邢媛媛 吕学东 陈金亮 陈建荣*
支气管哮喘患者呼出气冷凝液中炎性因子水平与病情程度相关性分析*
邢媛媛①吕学东①陈金亮①陈建荣①*
目的:研究支气管哮喘患者呼出气冷凝液(EBC)中炎性因子水平与患者病情的相关性。方法:选择40例确诊为支气管哮喘的患者将其纳入哮喘组,并以同期40名体检人员作为健康对照组。收集哮喘组患者急性发作期、缓解期以及健康对照组的EBC,比较两组EBC中白细胞介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)水平,探讨呼出气中IL-6和TNF-α水平与哮喘患者病情、肺功能及血气等指标的相关性。结果:哮喘组急性发作期患者EBC中TNF-α和IL-6水平分别为(36.29±4.62)ng/ml和(10.46±1.25)ng/ml,明显高于健康对照组和缓解期,差异有统计学意义(t=9.57,t=8.85,t=3.87;P<0.05),缓解期EBC中TNF-α水平明显高于健康对照组,差异有统计学意义(t=16.53;P<0.05)。TNF-α和IL-6均与哮喘病情程度成正相关、与FEV1/ FVC、PEF成负相关(r=-0.514,r=-0.275,r=-0.31;P<0.05),与用力肺活量(FVC)、酸碱度(pH)、氧分压(PaO2)及二氧化碳分压(PaCO2)水平无明显相关性。结论:EBC中TNF-α和IL-6水平可以反应哮喘患者病情严重程度,有助于评价哮喘患者病情,值得临床推广运用。
支气管哮喘;呼出气冷凝液;肿瘤坏死因子-a;白细胞介素-6;炎性因子
[First-author’s address]Department of Respiration, The Second Affiliated Hospital of Nantong University, Nantong 226001, China.
支气管哮喘是一类非特异性慢性气道炎症,临床以通气可逆性受限为主要表现。支气管哮喘患者存在气道高反应性,其炎症因子活化,炎症介质释放在疾病的发生、发展过程有重要作用,是本疾病的重要病理环节[1-5]。炎症因子在哮喘患者气道中活化,可造成损伤导致气道重构,最终可引起气道不可逆损伤。因此,检测气道炎症反应程度,及时采取相应措施意义重大[6-7]。临床上采用诱导痰和支气管肺泡灌洗等方式进行气道炎症检测较为困难,而且有禁忌证,故有研究提示,呼出气冷凝液(exhaledbreath condensate,EBC)可检测气道炎症反应的程度。EBC检测通过收集患者呼出气后,引入一个冷却系统低温使得呼出气冷凝为液体,是一种新的无创技术,收集EBC操作较为简单,既往研究证实EBC可以反应气道炎症反应程度[8-9]。因此,本研究对比分析了支气管哮喘患者及健康者EBC中白细胞介素-6(interleukin,IL-6)和肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)水平,并探讨其与哮喘患者各临床指标的相关性,以有助于病情的评价。
1.1 一般资料
选取2014年9月至2016年9月南通大学第二附属医院呼吸科收治的40例哮喘急性发作患者,并将其纳入哮喘组,同期选取40名健康体检人员作为健康对照组,回顾性分析80例受试者的临床资料。哮喘组中男性22例,女性18例;年龄23~78,平均年龄(58.1±6.8)岁;其中轻度哮喘9例、中度哮喘15例、重度哮喘16例。健康对照组中男性26例,女性14例;年龄25~75,平均年龄(57.4±7.2)岁,两组在年龄、性别等资料比较无差异,具有可比性。
1.2 纳入与排除标准
(1)纳入标准:①符合《支气管哮喘防治指南》中哮喘急性发作诊断标准[10];②入组前3个月内未接受糖皮质激素治疗;③无药物过敏史;④签署知情同意书。
(2)排除标准:①伴心、肝、肾等脏器严重疾病;②妊娠及哺乳期女性;③合并严重全身感染的患者。
1.3 仪器与材料
采用HAAK EK20 Ecoscreen型EBC收集器(德国JAEGER公司);PeeKman8肺功能检测仪(四川思科达科技有限公司);IL-1620动脉血气分析仪(雷度米特医疗设备(丹麦)有限公司)。
1.4 检测方法
支气管哮喘急性发作患者均根据患者病情需要给予对症治疗,包括吸氧、解痉平喘及调整电解质水平等。采用酶联免疫吸附试剂盒及配套的酶标仪测定EBC中炎性因IL-6和TNF-α的含量;采用PeeKman 8肺功能检测仪测定两组用力肺活量(forced vital capacity,FVC)、1 s用力呼气容积(forced expiratory volume in one second,FEV1)、最大呼气流量(peak expiratory flow,PEF);采用IL-1620动脉血气分析仪检测动脉血pH值、氧分压(PaO2)及二氧化碳分压(PaCO2)。
1.5 观察指标
哮喘组治疗前和疾病缓解后及对照组均进行肺功能(FVC、FEV1、PEF)、血气分析(pH、PaO2、PaCO2)、EBC中炎性因子IL-6和TNF-α水平检测。
1.6 统计学方法
应用SPSS 21.0统计软件进行资料的统计分析。定性资料以%表示,比较采用x2检验;定量资料以均数±标准差(x-±s)表示,比较采用t检验,多组计量资料比较采用单因素方差分析。采用pearson或sperman相关性分析,探讨冷凝液中炎性因子水平与哮喘患者肺功能、血气分析指标的相关性,以P<0.05为差异有统计学意义。
2.1 两组肺功能比较
对照组FVC、FEV1以及FEV1/FVC(%)值分别为(2.85±0.53)L、(2.39±0.29)L和(89.64±8.51)%,明显优于哮喘急性发作期患者肺功能指标,两组比较差异有统计学意义(t=9.57,t=8.49,t=3.87;P<0.05),见表1。
表1 两组肺功能比较(±s)
表1 两组肺功能比较(±s)
?
2.2 两组EBC中TNF-α和IL-6水平比较
治疗前哮喘急性发作期患者EBC中TNF-α和IL-6水平分别为(36.29±4.62)ng/ml和(10.46±1.25)ng/ml,明显高于健康对照组和缓解期;哮喘组急性发作期患者EBC中TNF-α和IL-6水平与健康对照组比较,其差异有统计学意义(t=8.85,t=16.53;P<0.05),缓解期EBC中TNF-α水平明显高于健康对照组,差异有统计学意义t=17.8,P<0.05),见表2。
2.3 急性发作期患者EBC中TNF-α和IL-6与患者肺功能及血气指标相关性分析
本研究结果显示,TNF-α和IL-6与哮喘程度成正相关,与FEV1和PEF成负相关(r=-0.514,r=-0.275,r=-0.315,P<0.05),与FEV1、pH、PaO2及PaCO2无明显相关性,见表3。
表2 两组不同时期EBC中TNF-α和IL-6水平比较(±s)
表2 两组不同时期EBC中TNF-α和IL-6水平比较(±s)
?
表3 40例哮喘急性发作期患者EBC中TNF-α、IL-6与肺功能、血气分析的相关性
哮喘急性发作是以持续性气流受限为临床特点,可出现严重呼吸困难、心力衰竭,甚至危及患者生命。哮喘患者存在气道高反应性,气道炎性因子激活诱发支气管痉挛是哮喘患者急性发作的主要病理过程,控制气道炎症,减少气道痉挛是主要治疗目标[11-14]。对于哮喘患者的治疗主要以控制病情急性发作,因此早期检测气道炎症状态意义重大[15-16]。诱导痰液和支气管肺泡灌洗技术均可反映气道炎性反应程度,但均有禁忌证,且临床操作较为困难,运用受到限制,为此,寻找一种快速、简单的检测气道炎症的方法十分重要。
人体呼出气经过一种冷凝装置后可形成冷凝液,冷凝液和血液、尿液及痰液等标本一样可以反应人体的一些代谢指标[17]。既往的研究中已经证实,EBC能反应慢性阻塞性肺疾病患者气道炎症反应程度[18-20]。本研究收集支气管哮喘患者EBC,观察哮喘急性发作患者冷凝液中TNF-α和IL-6水平与健康对照组的差异,并探讨冷凝液中TNF-α和IL-6水平与哮喘患者病情的相关性。局部炎症反应增强、炎性介质募集是造成哮喘患者病情进展最基本的病理环节。EBC中TNF-α、IL-1β、IL-6以及IL-18等炎性因子的含量能够反映炎症程度,进而评估哮喘的病情严重程度[21-24]。
TNF-α是炎症反应过程中最先发生变化的炎性因子,不仅直接参与气道上皮的炎症性损伤,还能够在局部招募多种炎症细胞;IL-6是内源性趋化因子,能够介导肺脏组织局部炎症反应的级联放大,促进支气管平滑肌炎症损伤[25-28]。
本研究通过比较健康者与哮喘患者冷凝液中TNF-α和IL-6水平发现,健康患者、哮喘缓解期患者及哮喘急性发作患者冷凝液中TNF-α和IL-6水平依次递增,且各组间差异具有统计学意义。对哮喘急性发作患者冷凝液中TNF-α、IL-6水平、哮喘严重程度指标、肺功能以及血气分析结果进行相关性分析提示,炎性因子水平与患者病情成正相关,提示EBC中炎性因子水平可以作为评价哮喘患者病情的新指标,为今后哮喘的治疗效果评价提供新的可靠手段。这与本研究之前的研究结果类似。及时了解哮喘患者病情程度给予相应的治疗是控制哮喘急性发作的重要手段,EBC收集是一项新技术,已经被运用于慢性肺疾病的病情监测,本研究结果进一步证实了EBC在肺部疾病中的运用价值。
综上所述,EBC收集简单、方便且无创,对冷凝液中生物组分进行检测有助于了解呼吸道和肺部的疾病及病情,同时也可以作为判断疾病治疗效果及预后的重要手段,哮喘急性发作患者EBC中TNF-α和IL-6水平明显高于缓解期及健康患者,EBC中TNF-α和IL-6水平可以反应哮喘患者病情严重程度,有助于评价哮喘患者病情,值得临床推广运用。
[1]Hoffmeyer F,Raulf-Heimsoth M,Bruning T. Exhaled breath condensate and airway inflammation[J].CurrOpin Allergy Clin Immunol,2009,9(1):16-22.
[2]Soyer OU,Dizdar EA,Keskin O,et al.Comparison of two methods for exhaled breath condensate collection[J].Allergy,2006,61(8):1016-1018.
[3]Carter SR,Davis CS,Kovacs EJ.Exhaled breath condensate collection in the mechanically ventilated patient[J].Respir Med,2012,106(5):601-613.
[4]Kofler NM,Shawber CJ,Kangsamaksin T,et al. Notch signaling in developmental and tumor angiogenesis[J].Genes Cancer,2011,2(12):1106-1116.
[5]Lohela M,Bry M,Tammela T,et al.VEGFsand receptors involved in angiogenesis versus lymphangiogenesis[J].CurrOpin Cell Biol,2009,21(2):154-165.
[6]Takahashi T,Yamaguchi S,Chida K,et al.A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells[J].EMBO J,2001,20(11):2768-2778.
[7]Holmqvist K,Cross MJ,Rolny C,et al.The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor(VEGF) receptor-2 and regulates VEGF-dependent cellular migration[J].J Biol Chem,2004,279(21):22267-22275.
[8]Lamalice L,Houle F,Huot J.Phosphorylation of Tyr1214 within VEGFR-2 triggers the recruitment of Nck and activation of Fyn leading to SAPK2/p38 activation and endothelial cell migration in response to VEGF[J].J Biol Chem,2006,281(45):34009-34020.
[9]Matsumoto T,Bohman S,Dixelius J,et al.VEGF receptor-2Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis[J]. EMBO J,2005,24(13):2342-2353.
[10]《中国全科医学》篇首.中国支气管哮喘防治指南(基层版)—支气管哮喘的诊断与鉴别诊断[J].中国全科医学,2013,16(25):3030.
[11]Laramee M,Chabot C,Cloutier M,et al.The scaffolding adapter Gab1 mediates vascular endothelial growth factor signaling and is required for endothelial cell migration and capillary formation[J].J Biol Chem,2007,282(11):7758-7769.
[12]Downward J.PI3-kinase,Akt and cell survival[J]. Semin Cell Dev Biol,2004,15(2):177-182.
[13]Gessner C,Rechner B,Hammerschmidt S,et al. Angiogenic markers in breath condensate identify non-small cell lung cancer[J].Lung Cancer,2010,68(2):177-184.
[14]Urbaniak A,Zieba M,Zwolinska A,et al. [Comparison of local and systemic inflammatory markers in patients with community-acquired pneumonia and pneumonia coexisting with lung cancer][J].Pneumonol Alergol Pol,2011,79(2):90-98.
[15]Dalaveris E,Kerenidi T,Katsabeki-Katsafli A,et al. VEGF,TNF-αlpha and 8-isoprostane levels in exhaled breath condensate and serum of patients with lung cancer[J].Lung Cancer,2009,64(2):219-225.
[16]Azamfirei L,Gurzu S,Solomon R,et al.Vascular endothelial growth factor:a possible mediator of endothelial activation in acute respiratory distress syndrome[J].Minerva Anestesiol,2010,76(8):609-616.
[17]Su LX,Meng K,Zhang X,et al.Diagnosing Ventilator-Associated Pneumonia in Critically Ill Patients With Sepsis[J].Am J Crit Care,2012,21:110-119.
[18]Hoshino M,Takahashi M,AoikeN.Expression of vascular endothelial growth factor,basic fibroblast growth factor,and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis[J].J Allergy Clin Immunol,2001,107(2):295-301.
[19]Yong CL,HernKL.Vascular endothelial growth factor in patients with acute asthma[J].J Allergy ClinImmunol,2001,107(6):1106-1107.
[20]Lee SY,Kwon S,Kim KH,et al.Expression of vascular endothelial growth factor and hypoxia-inducible factor in the airway of asthmatic patients[J].Ann Allergy Asthma Immunol,2006,97(6):794-799.
[21]Bikov A,Bohacs A,Eszes N,et al.Circulating and exhaled vascular endothelial growth factor in asthmatic pregnancy[J].Biomarkers,2012,17(7):648-654.
[22]Leung TF,Wong GW,Ko FW,et al.Analysis of growth factors and inflammatory cytokines in exhaled breath condensate from asthmatic children[J].Int Arch Allergy Immunol,2005,137(1):66-72.
[23]Grob NM,Aytekin M,Dweik RA.Biomarkers in exhaled breath condensate:a review of collection,processing and analysis[J].J Breath Res,2008,2(3):037004.
[24]Kastelijn EA,Rijkers GT,VanMoorsel CH,et al. Systemic and exhaled cytokine and chemokine profiles are associated with the development of bronchiolitis obliterans syndrome[J].J Heart Lung Transplant,2010,29(9):997-1008.
[25]Kowalska A,Puscinska E,Czerniawska J,et al. Markers of fibrosis and inflammation in exhaled breath condensate(EBC)and bronchoalveolar lavage fluid(BALF)of patients with pulmonary sarcoidosis-a pilot study[J].PneumonolAlergol Pol,2010,78(5):356-362.
[26]Kritselis I,Tzanetakou V,Adamis G,et al.The level of endotoxemia in sepsis varies in relation to the underlyinginfection:Impact on final outcome[J].Immunol Lett,2013,152(2):167-172.
[27]Carraro S,Andreola B,Alinovi R,et al.Exhaled Leukotriene B4 in Children With Community Acquired Pneumonia[J].Pediatr Pulmonol,2008,43(10):982-986.
[28]Heidemann SM,Sandhu H,Kovacevic N,et al. Detection of tumor necrosis factor-α and interleukin-6 in exhaled breath condensate of rats with pneumonia due to staphylococcal enterotoxin B[J].Exp Lung Res,2011,37(9):563-567.
The relationship between the inflammatory factors levels in exhaled breath condensate and condition of asthma patients/
XING Yuan-yuan, LV Xue-dong, CHEN Jin-liang, et al//China Medical Equipment,2016,13(12):112-115.
Objective: To study on the correlation between the inflammatory factors in exhaled breath condensate and condition of patients with bronchial asthma. Methods: 40 patients with bronchial asthma in our hospital from September 2014 to September were selected for study, and 40 healthy in the same period were enrolled as control group. To collect the acute attack stage, remission stage and EBC, the level of IL-6 and TNF-α in exhaled breath condensate were compared, and detect the relationship between the level of IL-6 and TNF-α in EBC and the condition of asthma. Results: The level of TNF-α and IL-6 in EBC patients in acute asthma attack stage were 36.29±4.62 and 10.46±1.25, significantly higher than the control group and remission stage. The differences were statistically significant (t=9.57, t=8.85, t=3.87; P<0.05). The TNF-α level of EBC in remission stage was significantly higher than the control group, and the difference was significant (t=16.53, P<0.05). The level of TNF-α and IL-6 had a positive correlation with the condition of the patients with bronchial asthma, but had negative correlation with the level of FEV1 and PEF (r=-0.514, r=-0.275, r=-0.31; P<0.05). It had no significant correlation with FVC, pH, PaO2and PaCO2. Conclusion: The level of TNF-α and IL-6 in EBC can reflect the severity of asthma patients, and help to assess the condition of patients with asthma. It is worth popularizing in clinical application.
Bronchial asthma; Exhaled breath condensate; Tumor necrosis factor-a; Interleukin-6; Inflammatory factor
10.3969/J.ISSN.1672-8270.2016.12.032
1672-8270(2016)12-0112-04
R562
A
2016-08-25
南通市卫生局青年科研基金(WQ2015003)“支气管哮喘患者呼出气冷凝液中炎性因子检测的研究”
①南通大学第二附属医院呼吸科 江苏 南通 226001
*通讯作者:drchenjr@163.com
邢媛媛,女,(1985- ),本科学历,医师。南通大学第二附属医院呼吸科,研究方向:哮喘患者呼出气冷凝液中炎症因子的研究。