杨景耀,邹晓晨
(1.天津市静海区第四中学,天津 301600;2.中国海洋大学海洋与大气学院,山东 青岛 266100)
风浪破碎判据的实验检验
杨景耀1,邹晓晨2
(1.天津市静海区第四中学,天津301600;2.中国海洋大学海洋与大气学院,山东青岛266100)
利用已有风浪破碎实验观测数据检验了风浪破碎判据的可靠性。实验测量了风浪波面位移的时间序列,并人工同步标记出破碎发生的时刻。研究了4种常用判据,包括波陡、瞬时波面斜率、波峰水质点水平速度与相速度之比,以及波峰水质点向下加速度与重力加速度之比。采用破碎判据对所测风浪序列中的破碎波进行识别,根据人工标记数量计算破碎率以确定破碎阈值。计算结果表明,几何判断阈值接近Stokes波极限值,而运动学和动力学判断阈值则明显偏离。进而检验了判据识别出的破碎波与人工标记破碎波的一致性。在达到破碎阈值的波中,约35%~55%与人工标记相对应,约有45%~65%的波,虽然满足了阈值条件,却并未发生破碎,说明风浪的破碎可能并非完全取决于其中任一判据所关注的波浪特征量。
海浪;波浪破碎;破碎判据
风浪破碎是一种常见而重要的海洋现象,是风浪能量耗散的主要机制(王伟,1990)。风浪的能量源于风场,耗散于破碎,总体上维持着动态的平衡。另外,风浪破碎过程中产生的气泡、飞沫对海气交换、海洋遥感等有重要影响。破碎判据是风浪破碎研究的关键问题之一(倪文胜等,2002),由于风浪破碎的复杂性,已提出的破碎判据仍有很大的不确定性(杨家轩等,2015)。
破碎判据一般可分为几何判据、运动学判据和动力学判据3类。几何判据通过波面的几何特征进行破碎判别,其中最主要的是波陡判据(Stokes,1880),认为波陡超过某个阈值时发生破碎,即判据为:
其中g为重力加速度。另一个常用的几何判据考察的是瞬时波面斜率(Longuet-Higgins et al,1977),可表示为瞬时垂向速度v与相速度c之比(Longuet-Higgins et al,1983),当满足
其中H和λ分别代表波高和波长。对于实验记录的固定点波面位移时间序列,波长通常根据频散关系由周期估算。对于深水波浪,利用频散关系可将公式(1)化为:
时发生破碎,κ代表瞬时波面斜率阈值。运动学判据认为当波峰处水质点的水平速度u与相速度c之比超过某个阈值β,即满足
时发生破碎。动力学判据认为当波峰处水质点向下加速度a与重力加速度g之比超过阈值γ时发生破碎,即:
本文使用的风浪数据来自类淑河(2010)的实验。该实验在中国海洋大学物理海洋实验室的大型风-浪-流水槽中进行。水槽长65 m,宽1.2 m,高1.5 m。实验水深0.7 m,对于实验风浪波长的尺度可以近似为深水。实验采用钽丝测波仪(以下简称测波仪)测定固定点的波面位移,在水下放置多普勒流速测量仪同步测量三维流速。实验过程中,借助与测波仪主机相连的电容器对破碎事件进行人工记录。观测者在钽丝位置进行观察,当观察到破碎时扭动一次电容器旋钮,记录一个高电位信号。与此同时一台录像机对实验波面进行全程录像,以备后期对人工标记进行核对,以及对实验效果进行评估。此破碎记录由人工进行,产生的高电位信号与破碎发生的时间点之间难免存在偏差,但总体而言大部分破碎记录仍是可靠的。在后期分析中进行破碎波判别时,该人工破碎记录可以作为破碎发生的重要参照依据。
实验在6.35、7、7.5、8、9 m·s-1共5个风速下进行,同时在3个风区处(分别为30.0m、34.2m、39.7 m)放置测波仪。在给定风速下,改变ADV的深度进行多次测量。每次测量持续560秒,共记录15 000个波面位移数据,约14 000个ADV流速数据。
本实验共获得47组风浪数据。通过查看人工破碎记录和实验录像,筛选出破碎显著且录像清晰的4类共15组数据用于本文研究。数据序号、实验参数以及破碎特征见表1。
表1 实验参数与破碎特征
图1(a)是一段波面位移原始记录。可以看到,在显著波之上存在骑行的小波。
图1 滤波效果图
在进行破碎识别时,需要对每个显著波逐个分析,计算其波陡、斜率等破碎判据考察的特征量(以下简称判据参量)。本文采用波谷法,定义两个相邻波谷之间的波面为一个单个波,骑行波的存在必然对单个波的划分及判据参量的计算产生干扰。为避免这一干扰,本文首先对实验数据进行滤波处理,对骑行波进行滤除。Banner(2002)提出一种滤除骑行波的方法(以下简称Banner02方法),其基本思路是将波列中的高频波抹去,然后采用3次样条插值方法进行补值。该方法既可以有效滤除骑行波,又能够保持显著波波形基本不受影响。本文采用Banner02方法进行滤波,主要步骤如下:
(1)找出波面上的波谷的位置,如图1中的紫色圆圈所示;定义两个相邻波谷之间的波面为一个单个波,分别计算每个单个波的频率。
(2)将所有单个波按频率从大到小排序,筛选出频率超过谱峰频率1.9倍的波。
(3)对筛选出的高频波逐一处理,先将其波面数据直接抹除,再通过对其前后1秒内的波面数据使用3次样条插值进行补值。
(4)重复以上步骤,直至所有单个波频率都超过谱峰频率1.9倍。
波列经过滤波处理后,绝大多数骑行波已经被去除,但仍有少数振幅极小的干扰波存在。下一步我们依次抹去所有波高小于1 cm的波,采用线性插值进行补值。经过以上处理后,所得波面如图1(b)所示。在图1(b)中,采用波谷法可以识别出14个单个波,与直接观察结果一致。
本节使用经过滤波处理后的15组数据,对前文所述的4种破碎判据进行检验。首先计算每组数据中各单个波的判据参量,控制阈值的大小,使各判据所识别的破碎波总数达到人工破碎标记次数,从而确定每组数据所对应4种破碎阈值。各参量的具体计算方法见表2,破碎阈值计算结果见图2(a)-(d),均值和标准差见表3。
从表3中可以看到,波陡和波面斜率的阈值观测结果接近理论值,标准差也较小。Ochi等(1983)也观测了波陡阈值,对于深水随机波,得到α=0.125,低于理论值和本文观测结果。表3中运动学判断阈值观测结果偏离Stokes波理论极限较大,更接近于Tulin等(2001)提出的新判据:,其中cg为群速。动力学阈值的观测结果也明显偏离理论值,已发表的动力学判断阈值实验结果较为分散。Snyder等(1983),Ochi等(1983)、Longuet-Higgins(1985)的观测分别给出r=0.5、0.39和0.32,均低于本文结果。
表2 各参量计算方法
图2 破碎阈值的计算结果
表3 破碎阈值理论值、观测所得均值和标准差
为进一步考察破碎判据识别出的破碎波(以下简称识别破碎波)的可靠性,下面比较识别破碎波与含人工标记波的吻合程度。考虑到人工标记可能存在提前、延后等误差,实验中标记位置与人工观察到的破碎波未必准确重合,给评价利用判据识别破碎的有效性带来困难。在本文研究中我们对“含人工标记波”进行适当推广,认为在标记点前后两个波周期(约1 s)内的波为可能的含人工标记波。
图3-图6截取了一段波面作为破碎识别示例。每张图分为3张字图,其中下图显示了这段时间内人工破碎标记的位置;中图为波面位移数据,其中识别破碎波标记为红色;上图中用“*”标记出了这段时间内所有识别破碎波的判据参量值分布,其中含人工标记的波标记为红色。定义表征判据可靠性的指标如下:
A=满足阈值且含标记的波总数/所有满足阈值的波总数
图3 波陡判据可靠性示意图
图4 瞬时波面斜率判据可靠性示意图
图5 运动学判据可靠性示意图
图6 动力学判据可靠性示意图
表4给出了全部15组数据中A的统计结果。
表4 4种判据可靠性计算结果
计算结果显示,在所有满足破碎阈值的波中,总体上约有35%~55%的波与人工标记相对应,其余45%~65%的波虽然满足破碎阈值条件,却可能并未发生破碎。对于同一个波,不同的破碎判据可能给出不同的判断结果。
本文采用波陡判据、瞬时波面斜率判据、运动学判据及动力学判据,对风浪数据进行破碎识别,依据实验中人工观察到的破碎率确定判断阈值。计算结果表明,各组数据的判断阈值随着风速、风区的变化有小幅度的波动,但总体上始终稳定在平均值附近。其中波陡阈值、瞬时波面斜率阈值的平均值与Stokes、Longuet-Higgins等所给出的理论或数值研究结果近乎一致,运动学阈值普遍低于理论值,动力学阈值则高于理论值。基于以上破碎识别结果,本文分析了每组数据中判据识别破碎波与人工标记破碎波的一致性。结果显示,总体上约有35%~55%的判据识别破碎波与人工标记相对应,其余45%~65%的波虽然满足破碎阈值,却可能并未发生破碎。风浪的破碎是一个复杂的物理过程,可能是多种波浪要素共同作用的结果,仅仅考察单一的波浪特征量进行破碎判别往往是不可靠的。
致谢:感谢中国海洋大学类淑河博士提供的实验室风浪槽实验数据。
Banner M L,Gemmrich J R,Farmer D M,2002.Multiscale measurements of ocean wave breaking probability.Journal of Physical Oceanography,32(12):3364-3375.
Longuet-Higgins M S,Cartwright D E,Smith N D,1963.Observations of the directional spectrum of sea waves using the motions of a floating buoy.
Longuet-Higgins M S,1969.On wave breaking and the equilibrium spectrum of wind-generated waves//Proceedings of the Royal Society of London A:Mathematical,Physical and Engineering Sciences.The Royal Society,310(1501):151-159.
Longuet-Higgins M S,1974.Breaking waves in deep or shallow water// Proc.10th Conf.on Naval Hydrodynamics.597.
Longuet-Higgins M S,Fox M J H,1977.Theory of the almost-highest wave:theinner solution.Journal of FluidMechanics,80(4):721-741.
Longuet-Higgins M S,Smith N D,1983.Measurement of breaking waves by a surface jump meter.Journal of Geophysical Research:Oceans, 88(C14):9823-9831.
Longuet-Higgins M S,1985.Accelerations in steep gravity waves.Journal of physical oceanography,15(11):1570-1579.
Ochi M K,Tsai C H,1983.Prediction of occurrence of breaking waves in deep water.Journal of Physical Oceanography,13(11):2008-2019.
Snyder R L,Smith L,Kennedy R M,1983.On the formation of whitecaps by a threshold mechanism.Part III:Field experiment and comparison with theory.Journal of physical oceanography,13(8):1505-1518.
Stansell P,MacFarlane C,2002.Experimental investigation of wave breaking criteria based on wave phase speeds.Journal of physical oceanography,32(5):1269-1283.
Stokes G G,1880.Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form.Mathematical and physical papers,1:225-228.
Tulin M P,Landrini M,2001.Breaking waves in the ocean and around ships//Twenty-Third Symposium on Naval Hydrodynamics.
Wu C H,Nepf H M,2002.Breaking criteria and energy losses for threedimensional wave breaking.Journal of Geophysical Research:O-ceans,107(C10).
类淑河,2010.风浪破碎的随机性、非线性和能量耗散特征研究.中国海洋大学.
倪文胜,刘百桥,2002.近岸破碎波高概率分布研究.海洋通报,2:16-21.
王伟,1990.海洋白浪及其在海—气交换过程中的作用.海洋通报,4: 87-93.
杨家轩,李训强,朱首贤,等,2015.基于水槽实验的近岸波浪破碎计算研究.海洋通报,1:45-51.
郑桂珍,2003.风浪破碎统计特征及流对短波破碎影响研究.中国海洋大学.
(本文编辑:袁泽轶)
The laboratory investigation on the criterions for the wind wave breaking
YANG Jing-yao1,ZOU Xiao-chen2
(1.Jinghai District No.4 Middle School,Tianjin 301600,China;2.Collegeof Oceanic and Atmospheric Sciences, Ocean Universityof China,Qingdao 266100,China)
In this paper,the reliability of the criterions for the wave breaking onset is investigated with the available laboratory observations.In this experiment,the wave surface elevations as well as wave breaking onsets are recorded.The four commonly used criterions,wave steepness,the instantaneous inclination of wave surface,the ratio of the crest horizontal velocity to the wave's phase velocity,as well as the ratio of the crest downward acceleration to the gravitational acceleration are examined.These criterions are applied to time-runs of surface elevation to identify wave breaking onset.The thresholds of these criterions are determined from the measured breaking rate.The resulted geometric thresholds are very close to the Stokes wave limit,while that of the kinematic as well as dynamic ones deviate distinctly.Further,it is examined if the onsets of wave breaking recognized by the criterions are coincident with that recorded in the experiment.It is found that about 35%~ 55%of the wave breaking satisfy the criterions really occurred.In other words,about 45%~65%of the waves,whose criterion-concerned parameters are larger than the thresholds,have not break.It seems that anyone of the criteria may not sufficient for wave breaking onset.
ocean waves;wave breaking;breaking criterions
TV139.2
A
1001-6932(2016)05-0594-07
10.11840/j.issn.1001-6392.2016.05.014
2016-03-19;
2016-05-20
邹晓晨(1993-),男,硕士,主要从事海浪、全球气候变化研究。电子邮箱:zouxc1122@126.com