朱彦蓉 张代民 陈绍良 叶鹏
综 述
钙激活钾通道与冠脉支架内新生动脉粥样硬化机制
朱彦蓉 张代民 陈绍良 叶鹏
冠状动脉疾病;支架内新生动脉粥样硬化;巨噬细胞;钙激活钾通道;经皮冠状动脉支架置入术
冠状动脉粥样硬化性心脏病(冠心病)是危害人类健康的严重心血管疾病之一。经皮冠状动脉支架植入术(PCI)已经成为治疗冠心病的常规手段。支架生物工程技术的飞速发展,支架结构、生产工艺、药物载体及涂层药物等工艺改进[1-4],提高了支架植入术临床冠心病介入治疗的疗效。相比再狭窄率高达50%的经皮冠脉成形术(PTCA)[5],裸金属支架(BMS)及药物涂层支架(DES)再狭窄率大幅下降;但10%~20%的支架内再狭窄(in-stent restenosis,ISR)率及晚期支架血栓(LST)仍是制约DES植入术后临床效果的重要因素[6,7]。支架内再狭窄及晚期支架内血栓可致患者再次发生包括心绞痛、急性心肌梗死,甚至心源性猝死等主要心血管不良事件(MACE),是目前冠心病介入支架治疗后面临的严峻问题。本文就钙激活钾通道与冠脉介入治疗支架内再狭窄的研究进展进行综述。
支架内新生动脉粥样硬化(in-stent neoatherosclerosis,ISNA)是具有或不具有坏死核心的新生内膜内富含脂质的泡沫巨噬细胞簇[8]。DES及BMS植入后,血管内超声(IVUS)发现新生内膜增殖、钙化及坏死,且支架植入时间越长,新生内膜中坏死及钙化的成分越多[9]。分辨率达到微米水平的光学干涉断层成像(OCT)技术证据及尸检结果显示,ISNA是DES植入后支架内再狭窄及晚期支架内血栓的重要原因[7,10-13],即支架治疗失败的共同路径。
对于动脉粥样斑块旋切术患者,斑块中巨噬细胞浸润及血液中单核细胞活化状态与再狭窄相关[14]。病理发现大量的炎症细胞聚集在斑块内,主要是巨噬细胞、淋巴细胞和嗜酸性粒细胞[11];在兔、猪球囊损伤模型中,早期单核细胞从管腔浸润至血管损伤局部血栓内[15]。DES植入时血管内膜在球囊及支架作用下遭受破坏,触发损伤修复急性炎症反应[16];斑块挤破后释放大量组织因子,激活凝血酶,进而激活血小板并释放大量活性物质及炎性因子,中性粒细胞及单核细胞游走并浸润于内膜下形成巨噬细胞。以巨噬细胞为主导的炎症反应促进中膜平滑肌细胞迁移,同时损伤处的血栓为平滑肌细胞增殖提供了一个可吸收的载体[15]。DES诱发靶病变血管慢性而持续的炎症反应,导致靶病变以“再内皮化延迟”为特点“愈合延迟”[7,17]。
ISNA不但与支架植入处的炎症反应及损伤血管的“愈合延迟”有关,而且与血管损伤修复过程及动脉粥样硬化过程密切相关。损伤修复过程及动脉粥样硬化过程是个炎症过程。巨噬细胞及迁移的中膜平滑肌细胞开启了吞噬过程的关键步骤[18],巨噬细胞在炎症因子的作用下,上调清道夫受体,大量吞噬支架下原有聚集的脂质成分,快速诱发泡沫细胞的形成、凋亡、坏死及崩解,形成新的脂核。支架涂层上的药物释放完后,对平滑肌细胞增殖的抑制作用逐渐消失,加之DES结构持续的慢性炎症反应,共同作用刺激平滑肌细胞过度增殖,并合成大量的细胞外基质,使内膜发生重构[19]。DES支架植入1个月至3年内累计有约1/3支架内病变阶段发生ISNA,甚至早在DES植入后4个月就出现了ISNA,且一半以上的粥样斑块内可以发现泡沫巨噬细胞簇[11,18],经皮介入治疗后,新生内膜处的炎症细胞量增加2.4倍[20]。因此,炎症反应贯穿于支架植入后损伤修复整个过程,是ISNA形成关键因素。
钙激活钾通道(KCa channel)属于化学门控型的钾通道家族成员之一。其门控行为受细胞内钙离子浓度和膜电位的控制,按电导大小分为小电导、中电导和大电导3个亚型。KCa3.1属于中电导型钙激活钾通道,在可兴奋细胞及非可兴奋细胞膜上都有分布[21]。TRAM-34为其特异性阻断剂[22]。KCa3.1参与细胞分泌、细胞周期调控、细胞迁移和增殖等多种生理活动[21]。
免疫细胞中,KCa3.1的主要功能是通过调节膜电位及钙信号来调节免疫细胞的激活、增殖等许多钙依赖性的生理活动。KCa3.1通道对于T淋巴细胞的激活和增殖有重要作用,参与T细胞膜复极化、胞内钙信号调节、T淋巴细胞活化和凋亡等一系列重要的生理过程[23-25]。Nicolaou等[26]报道,在T细胞和巨噬细胞的免疫突触形成中,KCa3.1与巨噬细胞的吞噬活动及随后抗原呈递行为有关。KCa3.1选择性阻断剂TRAM-34对胶原蛋白抗体诱导的风湿性关节炎有治疗作用[25]。KCa3.1通道也分布肥大细胞[27]和巨噬细胞[28],KCa3.1对巨噬细胞的迁移活动起重要作用受到了免疫学界的关注[29]。KCa3.1通道通过维持膜的复极化电位来调节细胞内的钙离子流动,进而影响细胞的激活和增殖,其阻断剂作为可能的免疫抑制的靶点,有望治疗多种自身免疫缺陷病[27,28,30,31]。
KCa3.1调节巨噬细胞吞噬功能。但KCa3.1如何发挥调节作用,对支架内新生动脉粥样斑块形成机制研究还有待进一步深入探讨。这将有助于人们更好地认识支架内再狭窄的机制,对指导筛选支架内狭窄治疗的新靶点具有重要的理论意义和实用价值。
[1]Garg S,Bourantas C,Serruys PW.New concepts in the design of drugeluting coronary stents.Nat Rev Cardiol,2013,10:248-260.
[2]Scacciatella P,D′Amico M,Pennone M,et al.Effects of EPC capture stent and CD34+mobilization in acute myocardial infarction.Minerva cardioangiologica,2013,61:211-219.
[3]TCT 2010会议发布多项药物洗脱冠脉支架临床研究结论.中国心血管病研究,2010,8:834.
[4]于一,赵迎新,史冬梅,等.生物可吸收支架的最新研究进展.中国介入心脏病学杂志,2016,24:521-525.
[5]Nobuyoshi TK,Nosaka SM.Restenosis after successful percutaneous transluminal coronary angioplasty:serial angiographic follow-up of 229 patients.J Am Coll Cardiol,1988,12:616-623.
[6]Mohan S,Dhall A.A comparative study of restenosis rates in bare metal and drug-eluting stents.Int J Angiol,2010,19:e66-72.
[7]Park SJ,Kang SJ,Virmani R,et al.In-stent neoatherosclerosis:a final common pathway of late stent failure.J Am Coll Cardiol,2012,59:2051-2057.
[8]Nakazawa G,Otsuka F,Nakano M,et al.The pathology of neoatherosclerosis in human coronary implants bare-metal and drugeluting stents.J Am Coll Cardiol,2011,57:1314-1322.
[9]Kang SJ,Mintz GS,Park DW,et al.Tissue characterization of in-stent neointima using intravascular ultrasound radiofrequency data analysis.Am J Cardiol,2010,106:1561-1565.
[10]Wong DT,Soh SY,Malaiapan Y.In-stent thrombosis due to neoatherosclerosis:insight from optical coherence tomography.J Invasive Cardiol,2013,25:304.
[11]Otsuka F,Vorpahl M,Nakano M,et al.Pathology of secondgeneration everolimus-eluting stents versus first-generation sirolimus-and Paclitaxel-eluting stents in humans.Circulation,2014,129:211-223.
[12]Tian F,Chen Y,Liu H,et al.Assessment of Characteristics of Neointimal Hyperplasia after Drug-Eluting Stent Implantation in Patients with Diabetes Mellitus:An Optical Coherence Tomography Analysis.Cardiology,2014,128:34-40.
[13]Nakazawa G,Vorpahl M,Finn AV,et al.One step forward and two steps back with drug-eluting-stents:from preventing restenosis to causing late thrombosis and nouveau atherosclerosis.JACC Cardiovasc Imaging,2009,2:625-628.
[14]Pietersma A,Kofflard M,de Wit LE,et al.Late lumen loss after coronary angioplasty is associated with the activation status of circulating phagocytes before treatment.Circulation,1995,91:1320-1325.
[15]Schwartz RS,Holmes DR Jr,Topol EJ.The restenosis paradigm revisited:an alternative proposal for cellular mechanisms.J Am Coll Cardiol,1992,20:1284-1293.
[16] Touchard AG,Schwartz RS.Preclinical restenosis models:challenges and successes.Toxicol Pathol,2006,34:11-18.
[17]Joner M,Finn AV,Farb A,et al.Pathology of drug-eluting stents in humans:delayed healing and late thrombotic risk.J Am Coll Cardiol,2006,48:193-202.
[18]Ross R.Atherosclerosis-an inflammatory disease.N Engl J Med Overseas Ed,1999,340:115-126.
[19]Yin RX,Yang DZ,Wu JZ.Nanoparticle drug-and geneeluting stents for the prevention and treatment of coronary restenosis.Theranostics,2014,4:175-200.
[20] Toutouzas K,Colombo A,Stefanadis C.Inflammation and restenosis after percutaneous coronary interventions.Eur Heart J,2004,25:1679-1687.
[21]Begenisich T,Nakamoto T,Ovitt CE,et al.Physiological roles of the intermediate conductance,Ca2+-activated potassium channel Kcnn4.J Biol Chem,2004,279:47681-47687.
[22]Girodet PO,Ozier A,Carvalho G,et al.The KCa3.1 blocker TRAM 34 attenuates airway remodeling and eosinophilia in a mouse asthma model.Am J Respir Cell Mol Biol,2013,48:212-219.
[23]Di L,Srivastava S,Zhdanova O,et al.Nucleoside diphosphate kinase B knock-out mice have impaired activation of the K+channel KCa3.1,resulting in defective T cell activation.J Biol Chem,2010,285:38765-38771.
[24]Ohya S,Niwa S,Yanagi A,et al.Involvement of dominantnegative spliced variants of the intermediate conduetance Ca2+-activated K+channel,K(Ca)3.1,in immune function of lymphoid cells.Biol Chem,2011,286:16940-16952.
[25]Chou CC,Lunn CA,Murgolo NJ.KCa3.1:target and marker for cancer,autoimmune disorder and vascular inflammation?Expert Rev Mol Diagn,2008,8:179-187.
[26]Nicolaou SA,Neumeier L,Peng Y,et al.The Ca2+-activated K(+) channel KCa3.1 compartmentalizes in the immunological synapse of human T lymphocytes.Am J Physiol Cell Physiol,2007,292:C1431-1439.
[27]Forsythe P,Wang B,Khambati I,et al.Systemic effects of ingested lactobacil/us rhamnosus:inhibition of mast cell membrane potassium(IKCa)current and degranulation.PLoS One,2012,7:e41234.
[28] Wulff H,Kohler R.Endothelial small-and Intermediateconductante KCa channels:an update on their pharmacology and usefulness as cardiovascular targets.J Cardiovasc Pharmacol,2013,61:102-112.
[29]Toyama K,Wulff H,Chandy KG,et al.The intermediateconductance calcium activeted potassium channelKCa3.1 contributes to atherogenesis in mice and humans.J Clin Invest,2008,118:3025-3037.
[30] Cahalan MD,Chandy KG.The functional network of ion channels in T lympho-cytes.Immunol Rev,2009,231:59-87.
[31]Wulff H,Castle NA.Therapeutic potential of KCa3.1 blockers:recentadvances and promising trends.Expert Rev Clin Pharmacol,2010,3:385-396.
Calcium activated potassium channels and in-stent neoatherosclerosis
Coronary artery disease;In-stent neoatherosclerosis;Macrophage;Calcium activated potassium channel;Percutaneous coronary intervention
10.3969/j.issn.1672-5301.2017.11.001
R541.4
A
1672-5301(2017)11-0961-03
国家自然科学基金(项目编号:81370304);国家人社部和南京市留学回国人员科技活动择优资助项目(2014);江苏省自然科学基金(项目编号:BK20151085);南京市医学科技发展项目(项目编号:YKK15101,ZKX16048);江苏省双创人才资助(2015);江苏省六大人才高峰(项目编号:2016-WSN-185);江苏省333工程科研项目(项目编号:BRA2016025)
210006 江苏省南京市,南京医科大学附属南京医院,南京市第一医院心内科
张代民,E-mail:daiminzh@126.com
2017-06-02)