中国典型城市水环境中邻苯二甲酸酯类污染水平与生态风险评价

2016-12-12 03:52张璐璐刘静玲何建宗李华
生态毒理学报 2016年2期
关键词:负效应邻苯二甲酸典型

张璐璐,刘静玲,何建宗,李华

1. 河北科技大学环境科学与工程学院,石家庄 050018 2. 北京师范大学环境学院 水环境模拟国家重点实验室,北京 100875 3. 香港公开大学科技学院,香港



中国典型城市水环境中邻苯二甲酸酯类污染水平与生态风险评价

张璐璐1,2,3,*,刘静玲2,何建宗3,李华1

1. 河北科技大学环境科学与工程学院,石家庄 050018 2. 北京师范大学环境学院 水环境模拟国家重点实验室,北京 100875 3. 香港公开大学科技学院,香港

邻苯二甲酸酯类(PAEs)作为一类重要的环境激素类化学物质,被广泛应用于塑料的增塑剂中。随着工业的发展,中国PAEs的需求量迅速增加,PAEs已成为中国城市水环境的重要风险因子,因此需要对其进行生态风险评价。本研究首先针对我国典型城市水环境中PAEs的污染现状进行文献综述,总结归纳得到我国典型城市水环境中PAEs的污染分布特征;其次运用熵值法计算了我国典型水环境中PAEs对于藻类、水蚤和鱼类种群的生态风险,并依据生态风险等级划分标准将PAEs生态风险划分为4个水平。文献综述结果表明我国城市水环境中的PAEs浓度多数都高于8.00 μg·L-1,超过了我国地表水环境质量标准(PRC-NS 2002)和饮用水质量标准(PRC-NS 2006)中的规定限值,且在大城市或PAEs工业区周围的污染水平要显著高于其他区域。将我国与国外典型城市水环境中PAEs的污染水平进行比较,结果表明我国水环境中的PAEs污染水平明显高于其他国家。此外,我国城市水环境中PAEs的污染不仅出现在地表水环境中,而且在广东东莞等地的地下水环境中也出现了PAEs污染,PAEs浓度范围为0.0~6.7 μg·L-1。生态风险评价的结果表明,邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二异辛酯(DEHP)和邻苯二甲酸丁苄酯(BBP)是我国城市水环境中最主要的风险因子。PAEs污染分布特征和生态风险评价的结果表明我国城市水环境中的PAEs生态风险值总体处于10 ≤ 风险熵(RQ) <100到RQ ≥ 100水平,尤其是在大城市或者PAEs工业密集区域,因此,亟需对我国城市水环境中PAEs的生态风险进行早期预警和风险管理。

邻苯二甲酸酯类(PAEs);城市水环境;污染分布特征;生态风险评价

邻苯二甲酸酯类,又称酞酸酯,缩写PAEs,是邻苯二甲酸形成的酯的统称。PAEs一般为无色液体,具有低挥发性、难溶于水和易溶于有机溶液等特点[1]。它是一类重要的环境激素类物质,主要用于塑料的增塑剂,也广泛应用于日常生活用品中,例如玩具、食品包装材料、医用血袋和胶管、乙烯地板、壁纸、清洁剂、润滑油和个人护理用品等[2]。因此,PAEs作为普遍存在的污染物广泛存在于水体、土壤和大气环境中[3-4]。例如,根据美国有毒物质释放数据库(Toxics Release Inventory (TRI) database)计算,2012年美国PAEs的释放量为1 492 674 kg,其中释放到大气环境中的PAEs有1 354 968 kg,释放到水环境中的PAEs有237 kg[5]。

由于PAEs可能具有致癌性、致畸性和致突变性[6-9],美国和其他很多国家把PAEs列为优先控制污染物[10-11]。虽然在某些区域和国家已经采取了很多控制措施来限制和降低PAEs的生产与使用[12],但在亚洲PAEs的生产、使用并未得到有效控制。随着工业的发展,我国PAEs的用量迅速增加,在2010年我国PAEs用量高达1.36×106t[13];在2010—2015期间,我国年均PAEs的用量增幅约为7.7%[14];此外,我国还是PAEs最大的进口国。由于PAEs在环境中具有难降解、生物富集和内分泌干扰效应,因此PAEs已成为我国城市水环境的重要风险因子。

对PAEs有效的环境管理取决于准确评价其生态风险水平,因此越来越多的研究对环境中PAEs的潜在生态风险进行评价[15-16]。PAEs对于水生生物的有害影响一般会随着烷基链长度的增加而加大,但由于酯类较低的水溶性特点,该趋势会在烷基链长度达到生物机体耐受量限值时发生改变[17]。根据大量的研究结果,烷基链大于6个的PAEs在溶解限值时,对于很多水生生物的急性和慢性毒性测试结果表明无毒[18]。因此,本研究主要关注低分子量的PAEs,如邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸丁苄酯(BBP)、邻苯二甲酸二己酯(DHP)和邻苯二甲酸二异辛酯(DEHP)。虽然我国的环境科学工作者已经意识到PAEs在水环境中的生态风险,但多数研究仅集中于单一水环境中PAEs的污染现状与生态风险评价,对我国典型城市水环境中PAEs的生态风险管理存在不确定性。因此,本研究首先对我国典型城市水环境中PAEs的污染现状的文献进行综述,总结归纳得到我国典型城市水环境中PAEs的污染分布特征;其次运用熵值法计算了我国典型水环境中PAEs对于藻类、水蚤和鱼类种群的生态风险,对于我国城市水环境安全具有重要的现实意义。

1 材料与方法 (Materials and methods)

1.1 数据收集方法

为了准确掌握我国典型城市水环境中PAEs的污染分布特征,本研究首先运用文献综述法对中国知网、万方、Elsevier、Springer、Google Scholar和PubMed数据库中关于我国典型城市水环境中PAEs的污染现状的文章和硕、博士论文等进行文献综述,由于通过PAEs、污染现状和分布特征等关键词收索到的文献数量较多,因此本研究主要分析有关我国典型城市水环境中PAEs污染分布特征的文章。有关PAEs对目标生物的毒理数据主要从USEPA的ECOTOXicology数据库[5]和相关文献中获得[19]。

1.2 环境介质中PAEs的分析方法

PAEs的分析步骤主要可以分为:样品前处理、萃取、清洗、分离和检测。萃取和清洗是PAEs分析中最具挑战和关键的步骤,直接关系到整个分析方法能否确定检出限。萃取方法可以分为溶剂萃取或液-液萃取[20]和固相微萃取(SPME)[21];对于分离和检测步骤,研究主要关注分析技术如液相色谱-质谱(LC-MS)[22],气相色谱-质谱(GC-MS)[23]以及其他技术[24-25]。Cai等[26]开发了一种新分析方法来检测水体中PAEs浓度,主要包括固相萃取、用乙腈定量解吸和高效液相色谱(HPLC)的分析方法。虽然不同研究中采用的分析方法会影响到PAEs数据的结果,但由于本研究旨在掌握我国城市典型水环境中PAEs的整体污染水平,因此分析方法的差异不会影响到本文的结论。

1.3 PAEs生态风险评价方法

PAEs的生态风险评价方法依据欧盟技术指导性文件[27]和先前的研究[15],主要采用熵值法来评价水体中PAEs的潜在生态风险[28-29]。在本研究中,风险熵(RQ)被用来评估目标生物的生态风险,它主要是根据环境中PAEs的测量浓度(MEC)与预测的无效应浓度(PNEC)之间的比值。PNEC的估算是根据毒理学的相关浓度(LC50或EC50)与安全系数(f)的比值。因此,鱼类、水蚤和藻类对DMP、DEP、DnBP和BBP的LC50或EC50被应用于生态风险值的计算。PAEs的风险熵计算公式为:

根据相关的文献,我们把生态风险分为下面4个水平[30]:

当RQ < 1.00时,表示无显著风险;当1.00 ≤ RQ < 10.0时,表示存在较小的潜在负效应;当10.0 ≤ RQ < 100时,表示存在显著的潜在负效应;当RQ ≥ 100时,表示存在预期的潜在负效应。

2 研究结果(Results)

2.1 我国PAEs的生产和消费

表1列出了我国大陆地区2000—2010年PAEs的供应和需求量,在2000—2010期间PAEs的表观消费量显著增加,其中2010年比2000年的产量增加了183.54%,表观消费量增加了79.18%。表2列出了我国PAEs的主要生产企业及其产量,其中齐鲁增塑剂有限公司作为内地最大的PAEs制造商,其年产量高达40.00×104t,主要生产邻苯二甲酸二辛酯(DOP)、DBP、邻苯二甲酸二异壬酯(DiNP)和邻苯二甲酸二异癸酯(DiDP);PAEs生产企业集中分布在山东、广东、浙江和江苏省。

2.2 水环境中的PAEs污染水平

根据我国典型水环境中PAEs的污染分布特征,除广州(城市湖泊)、北京(城市湖泊)和长江江苏段外,我国典型河流和湖泊水体中PAEs浓度多数均高于8.00 μg·L-1,而根据我国地表水环境质量标准[32]和饮用水环境质量标准[33],DEHP的浓度限值为8.00 μg·L-1或DBP的浓度限值为3.00 μg·L-1和DEHP的浓度限值为8.00 μg·L-1、DBP的浓度限值为3.00 μg·L-1或DEP的浓度限值为3.00 μg·L-1。因此,我国水环境中PAEs的潜在生态风险不容忽视[34-35]。将我国典型水环境中PAEs的污染水平与其他国家相比,结果表明整体上我国水环境中的PAEs污染水平较高,但在尼日利亚西南部的Ogun河PAEs的污染水平较高,达到395.00~4 775.00 μg·L-1,它的最大值要高于我国地表水环境质量标准的597倍(表3)。

表1 我国大陆地区2000—2010年PAEs的供应和需求量(104t)

随着城市PAEs消费量的日益增加,导致城市水环境中PAEs污染水平显著高于农村地区。这主要是因为城市水环境会接收大量未经有效处理的工业废水,如德国柏林市污水处理厂所排放的废水中PAEs浓度较高(高达182.00 μg·L-1)。此外,PAEs的污染不仅发生在地表水水环境中,也会污染地下水环境,如广东省东莞市地下水的PAEs浓度范围为0.00~6.70 μg·L-1。尽管如此,PAEs在地表水环境中(河流、湖泊和水库)的污染水平要显著高于地下水环境[36]。

表2 2006年我国PAEs的主要生产企业及其产量[31]

表3 我国与其他国家水环境中PAEs的污染水平

表4 生态风险评价中鱼类、水蚤和藻类的急性毒性数据(LC50或EC50)

表5 我国典型水环境中DMP、DEP、DBP、BBP、DHP和DEHP对鱼类种群的RQ以及总生态风险(μg·L-1)

2.3 我国典型水环境中的PAEs的生态风险评价

在我国PAEs对水环境造成的生态风险仍处于未知状态。PAEs对水生生态系统的影响主要取决于PAEs的输入量和其毒性参数。本研究中PAEs的生态风险评价方法以欧盟技术指导性文件为基础[27],该文件要求至少同时考虑鱼类、水蚤和藻类的LC50或EC50。PAEs的毒性数据主要来源于Staples的综述“Aquatic Toxicity of Eighteen Phthalate Esters”[28]。RQ值是根据最大无影响效应浓度(NOEC)、最低的LC50或EC50以及安全系数(1 000)进行计算[27]。表4列出了RQ计算过程中3个种群对PAEs的LC50、EC50和NOEC。表5~7列出了我国典型城市水环境中典型PAEs对鱼类、水蚤和藻类的RQ值,3个种群的RQ值呈现明显差异。在我们计算的6种PAEs中,DBP、DEHP和BBP为最主要的风险物质。DMP对Lepomis macrochirus的RQ变化范围为0.00~2.78,对Daphnia magna的RQ变化范围为0.00~25.10,对Selenastrum capricornutum的RQ变化范围为0.00~0.66。相比而言,DEP、DBP、BBP和DEHP在长江-江苏段、松花江-吉林段对Lepomis macrochirus种群、在北京-朝阳公园湖泊对Selenastrum capricornutum种群的RQ达到预期的潜在负效应水平,即RQ > 100。一般来说,藻类对于PAEs极其敏感,而Daphnia magna的RQs相对较小。除了DMP、DEP和DHP以外,多数PAEs的RQs变化范围都在10.0~100.00,这表明我国水环境中的PAEs存在显著的潜在负效应,研究发现DMP、DEP和DHP主要通过生长限制对鱼类、水蚤和藻类产生生态风险[15, 28]。

为了计算PAEs在我国水环境中的联合效应,本研究将各个点位中各种PAEs的RQ进行加和计算,得到PAEs的总生态风险。结果表明,在长江三角洲-徐州段鱼类、水蚤和藻类种群的总生态风险处于无显著风险水平,即RQ < 1.00,鱼类种群总的风险值变化范围为0.16 (长江三角洲-徐州段)~1 407.00 (长江-江苏段),水蚤种群总生态风险变化范围为0.04 (长江三角洲-徐州段)~333.00 (长江-江苏段),藻类种群总生态风险变化范围为0.31 (长江三角洲-徐州段)~2 634.00 (长江-江苏段)。总生态风险的结果表明在长江-江苏段PAEs对鱼类、水蚤和藻类种群均存在显著的潜在负效应,即RQ > 100。

对于城市湖泊来说,除北京什刹海外,颐和园和官厅水库中PAEs的生态风险处于无显著风险或较小的潜在负效应水平,大部分城市湖泊的PAEs生态风险处于存在显著的潜在负效应或预期的潜在负效应水平。对于城市河流来说,除长江-武汉段丰水期外,大部分河流的PAEs生态风险处于存在显著的潜在负效应或预期的潜在负效应水平。对于其他水环境来说,如北京污水处理厂进水的PAEs生态风险处于存在预期的潜在负效应水平,而其他水环境多数处于存在较小的潜在负效应或显著的潜在负效应水平。因此,需要对我国城市水环境中PAEs的生态风险进行研究,可以通过长期或短期的毒理学数据,表征PAEs混合物在水环境中的综合效应,建立水环境中可靠的PAEs生态风险评价方法。

此外,大量研究结果表明PAEs可以在生物体内产生生物富集效应[70-72]。Cheng等[71]检测了香港市场上20多种鱼类体内PAEs浓度,结果表明在淡水鱼类体内ΣPAEs浓度范围为1.66~3.14 μg·g-1(湿重),在海洋鱼类体内ΣPAEs浓度范围为1.57~7.10 μg·g-1(湿重);其中在淡水鱼类和海洋鱼类中,DEHP和DBP均为主要的PAEs风险物质。Mo等[73]检测了珠江三角洲9个种植园中11种蔬菜的PAEs浓度,结果表明ΣPAEs浓度范围为0.07~11.20 μg·g-1(干重),PAEs浓度均值为3.20 μg·g-1(干重),其中Brassica parachinensis体内PAEs浓度最高,这些结果表明PAEs可以通过胃肠消化系统在生物体内富集,而PAEs的生物富集系数变化范围为0.0001~0.61。

表6 我国典型水环境中DMP、DEP、DBP、BBP、DHP和DEHP对水蚤种群的RQ以及总生态风险(μg·L-1)

表7 我国典型水环境中DMP、DEP、DBP、BBP、DHP和DEHP对藻类种群的RQ以及总生态风险(μg·L-1)

我国作为全球范围内最大的PAEs生产国和消费国,PAEs应用广泛,它已经严重威胁到我国水环境生态安全。总体而言,我国PAEs的主要来源为塑料业和增塑剂相关的产业。由于我国对PAEs和以PAEs为原料产品的需求日益增加,因此我国未来PAEs的污染水平将日益严峻。PAEs的生态风险评价主要是基于准确检测环境介质中PAEs的浓度和相关的毒理学参数。需要通过PAEs在水环境中长期的生物暴露研究才能确定自然条件下PAEs对水环境造成的生态影响。目前,亟需掌握我国不同环境介质中PAEs的来源、污染分布特征、毒性参数和生态风险水平,尤其是在高度城市化的地区和PAEs工业密集区域。

[1] Autian J. Toxicity and health threats of phthalate esters: Review of the literature [J]. Environmental Health Perspectives, 1973, 4: 3-26

[2] Graham P R. Phthalate ester plasticizers--Why and how they are used [J]. Environmental Health Perspectives, 1973, 3: 3-12

[3] Peijnenburg W J G M, Struijs J. Occurrence of phthalate esters in the environment of the Netherlands [J]. Ecotoxicology and Environmental Safety, 2006, 63: 204-215

[4] Teil M J, Blanchard M, Chevreuil M. Atmospheric fate of phthalate esters in an urban area (Paris-France) [J]. Science of the Total Environment, 2006, 354: 212-223

[5] U. S. Environmental Protection Agency (USEPA). 2012 TRI Data Summary [M]. http://www2.epa.gov/toxics-release- inventory-tri-program/2012-tri-national-analysis

[6] Koch H M, Calafat A M. Human body burdens of chemicals used in plastic manufacture [J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009, 364: 2063-2078

[7] Meeker J D, Sathyanarayana S, Swan S H. Phthalates and other additives in plastics: Human exposure and associated health outcomes [J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009, 364: 2097-2113

[8] Oehlmann J, Schulte-Oehlmann U, Kloas W, et al. A critical analysis of the biological impacts of plasticizers on wildlife [J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009, 364: 2047-2062

[9] Talsness C E, Andrade A J M, Kuriyama S N, et al. Components of plastic: Experimental studies in animals and relevance for human health [J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009, 364: 2079-2096

[10] Canadian Council of Ministers of the Environment (CCME). Canadian Water Quality Guidelines [M]// Chapter 6: Parameter-Specific Background Information: Phthalates Esters. Ottawa, Ontario: Task Force on Water Quality Guidelines, 1989

[11] U. S. Environmental Protection Agency (USEPA). Ambient water quality criteria for phthalate esters. EPA-440/5-80-067. [R]. Washington DC: Office of Water Regulations and Standards, Criteria and Standard Division, 1980

[12] Andrady A L, Neal M A. Applications and societal benefits of plastics [J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009, 364(1526): 1977-1984

[13] Emanuel C. Plasticizer market update [C]. 22nd Annual Vinyl Compounding Conference, Calvin Emanuel, 2011

[14] Wang F, Xia X, Sha Y. Distribution of phthalic acid esters in Wuhan section of the Yangtze River, China [J]. Journal of Hazardous Materials, 2008, 154(1): 317-324

[15] Staples C A, Parkerton T F, Peterson D R. A risk assessment of selected phthalate esters in North American and Western European surface waters [J]. Chemosphere, 2000, 40(8): 885-891

[16] Xia X, Yang L, Bu Q, et al. Levels, distribution, and health risk of phthalate esters in urban soils of Beijing, China [J]. Journal of Environmental Quality, 2011, 40(5): 1643-1651

[17] Adams W J, Biddinger G R, Robillard K A, et al. A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms [J]. Environmental Toxicology and Chemistry, 1995, 14: 1569-1574

[18] Staples C A, Adams W J, Parkerton T F, et al. Aquatic toxicity of eighteen phthalate esters: A review [J]. Environmental Toxicology and Chemistry, 1997, 16(5): 875-891

[19] Klimisch H J, Andreae M, Tillmann U. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data [J]. Regulatory Toxicology and Pharmacology, 1997, 25(1): 1-5

[20] Page B D, Lacroix G M. The occurrence of phthalate ester and di-2-ethylhexyl adipate plasticizers in Canadian packaging and food sampled in 1985-1989: A survey [J]. Food Additives and Contaminants, 1995, 12(1): 129-151

[21] Arthur C L, Pawliszyn J. Solid-phase microextraction with thermal desorption using fused silica optical fibers [J]. Analytical Chemistry, 1990, 62: 2145-2148

[22] Lin Z P, Ikonomou M G, Jing H, et al. Determination of phthalate ester congeners and mixtures by LC/ESI-MS in sediments and biota of an urbanized marine inlet [J]. Environmental Science & Technology, 2003, 37(10): 2100-2108

[23] Farahani H, Norouzi P, Dinarvand R, et al. Development of dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry as a simple, rapid and highly sensitive method for the determination of phthalate esters in water samples [J]. Journal of Chromatography A, 2007, 1172(2): 105-112

[24] Kozyrod R P, Ziaziaris J. A survey of plasticizer migration into foods [J]. Journal of Food Protection, 1989, 52: 578-580

[25] Hogberg J, Hanberg A, Berglund M, et al. Phthalate diesters and their metabolites in human breast milk, blood or serum, and urine as biomarkers of exposure in vulnerable populations [J]. Environmental Health Perspectives, 2008, 116(3): 334-339

[26] Cai Y Q, Jiang G B, Liu J F, et al. Multi-walled carbon nanotubes packed cartridge for the solid-phase extraction of several phthalate esters from water samples and their determination by high performance liquid chromatography [J]. Analytica Chimica Acta, 2003, 494(1): 149-156

[27] European Commission’s Technical Guidence Document (EC). Technical guidance document on risk assessment in support of commission directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No 1488/94 on risk assessment for existing substances, and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market [R]. Ispra (VA), Italy: European Chemicals Bureau (ECB), European Commission Joint Research Centre, 2003

[28] Staples C A, Peterson D R, Parkerton T F, et al. The environmental fate of phthalate esters: A literature review [J]. Chemosphere, 1997, 35(4): 667-749

[29] U. S. Environmental Protection Agency (USEPA). Final Water Quality Guidance for the Great Lakes System [R]. US Environmental Protection Agency, 1995

[30] Wentsel R S, LaPoint T W, Simini M, et al. Tri-service Procedural Guidelines for Ecological Risk Assessment [R]. US Army Edgewood Research, Development, and Engineering Center, Aberdeen Proving Ground, MD, 1996

[31] 龚浏澄, 郑德, 李杰. 塑料助剂产业前景看好(一)[J]. 精细与专用化学品, 2007, 15(16): 30-35

Gong L C, Zheng D, Li J. Bright prospect of plastics additives industry [J]. Fine and Specialty Chemicals, 2007, 15(16): 30-35 (in Chinese)

[32] PRC-NS. GB 3838-2002. Environmental Quality Standard for Surface Water [S]. Beijing: Ministry of Environmental Protection of the People’s Republic of China and General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2002

[33] PRC-NS. GB 5749-2006. Standard for Drinking Water Quality [S]. Ministry of Health of the People’s Republic of China and Standardization Administration of the People’s Republic of China, 2006

[34] 莫测辉, 蔡全英, 吴启堂, 等. 我国城市污泥中邻苯二甲酸酯的研究[J]. 中国环境科学, 2001, 21(4): 362-366

Mo C H, Cai Q Y, Wu Q T, et al. A study of phthalic acid esters (PAEs) in the municipal sludges of China [J]. China Environmental Science, 2001, 21(4): 362-366 (in Chinese)

[35] Lan Q, Cui K, Zeng F, et al. Characteristics and assessment of phthalate esters in urban dusts in Guangzhou City, China [J]. Environmental Monitoring and Assessment, 2012, 184(8): 4921-4929

[36] Liu X, Shi J, Bo T, et al. Occurrence of phthalic acid esters in source waters: A nationwide survey in China during the period of 2009-2012 [J]. Environment Pollution, 2014, 184: 262-270

[37] 钟嶷盛, 陈莎, 曹莹, 等. 北京公园水体中邻苯二甲酸酯类物质的测定及其分布特征[J]. 中国环境监测, 2010, 26(3): 60-64

Zhong Y S, Chen S, Cao Y, et al. The determination and distribution characteristics of phthalate esters in Beijing park lakes [J]. Environmental Monitoring in China, 2010, 26(3): 60-64 (in Chinese)

[38] Wang H, Wang C, Wu W, et al. Persistent organic pollutants in water and surface sediments of Taihu Lake, China and risk assessment [J]. Chemosphere, 2003, 50(4): 557-562

[39] 郭栋生, 袁小英, 杨艳, 等. 万家寨引黄工程水源地水质调查分析[J]. 环境化学, 2002, 21(3): 271-275

Guo D S, Yuan X Y, Yang Y, et al. Water quality analysis to the water source of Wanjiazhai Yellow River water transfer project [J]. Environmental Chemistry, 2002, 21(3): 271-275 (in Chinese)

[40] Zeng F, Cui K, Xie Z, et al. Occurrence of phthalate esters in water and sediment of urban lakes in a subtropical city, Guangzhou, South China [J]. Environment International, 2008, 34(3): 372-380

[41] Zheng X, Zhang B T, Teng Y. Distribution of phthalate acid esters in lakes of Beijing and its relationship with anthropogenic activities [J]. Science of the Total Environment, 2014, 476: 107-113

[42] Chi J. Phthalate acid esters in Potamogeton crispus L. from Haihe River, China [J]. Chemosphere, 2009, 77(1): 48-52

[43] 魏薇, 谢莹, 王建刚, 等. 邻苯二甲酸酯在松花江吉林段水体中的分布规律[J]. 中国环境监测, 2011, 27(5): 60-64

Wei W, Xie Y, Wang J G, et al. Distribution law of PAEs in the water body of Songhua River Jilin Section [J]. Environmental Monitoring in China, 2011, 27(5): 60-64 (in Chinese)

[44] Sha Y, Xia X, Yang Z, et al. Distribution of PAEs in the middle and lower reaches of the Yellow River, China [J]. Environmental Monitoring and Assessment, 2007, 124(1-3): 277-287

[45] Zhang L, Dong L, Ren L, et al. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China [J]. Journal of Environmental Science, 2012, 24(2): 335-342

[46] 汤斌, 李科林, 肖剑波. 湘江水中邻苯二甲酸酯类环境激素的研究[J]. 精细化工中间体, 2010, 40(2): 67-72

Tang B, Li K L, Xiao J B. Study on the environmental hormone of phthalic acid esters in Xiangjiang River [J]. Fine Chemical Intermediates, 2010, 40(2): 67-72 (in Chinese)

[47] 张蕴晖, 陈秉衡, 郑力行, 等. 环境样品中邻苯二甲酸酯类物质的测定与分析[J]. 环境与健康杂志, 2003, 20(5): 283-286

Zhang Y H, Chen B H, Zheng L X, et al. Determination of phthalates in environmental samples [J]. Journal of Environment and Health, 2003, 20(5): 283-286 (in Chinese)

[48] He H, Hu G J, Sun C, et al. Trace analysis of persistent toxic substances in the main stream of Jiangsu section of the Yangtze River, China [J]. Environment Science and Pollution Research, 2011, 18(4): 638-648

[49] 刘征涛, 姜福欣, 王婉华, 等. 长江河口区域有机污染物的特征分析[J]. 环境科学研究, 2006, 19(2): 1-5

Liu Z T, Jiang F X, Wang W H, et al. Character analysis of organic pollutants in Yangtze estuary area [J]. Research of Environmental Science, 2006, 19(2): 1-5 (in Chinese)

[50] 张利飞, 杨文龙, 董亮, 等. 苏南地区农田表层土壤中多环芳烃和酞酸酯的污染特征及来源[J]. 农业环境科学学报, 2011, 30(11): 2202-2209

Zhang L F, Yang W L, Dong L, et al. Pollution characteristics and sources of polycyclic aromatic hydrocarbons and phthalic acid esters in agricultural surface soil from the southern Jiangsu Province, China [J]. Journal of Agro-Environment Science, 2011, 30(11): 2202-2209 (in Chinese)

[51] Zhang D, Liu H, Liang Y, et al. Distribution of phthalate esters in the groundwater of Jianghan plain, Hubei, China [J]. Frontiers of Earth Science, 2009, 3(1): 73-79

[52] Shi W, Hu X, Zhang F, et al. Occurrence of thyroid hormone activities in drinking water from eastern China: Contributions of phthalate esters [J]. Environmental Science & Technology, 2012, 46(3): 1811-1818

[53] 林兴桃, 陈明, 王小逸, 等. 污水处理厂中邻苯二甲酸酯类环境激素分析[J]. 环境科学与技术, 2004, 6: 79-81

Lin X T, Chen M, Wang X Y, et al. Analysis of phthalate esters of environmental hormone in water samples of wastewater treatment plant [J]. Environmental Science and Technology, 2004, 6: 79-81 (in Chinese)

[54] Huang R X, Wang Z X, Liu G, et al. Removal efficiency of environmental endocrine disrupting chemicals pollutants-phthalate esters in northern WWTP [J]. Advanced Materials and Structures, 2013, 807: 694-698

[55] Liu P, Tian T, Barreto J, et al. Assessment and analysis of phthalate esters, in Lake Pontchartrain, by SPME combining with GC-MS [J]. Environmental Technology, 2013, 34(4): 453-462

[56] Adeniyi A A, Okedeyi O O, Yusuf K A. Flame ionization gas chromatographic determination of phthalate esters in water, surface sediments and fish species in the Ogun River catchments, Ketu, Lagos, Nigeria [J]. Environmental Monitoring and Assessment, 2011, 172(1-4): 561-569

[57] Tan G H. Residue levels of phthalate esters in water and sediment samples from the Klang River basin [J]. Bulletin of Environmental Contamination and Toxicology, 1995, 54(2): 171-176

[58] Vitali M, Guidotti M, Macilenti G, et al. Phthalate esters in freshwaters as markers of contamination sources—A site study in Italy [J]. Environment International, 1997, 23(3): 337-347

[59] Thurén A. Determination of phthalates in aquatic environments [J]. Bulletin of Environmental Contamination and Toxicology, 1986, 36(1): 33-40

[60] Long J L, House W A, Parker A, et al. Micro-organic compounds associated with sediments in the Humber Rivers [J]. Science of the Total Environment, 1998, 210: 229-253

[61] Dargnat C, Blanchard M, Chevreuil M, et al. Occurrence of phthalate esters in the Seine River estuary (France)[J]. Hydrological Processes, 2009, 23(8): 1192-1201

[62] Penalver A, Pocurull E, Borrull F, et al. Determination of phthalate esters in water samples by solid-phase microextraction and gas chromatography with mass spectrometric detection [J]. Journal of Chromatograph A, 2000, 872(1): 191-201

[63] Polo M, Llompart M, Garcia-Jares C, et al. Multivariate optimization of a solid-phase microextraction method for the analysis of phthalate esters in environmental waters [J]. Journal of Chromatograph A, 2005, 1072(1): 63-72

[64] Fromme H, Küchler T, Otto T, et al. Occurrence of phthalates and bisphenol A and F in the environment [J]. Water Research, 2002, 36(6): 1429-1438

[65] Guidotti M, Giovinazzo R, Cedrone O, et al. Determination of organic micropollutants in rain water for laboratory screening of air quality in urban environment [J]. Environment International, 2000, 26(1): 23-28

[66] Sirivithayapakorn S, Thuyviang K. Dispersion and ecological risk assessment of di (2-ethylhexyl) phthalate (DEHP) in the surface waters of Thailand [J]. Bulletin of Environmental Contamination and Toxicology, 2010, 84(5): 503-506

[67] Mackintosh C E, Maldonado J A, Ikonomou M G, et al. Sorption of phthalate esters and PCBs in a marine ecosystem [J]. Environmental Science & Technology, 2006, 40: 3481-3488

[68] Fatoki O S, Noma A. Solid phase extraction method for selective determination of phthalate esters in the aquatic environment [J]. Water Air and Soil Pollution, 2002, 140(1-4): 85-98

[70] Gorsuch J W, Staples C A, Brown D, et al. Vapor-phase toxicity of butylbenzyl phthalate to three plant species: White mustard, chinese cabbage, and white clover [J]. Bulletin of Environmental Contamination and Toxicology, 2008, 81(2): 220-224

[71] Cheng Z, Nie X P, Wang H S, et al. Risk assessments of human exposure to bioaccessible phthalate esters through market fish consumption [J]. Environment International, 2013, 57: 75-80

[72] Wang W X, Zhang Q. Dioxin and phthalate uptake and assimilation by the green mussel Perna viridis [J]. Environmental Pollution, 2013, 178: 455-462

[73] Mo C H, Cai Q Y, Tang S R, et al. Polycyclic aromatic hydrocarbons and phthalic acid esters in vegetables from nine farms of the Pearl River Delta, South China [J]. Archives of Environmental Contamination and Toxicology, 2009, 56(2): 181-189

[74] LeBlanc G A. Acute toxicity of priority pollutants to water flea (Daphnia magna) [J]. Bulletin of Environmental Contamination and Toxicology, 1980, 24: 684-691

[75] Gledhill W E, Kaley R G, Adams W J, et al. An environmental safety assessment of butyl benzyl phthalate [J]. Environmental Science & Technology, 1980, 14: 301-305

[76] Brown D, Williams N J. Chronic toxicity to Daphnia magna [R]. Brussels, Belgium: European Council for Plasticisers and Intermediates, CEFIC, 1994

[77] Yuan S Y, Liu C, Liao C S, et al. Occurrence and microbial degradation of phthalate esters in Taiwan river sediments [J]. Chemosphere, 2002, 49(10): 1295-1299

The Occurrence and Ecological Risk Assessment of Phthalate Esters (PAEs) in Urban Aquatic Environments of China

Zhang Lulu1,2,3,*, Liu Jingling2, Ho Kinchung3, Li Hua1

1. School of Environmental Science and Technology, Hebei University of Science and Technology, Shijiazhuang 050018, China 2. State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China 3. School of Science and Technology, The Open University of Hong Kong, HKSAR, China

Received 14 July 2015 accepted 15 October 2015

Phthalate esters (PAEs) are endocrine disruptors and have been used as plasticizing agents in cellulosics and elastomers. The demand for PAEs has grown rapidly, especially in China. It will lead to much more environmental PAE contamination. PAEs are listed as the chemical that poses significant ecological risk. This paper reviews the literature concerning the pollution status of PAEs, summarizes the main characteristics of PAEs in typical aquatic environment in China, assesses the ecological risk of PAEs to alage, daphnia, and fish by risk quotient (RQ) approach which is based on the predicted no effect concentration (PNEC) and PAE concentrations in aquatic environments. The results showed that PAEs concentrations in most of river and lake waters were higher than 8.00 μg·L-1, which are higher than the concentrations of PAEs in the Environmental Quality Standards for Surface Water (PRC-NS 2002) (DEHP, 8.00 μg·L-1and DBP, 3.00 μg·L-1) and Standards for Drinking Water Quality (PRCNS 2006) (DEHP, 8.00 μg·L-1, DBP, 3.00 μg·L-1and DEP, 3.00 μg·L-1), respectively. With the increasing consumption of PAEs in metropolitan areas, the concentrations of PAEs detected in urban water bodies were obviously higher than those in other areas of China. Compared with other countries, the PAE concentrations in the waters of China are higher than global PAE levels. Furthermore, PAE pollution of water bodies was found not only in surface waters but also in underground waters; for instance, PAE concentrations in the range of 0.00-6.70 μg·L-1were detected in underground waters in Dongguan, Guangdong Province, China. The results of RQs showed that significant (10 ≤ RQ < 100) or very significant (RQ ≥ 100) potential adverse effects for algae, daphnia, and fish in aquatic environments near PAE-based industrial and urban areas, and DBP, DEHP and BBP contributed the most. Thus, the ecological risk of PAEs in Chinese aquatic environments should be considered, especially in areas where commercial plastics are produced.

phthalate esters (PAEs); urban aquatic environment; pollution level; ecological risk; China

10.7524/AJE.1673-5897.20150714001

国家重点基础研究发展计划(2015CB458900);河北科技大学博士启动基金(1181200)

张璐璐(1985-),女,博士,浙江浦江人,讲师,研究方向为污染生态学,E-mail: zhanglulu19850703@163.com

2015-07-14 录用日期:2015-10-15

1673-5897(2016)2-421-15

X171.5

A

简介:张璐璐(1985-),女,工学博士,讲师,主要研究方向为污染生态学及生态毒理学。

张璐璐, 刘静玲, 何建宗, 等. 中国典型城市水环境中邻苯二甲酸酯类污染水平与生态风险评价[J]. 生态毒理学报,2016, 11(2): 421-435

Zhang L L, Liu J L, He K C, et al.The occurrence and ecological risk assessment of phthalate esters (PAEs) in urban aquatic environments of China [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 421-435 (in Chinese)

猜你喜欢
负效应邻苯二甲酸典型
用最典型的事写最有特点的人
多项式求值题的典型解法
QuEChERS-气相色谱-质谱法测定植物油中16种邻苯二甲酸酯
典型胰岛素瘤1例报道
分析微信公众平台新闻传播正负效应
微信公众平台对新闻传播产生的正负效应
青菜对邻苯二甲酸酯类物质的积累和代谢初探
THE SYMMETRIC POSITIVE SOLUTIONS OF 2n-ORDER BOUNDARY VALUE PROBLEMS ON TIME SCALES∗†
法制报道“负效应”的规避与防范
邻苯二甲酸二丁酯的收缩血管作用及其机制