吕续成 沈雳 洪斌 葛均波
生物可吸收支架内血栓的光学相干断层成像发现及原因分析
吕续成 沈雳 洪斌 葛均波
生物可吸收支架;光学相干断层成像
生物可吸收支架(bioresorbable scaffold, BRS)被认为是继经皮冠状动脉腔内成形术(percutaneous transluminal coronary angioplasty, PTCA)、裸 金 属 支 架(bare metal stent,BMS)、药物洗脱支架(drug eluting stent, DES)之后,经皮冠状动脉治疗(percutaneous coronary intervention,PCL)的第四次革命。最初,PTCA因为早期血管弹性回缩、晚期血管负性重塑等原因,再狭窄率可达30%~50%。为解决这一问题,出现了BMS,克服了血管弹性回缩,再狭窄率得到大幅降低,但仍存在血管内膜增生、血栓机化等加重再狭窄的危险因素。DES通过释放抗增殖药物而使再狭窄率降低至5%左右,是目前PCI术的主流。随着大量的应用于临床,随访研究中发现DES晚期支架内血栓发生率较高,因此BRS应运而生。目前BRS已成为世界范围内支架研究的热点,国外里程碑式的研究主要有ABSORB研究,目前国内主要有Xinsorb支架,NeoVas支架和Firesorb支架研究。2013年9月由葛均波团队完成了我国自主研制的首例完全可降解聚乳酸Xinsorb支架置入术[1]。2014年7月,国内“Xinsorb生物全降解冠状动脉雷帕霉素(西罗莫司)洗脱支架系统确诊性临床试验”启动,目前已全部完成患者入组工作,正在进行后期的随访研究。
随着对BRS研究的深入,BRS置入后支架内血栓发生率有增高趋势,因此受到广泛的关注。GHOST-EU研究中,BRS组明确/可能的支架内血栓发生率30 d为1.5%,6个月时为2.1%,其中69.5%发生在术后前30 d内[2]。Lancet上发表的包含ABSORB CHINA、ABSORB JAPAN、ABSORB II、ABSORB III、EVERBIO II、TROFI II的一项荟萃分析[3]表明,与依维莫司药物洗脱支架(everolimus-eluting metallic stents, EES)相比,在支架内血栓方面BRS组更高[(OR 1.99,95%CI 1.00~3.98,P=0.05)]且与时间有一定关系,术后30 d内支架内血栓发生率较高。在BVS-EXAMINATION研究[4]中,确定/可能支架内血栓30 d时BVS与EES为2.1%比0.3% (P=0.059),BVS与BMS为2.1%比 1.0% (P=0.324);1年时 BVS与 EES为2.4% 比 1.4% (P=0.948), BVS 与 BMS 为 2.4% 比 1.1%(P=0.825)。在一项包含147项研究的meta分析[5]中,BRS支架内血栓发生率显著高于目前的DES,BRS置入后的优势在1年后开始出现,第1年的支架内血栓为1.0%,之后降为0.5%。ABSORB CHINA研究[6]中,在确定/可能支架内血栓方面随访1年时BVS与EES为0.4%比0.0%(P=1.0)。ABSORB B组研究中,3年随访中未发现支架内血栓[7]。ABSORB ENTEND 1年支架内血栓发生率为0.8% ,3年确定/可能支架内血栓为1.2%[8]。ABSORB II研究中1年支架内血栓发生率为0.9%[9]。AMC注册研究中1年支架内血栓为3.0%[10]。PRAGUE19研究中1年支架内血栓为2.4%[11]。在TCT2016会议上公布了ABSORB Ⅱ 3年的临床随访结果,在BRS组支架内血栓发生率为3%,而Xience对照组却未见支架内血栓(P=0.0331)[12]。关于BRS置入后支架内血栓的研究,除了临床及病理学外,影像学技术光学相干断层成像技术(optical coherence tomography,OCT)以其目前最高分辨率(10~15 μm)且在BRS中不存在背散射影等优势成为BRS随访评估的重要工具。本文主要围绕BRS置入后随访过程中病变处出现支架内血栓的OCT表现及可能导致血栓原因进行总结。
BRS是很有前景的一种治疗冠状动脉病变方式,它比永久性支架最大的优势是在于能在2~3年完全降解,然而它具有易破裂性,聚乳酸的抗张力强度是50~70 MPa,而钴铬合金或不锈钢则为1449 MPa和668 MPa;破裂临界时的伸长率聚乳酸为2%~6%,而钴铬合金或不锈钢为40%[13]。支架断裂的OCT诊断标准:(1)至少在一个OCT横截面内,血管内腔中同一角度的扇形区内,两支架彼此悬垂或堆叠在一起;(2)至少在一个OCT截面内,存在不与其他支架丝组成的圆环一致的支架丝。以上两个条件至少满足一个,即可诊断为支架断裂。BRS支架断裂可能的原因为 :(1)BRS在置入后进行过度的后扩张。BVS1.1后扩张的限度是参考血管直径(+0.25) mm[14],而DESolve支架的扩张性能较好,直径能从3.0 mm后扩至4.5 mm而支架不发生断裂[15]。(2)支架置入过程中操作技术欠佳导致的延迟断裂。如支架由主干进入分支过程中,由于支架易受扭曲、弯曲、旋转力的影响而导致随访过程中出现支架疲劳,最后导致支架断裂。这种延迟断裂主要发生在BRS的近端[16]。(3)BRS进入侧支的部位不同也可促进支架断裂。存在部分钙化的斑块部位,不均匀的支架扩张可能引起支架的过度伸展或膨胀不全,过度伸展的支架丝有较低的阻抗性,较易断裂[17]。 急性支架断裂的发生率很低,约为3.9%[7],但可引起严重的支架血栓栓塞,可能原因为:不贴壁的支架丝易引起血小板聚集,形成小血栓而引起支架栓塞;支架断裂引起腔内支架丝不规则的运动而引起临床症状。BRS能提供大约6个月的支架支撑,在BRS置入6个月后,当用OCT随访时,即使小心操作,也有可能引起支架变形或断裂[18],因此操作时应予以留意,但尚不知该结果是否能引起不良的临床结果。支架降解引起支架不连续是极晚期支架内血栓最可能的解释,但支架置入6个月后支架不连续很普遍,约为BRS置入后随访支架的42%,且很少与临床不良事件有关[19]。
支架丝不完全贴壁(incomplete strut/scaffold apposition, ISA),又称为支架丝异位[20],主要与 BRS置入后膨胀不全有关。ISA的OCT诊断标准:早期ISA为≥1个支架丝与血管壁分离;晚期获得性ISA为术后即刻OCT检查时不存在,但随访中有≥1个支架丝与血管壁分离;在侧支开口处的支架丝不属于ISA[20]。在相对简单冠状动脉病变中研究表明,BVS1.1置入后即刻OCT检查ISA发生率为3.5%,6个月随访时,77%ISA转变为贴壁支架丝(基线 ISA 3.5%比 6个月ISA0.8%,p<0.01)[21]。但在相对复杂、比较接近临床的研究中发现BRS置入后即刻OCT检查ISA为6.2%[14],当病变处存在钙化斑块时,因为钙化抵挡球囊扩张,可引起不对称的球囊扩张和更多的ISA。ISA在支架内的分布比较特殊:ISA主要分布于支架的两端,尤其是近端,而较少分布于支架中间。可能的机制为 : (1)狭窄部位进行PCI前,最小内腔面积 (minimal lumen area,MLA)位于将要置入支架的中间,MLA处需要进行后扩张(56%的患者都进行了后扩张)且后扩张球囊短于支架长度,因此导致了ISA在两端分布较多;(2)ISA主要分布于支架近端,可能与支架两端相同的直径不能与置入部位逐渐变细的血管相适应有关。支架贴壁不良,可引起较高的支架丝未覆盖,两者都与支架内血栓形成有关,BRS可通过自身降解来解决这一问题。合适的球囊/血管直径比与扩张压,可避免大部分的ISA发生。
BRS未完全覆盖病变部位主要是指置入的BRS未能全部覆盖需要治疗的部位。术中应用现代技术手段如冠状动脉造影(coronary artery disease,CAG)、血管内超声(intravascular ultrasonography,IVUS)、OCT这样的情况一般很少发生。最近报道在PCI术中,金属药物洗脱支架的纵向扭曲可导致支架压缩和支架分离(假性断裂),1例患者置入3.0 mm×18 mm的BRS,以16 atm(1 atm=101.325 kPa)压力扩张,置入后用OCT检查:BRS长度为20.6 mm,延长了14.4% ,同时BRS的支架厚度降低为(131±7)μm;另1例患者置入3.5 mm ×18 mm的BRS,以10 atm压力扩张,置入后OCT检查:BRS长度并未变化,支架厚度(154±2)μm与延长的支架相比增加了,但与制造商提供的数值(156μm)比较接近[22]。延长支架没有改变支架的完整性,但我们推测支架长度延长与支架厚度降低有关。在另一项研究中,54.8%的支架在置入过程中被延长了,没有支架缩短,平均延长分数为(7.98±3.42)%,血管壁影响支架置入后长度,血管壁钙化分布[延长支架(13.44±21.09)% 比非延长支架(2.51±4.43)%],血管壁脂质斑块分布[延长支架(6.67±8.04)% 比非延长支架(21.30±23.46)%][23]。所以 BRS置入后延长的原因,可能是置入过程中较高的扩张压和较高的血管壁硬度联合作用引起的。在BRS置入过程中,支架形态改变可能引起下列病变:(1)分叉病变,损伤侧支的入口;(2)开口病变,支架可能突入至未计划置入的左主干或主动脉;(3)重叠,置入后引起比预期更长的支架重叠;(4)导致支架置入错误部位,支架置入在病变部位的近端或远端,使腔内低剪切力范围增大,内皮剪切力与新生内膜形成呈反比,因此可导致支架内血栓形成[24]。
BRS支架随访中出现支架内再狭窄时支架仍在降解,支架的完整性丧失,此时再通过球囊或药物洗脱球囊进行血管成形,效果不确定,一般优先选择DES[25],血管腔内重叠放置BRS很少见。在动物实验中,在置入重叠BRS后28 d支架丝覆盖的随访中,重叠支架支架丝覆盖80.1% 比非重叠支架99.4%(p<0.0001);BRS支架的厚度与新生内膜的反应有关。较厚的支架(重叠部位可能>300 μm)可能影响能改变新生内膜反应的血管壁剪切力,从而延迟支架丝的新生内膜反应[26]。较厚、直角(非流线型)BRS结构理论上能增加暴露于较低内皮剪切力的面积,导致支架丝周围的生长因子、促有丝分裂细胞因子、血小板聚集,可能引起支架内血栓形成[27]。
研究表明DES支架边缘夹层的发生率在病变冠状动脉血管是正常冠状动脉血管的6倍,且支架远端夹层约是近端夹层的2倍(65.5%比34.4%)[28]。DES存在边缘夹层的支架比非夹层支架曾经受过更大的扩张压,因此,支架尺寸与参考直径相比过大或后扩压过大,可引起支架边缘夹层[29]。BRS置入后6个月,径向支撑力和结构的连续性消失,球囊扩张后支架丝向外迁移也可引起支架边缘夹层[30]。冠状动脉病变部位的球囊扩张和支架置入可引起内膜撕裂、中膜分离和斑块破裂,同样可导致支架边缘夹层且OCT检查需要在回撤时进行冲洗,可使冠状动脉内压力增高10 mmHg(1 mmHg=0.133 kPa),这可能加重支架边缘夹层[31]。另外,存在一种假性的夹层,即导丝进入血管后牵拉血管壁,使血管沿着长轴打褶、重叠,而引起OCT检查时出现夹层的假象[32]。因此术中识别假性病变至关重要,可以避免支架置入,因为一旦导丝回撤,这种假性夹层立刻消失。在DES支架边缘夹层研究中,夹层皮瓣长度对支架置入术后没有影响,但当夹层皮瓣厚度>0.31 mm时,可促进支架内血栓形成[33],主要由于过度损伤的动脉壁,可引起新生内膜增殖和促进血栓形成[34]。BRS支架边缘夹层是否更易形成支架内血栓,还需进一步的试验证实。
冠状动脉外凸是指贴壁支架丝之间的血管腔向外凸出[34],且凸出部分的深度超过支架丝厚度[35]。冠状动脉外凸在DES中较少见,而在BRS中则较普遍。在一项BRS置入后的冠状动脉外凸的OCT研究中,冠状动脉外凸数 (6.1±6.2)/BRS,(6.7±8.7) /例[36]。在BRS置入术中,置入支架过长、相对过细、支架断裂和新生内膜不成熟及支架丝周围低信号区(peri-strut low-intensity areas, PSLIA)与冠状动脉外凸及其严重性有关。PSLIA是OCT检查支架丝周围均质的低信号衰减区,信号强度比周围组织减少30%。OCT发现PSLIA富含弹力纤维、巨噬细胞、纤维蛋白点状沉积,却较少含有平滑肌细胞、蛋白聚糖[37]。因此,慢性炎症反应和超敏反应可能参与冠状动脉外凸形成[38]。同时在另一项研究中发现支架内如果开始时存在夹层和组织突出,则冠状动脉外凸的风险就会增加[35]。研究表明,极晚期支架内血栓共有的形态学特征中包含冠状动脉外凸,且在SIRTAX-LATE试验[39]中,2个存在冠状动脉外凸的患者分别在随访5个月及12个月时经OCT发现了极晚期支架内血栓,因此,推测冠状动脉外凸可引起晚期支架内血栓,可能与冠状动脉外凸影响了局部血流,导致血流紊乱而形成支架内血栓。BRS中冠状动脉外凸较多见,进一步探明冠状动脉外凸的形成机制及冠状动脉外凸与支架内血栓及远期预后的关系对临床工作将会有重大的指导作用。
在DES的病例研究中,支架丝缺乏覆盖是晚期支架内血栓形成的独立预测因子。支架丝未覆盖引起血栓的原因可能与慢性炎症反应延迟血管恢复过程、高敏反应、正性重塑、新生动脉粥样硬化以及涂层药物内皮化的影响有关。在BRS置入病变后,OCT也发现有一定程度的支架丝未覆盖。在PRAGUE-19研究中[40],BRS置入后4~6周支架丝覆盖率为83.1%,置入后6个月支架丝覆盖率为100%;Xinsorb置入后6个月随访研究中[41]发现,95.9%支架丝已覆盖;BVS 1.0 6个月随访支架丝未覆盖率为1.0%,BVS1.1 6个月随访支架丝未覆盖率为1.6%,且主要发生在ISA及侧支处;腔内团块未覆盖支架丝与覆盖支架丝(13%比2%,p<0.01)[21]。支架丝未覆盖已被认为是支架内血栓形成的主要决定因子,腔内团块在未覆盖支架丝中较多[19]。另一项研究发现BVS1.1 1年的随访OCT发现96.69%支架丝被覆盖[42];在ABSORB研究中,OCT发现BVS支架丝2年的覆盖率为99%[43]。BRS置入过程中采用优化技术,可降低未贴壁支架丝,能降低随访过程中未覆盖支架丝和支架内血栓形成的发生率。
BRS是未来支架发展的方向,广泛应用于临床之前尚有很多问题待解决,如BRS支架内血栓发生率较高,可能与BRS置入后的预后有密切关系。支架内血栓形成原因可能与患者基本病情、手术操作、支架类型、支架中抗增殖药物以及术后抗血小板药物使用情况有关。将OCT用于指导BRS置入过程,可以观察到BRS在病变血管的微观情况以便于更好地置入支架并能准确评估置入后支架及血管的变化,为更精确地改善预后提供极大的参考价值。OCT与BRS的结合将会是冠状动脉介入领域的主要发展方向。
[1] Chen JH, Wu YZ, Shen L, et al. First-in-man implantation of the XINSORB bioresorbable sirolimus-eluting scaffold in China. Chin Med J (Engl), 2015,128(9):1275-1276.
[2] Capodanno D, Gori T, Nef H, et al. Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention,2015,10(10):1144-1153.
[3] Cassese S, Byrne RA, Ndrepepa G, et al. Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet,2016,387(10018):537-544.
[4] Brugaletta S, Gori T, Low AF, et al. Absorb bioresorbable vascular scaffold versus everolimus-eluting metallic stent in ST-segment elevation myocardial infarction: 1-year results of a propensity score matching comparison: the BVS-EXAMINATION Study (bioresorbable vascular scaffold-a clinical evaluation of everolimus eluting coronary stents in the treatment of patients with ST-segment elevation myocardial infarction). JACC Cardiovasc Interv, 2015,8(1 Pt B):189-197.
[5] Kang SH, Chae IH, Park JJ, et al. Stent thrombosis with drugeluting stents and bioresorbable scaffolds: evidence from a network meta-analysis of 147 trials. JACC Cardiovasc Interv,2016 ,9(12):1203-1212.
[6] Gao R, Yang Y, Han Y, et al. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease:ABSORB China trial. J Am Coll Cardiol, 2015,66(21):2298-2309.
[7] Onuma Y, Serruys PW, Muramatsu T, et al. Incidence and imaging outcomes of acute scaffold disruption and late structural discontinuity after implantation of the absorb everolimus-eluting fully bioresorbable vascular scaffold: optical coherence tomography assessment in the ABSORB cohort B Trial (A Clinical Evaluation of the Bioabsorbable Everolimus Eluting Coronary Stent System in the Treatment of Patients With De Novo Native Coronary Artery Lesions). JACC Cardiovasc Interv, 2014,7(12):1400-1411.
[8] Abizaid A, Ribamar Costa J Jr, Bartorelli AL, et al. The ABSORB EXTEND study: preliminary report of the twelvemonth clinical outcomes in the first 512 patients enrolled.EuroIntervention, 2015,10(12):1396-1401.
[9] Serruys PW, Chevalier B, Dudek D, et al. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions(ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet, 2015,385(9962):43-54.
[10] Kraak RP, Hassell ME, Grundeken MJ, et al. Initial experience and clinical evaluation of the Absorb bioresorbable vascular scaffold (BVS) in real-world practice: the AMC Single Centre Real World PCI Registry. EuroIntervention, 2015,10(10):1160-1168.
[11] Caiazzo G, Kilic ID, Fabris E, et al. Absorb bioresorbable vascular scaffold: What have we learned after 5 years of clinical experience? Int J Cardiol, 2015,201:129-136.
[12] Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimuseluting metallic stent for the treatment of coronary artery stenosis(ABSORB II): a 3 year, randomised, controlled, single-blind,multicentre clinical trial. Lancet, 2016,388(10059):2479-2491.
[13] Onuma Y, Serruys PW. Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization?Circulation, 2011,123(7):779-797.
[14] Brown AJ, McCormick LM, Braganza DM, et al. Expansion and malapposition characteristics after bioresorbable vascular scaffold implantation. Catheter Cardiovasc Interv, 2014,84(1):37-45.
[15] Verheye S, Ormiston JA, Stewart J, et al. A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results. JACC Cardiovasc Interv, 2014,7(1):89-99.
[16] Naganuma T, Latib A, Panoulas VF, et al. Delayed disruption of a bioresorbable vascular scaffold. JACC Cardiovasc Imaging,2014,7(8):845-847.
[17] Pan M, Romero M, Ojeda S, et al. Fracture of Bioresorbable Vascular Scaffold After Side-Branch Balloon Dilation in Bifurcation Coronary Narrowings. Am J Cardiol, 2015,116(7):1045-1049.
[18] Sato K, Panoulas VF, Naganuma T, et al. Bioresorbable vascular scaffold strut disruption after crossing with an optical coherence tomography imaging catheter. Int J Cardiol, 2014,174(3): e116-e119.
[19] Räber L, Brugaletta S, Yamaji K, et al. Very Late Scaffold Thrombosis: Intracoronary Imaging and Histopathological and Spectroscopic Findings. J Am Coll Cardiol, 2015,66(17):1901-1914.
[20] Gutiérrez-Chico JL, Gijsen F, Regar E, et al. Differences in neointimal thickness between the adluminal and the abluminal sides of malapposed and side-branch struts in a polylactide bioresorbable scaffold: evidence in vivo about the abluminal healing process. JACC Cardiovasc Interv, 2012,5(4):428-435.
[21] Gomez-Lara J, Radu M, Brugaletta S, et al. Serial analysis of the malapposed and uncovered struts of the new generation of everolimus-eluting bioresorbable scaffold with optical coherence tomography. JACC Cardiovasc Interv, 2011 ,4(9):992-1001.
[22] Ohno Y, Attizzani GF, Capodanno D, et al. Longitudinal elongation, axial compression, and effects on strut geometry of bioresorbable vascular scaffolds: insights from 2- and 3-dimensional optical coherence tomography imaging. JACC Cardiovasc Interv,2015,8(3):e35-e37.
[23] Attizzani GF, Ohno Y, Capodanno D, et al. New insights on acute expansion and longitudinal elongation of bioresorbable vascular scaffolds in vivo and at bench test: a note of caution on reliance to compliance charts and nominal length. Catheter Cardiovasc Interv, 2015 ,85(4):E99-E107.
[24] Bourantas CV, Papafaklis MI, Kotsia A, et al. Effect of the endothelial shear stress patterns on neointimal proliferation following drug-eluting bioresorbable vascular scaffold implantation:an optical coherence tomography study. JACC Cardiovasc Interv,2014,7(3):315-324.
[25] Gargiulo G, Longo G, Capodanno D, et al. Cyphering the mechanism of late failure of bioresorbable vascular scaffolds in percutaneous coronary intervention of the left main coronary artery. JACC Cardiovasc Interv, 2015,8(6):e95-e97.
[26] Farooq V, Serruys PW, Heo JH, et al. Intracoronary optical coherence tomography and histology of overlapping everolimuseluting bioresorbable vascular scaffolds in a porcine coronary artery model: the potential implications for clinical practice. JACC Cardiovasc Interv, 2013 ,6(5):523-532.
[27] Koskinas KC, Chatzizisis YS, Antoniadis AP, et al. Role of endothelial shear stress in stent restenosis and thrombosis:pathophysiologic mechanisms and implications for clinical translation. J Am Coll Cardiol, 2012,59(15):1337-1349.
[28] Chamié D, Bezerra HG, Attizzani GF, et al. Incidence,predictors, morphological characteristics, and clinical outcomes of stent edge dissections detected by optical coherence tomography.JACC Cardiovasc Interv, 2013,6(8):800-813.
[29] Guo J, Chen YD, Tian F, et al. Optical coherence tomography assessment of edge dissections after drug-eluting stent implantation in coronary artery. Chin Med J (Engl), 2012,125(6):1047-1050.
[30] Ohno Y, Mangiameli A, Attizzani GF, et al. Optical coherence tomography assessment of late intra-scaffold dissection: a new challenge of bioresorbable scaffolds. JACC Cardiovasc Interv,2015,8(1 Pt A):e11- e12.
[31] van Ditzhuijzen NS, Ligthart J, Tu S, et al. Optical coherence tomography-guided bifurcation stenting of a coronary artery dissection. Can J Cardiol, 2014,30(8):956.e11- e14.
[32] Cuesta J, Bastante T, Rivero F, et al. Coronary Pleating Mimicking Coronary Ruptures, Dissections, and Thrombi on Optical Coherence Tomography. Circ Cardiovasc Interv, 2016 ,9(5):e003654.
[33] Bouki KP, Sakkali E, Toutouzas K, et al. Impact of coronary artery stent edge dissections on long-term clinical outcome in patients with acute coronary syndrome: an optical coherence tomography study. Catheter Cardiovasc Interv, 2015,86(2):237-246.
[34] Nakano M, Otsuka F, Yahagi K, et al. Human autopsy study of drug-eluting stents restenosis: histomorphological predictors and neointimal characteristics. Eur Heart J, 2013 ,34(42):3304-3313.
[35] Radu MD, Räber L, Kalesan B,et al. Coronary evaginations are associated with positive vessel remodelling and are nearly absent following implantation of newer-generation drug-eluting stents: an optical coherence tomography and intravascular ultrasound study.Eur Heart J, 2014 ,35(12):795-807.
[36] Gori T, Jansen T, Weissner M, et al. Coronary evaginations and peri-scaffold aneurysms following implantation of bioresorbable scaffolds: incidence, outcome, and optical coherence tomography analysis of possible mechanisms. Eur Heart J ,2016,37(26):2040-2049.
[37] Malle C, Tada T, Steigerwald K, et al. Tissue characterization after drug-eluting stent implantation using optical coherence tomography. Arterioscler Thromb Vasc Biol, 2013,33(6):1376-1383.
[38] Imai M, Kadota K, Goto T, et al. Incidence, risk factors, and clinical sequelae of angiographic peri-stent contrast staining after sirolimus-eluting stent implantation. Circulation, 2011,123(21):2382-2391.
[39] Räber L, Togni M, Wandel S, et al. Long-term clinical outcome and anti-restenotic eff i cacy of drug-eluting stents: Results of the SIRTAX-LATE investigation. Am JCardiol (Suppl) , 2009,104:XV.
[40] Toušek P, Kočka V, Malý M, et al. Neointimal coverage and late apposition of everolimus-eluting bioresorbable scaffolds implanted in the acute phase of myocardial infarction: OCT data from the PRAGUE-19 study. Heart Vessels, 2016,31(6):841-845.
[41] Wu Y, Shen L, Ge L, et al. Six-month outcomes of the XINSORB bioresorbable sirolimus-eluting scaffold in treating single de novo lesions in human coronary artery. Catheter Cardiovasc Interv, 2016,87 Suppl 1:630-637.
[42] Serruys PW, Onuma Y, Dudek D, et al. Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis:12-month clinical and imaging outcomes. J Am Coll Cardiol,2011,58(15):1578-1588.
[43] Ormiston JA, Serruys PW, Onuma Y, et al. First serial assessment at 6 months and 2 years of the second generation of absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study. Circ Cardiovasc Interv, 2012,5(5):620-632.
R543.3
10. 3969/j. issn. 1004-8812. 2017. 10. 009
国家自然科学基金(81370323);国家自然科学基金(81670319)
201700 上海,复旦大学附属中山医院青浦分院心内科(吕续成、洪斌);上海市心血管病研究所 复旦大学附属中山医院心内科(沈雳、葛均波)
洪斌,Email:qingpuzhongxin@163.com
2017-03-17)