谱法测定水中阿特拉津
超高效液相色谱法测定茶叶中的儿茶素
反相高效液相色谱法测定食品中的甜蜜素
刘军平:连翘叶“炒”出致富路