白一禾 秦兆宇 贺福初,2,4 丁 琛,3△
(1复旦大学生物医学研究院医学系统生物学研究中心 上海 200032; 2 北京国家蛋白质科学中心 北京 102206;3 复旦大学生命科学学院 上海 200438; 4 蛋白质组学国家重点实验室,北京蛋白质组研究中心,北京放射医学研究所 北京 102206)
HMG20A对肝癌细胞体外增殖与迁移的影响及其机制
白一禾1秦兆宇1贺福初1,2,4丁琛1,3△
(1复旦大学生物医学研究院医学系统生物学研究中心 上海200032;2北京国家蛋白质科学中心北京102206;3复旦大学生命科学学院上海200438;4蛋白质组学国家重点实验室,北京蛋白质组研究中心,北京放射医学研究所北京102206)
目的研究HMG20A在肝细胞癌(hepatocellular carcinoma,HCC)发生发展和转移中的功能与机制。方法在不同转移能力和遗传背景的肝癌细胞Huh7和HCCLM3中分别构建HMG20A过表达和敲低稳定株,通过实时定量PCR (real time quantitative PCR,qPCR) 验证过表达和敲低该基因的效果。用CCK8试剂盒检测HMG20A对肝癌细胞增殖能力的影响,利用Transwell小室分析HMG20A调控肝癌细胞转移的能力。借助Western blot和qPCR分析HMG20A调控肝癌增殖和转移的机制。结果体外实验表明,HMG20A能够促进肝癌细胞的体外增殖和迁移,显著上调促分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)通路中p38 (p38 MAPK)、细胞外调节蛋白激酶(extracellular regulated protein kinase,ERK)的活性和表达水平,同时上皮间充质转化(epithelial-mesenchymal transition,EMT)的标志物Vimentin、抗平滑肌抗体(anti-smooth muscle antibody,alpha-SMA)、N-cadherin受到显著的正调控,E-cadherin受到显著负调控。结论HMG20A可能通过促进EMT进程和MAPK通路促进肝癌细胞的体外增殖与迁移。
肝癌;HMG20A;转移;促分裂源活化蛋白激酶;上皮间充质转化
原发性肝细胞癌 (以下简称肝癌)是世界上最常见的恶性肿瘤之一,在肿瘤致死原因中位居第三,仅次于肺癌和胃癌[1],我国是全球肝癌发病率最高和死亡最多的国家[2]。肝癌的发病机制非常复杂,尽管已经确认乙肝和丙肝病毒感染、肝硬化、大量饮酒、黄曲霉素摄入等为致病因素,但仍然缺乏对导致肝癌形成和进展的分子生物学机制的确切认识。
转录因子HMG20A是高迁移率蛋白家族的一员,含有一个HMG结构域,该结构域含有大约70个氨基酸,形成3个α-螺旋,和DNA的小沟结合。HMG20A在成熟神经元中高表达,调控许多在神经分化中有重要作用的分子。HMG20A可以招募组蛋白甲基转移酶MLL,导致组蛋白H3K4甲基化,甲基化的H3K4可通过招募各种因子,如通用转录因子TFⅡD、组蛋白乙酰化酶SAGA,参与基因转录激活过程,从而诱导神经分化[3]。
还有研究显示,在乳腺癌中敲除HMG20A后,许多与上皮间充质转化(epithelial-mesenchymal transition,EMT)相关的基因下调,HMG20A和LSD1 (lysine specific demethylase 1)参与snail1 (snail family zinc finger 1)和转化生长因子β (transforming growth factor-β,TGF-β)调控的EMT,HMG20A缺失削弱LSD1和上皮基因启动子的结合,导致细胞的转移能力减弱[4]。
EMT是哺乳动物胚胎发育过程中的生理现象,它对胚胎发生和器官发育十分重要。上皮细胞是高度有序的单层细胞,细胞间的紧密连接和黏附连接的存在使上皮细胞紧密相连发挥功能,同时也限制了任意迁移的能力。与之相反,间充质细胞则形态各异,表现出更多的迁移和侵袭能力[5]。这种表型上的变化被认为参与了一些致癌通路。EMT在肿瘤的侵袭过程中起着重要的作用,促使良性肿瘤发展成转移性肿瘤,进而侵袭其他组织。
我们推测HMG20A可能在肝癌的发展与转移过程中同样发挥潜在功能,但目前尚无相关报道。本研究分别在低转移潜能的肝癌细胞Huh7和高转移潜能的肝癌细胞HCCLM3中过表达和干扰HMG20A,通过一系列体外实验研究了HMG20A对肝癌细胞增殖和转移的影响,及其可能的机制。
主要试剂与材料细胞株HCCLM3购自复旦大学中山医院肝癌研究所;Huh7购自中国科学院上海生命科学研究院生物化学与细胞生物学研究所;DMEM/high Glucose (NYA0782)购自美国Thermo Scientific公司;AgeI快切酶 (FD1464)和EcoRI快切酶 (FD0274)购自美国Fermentas公司;蛋白预染Marker (SM0671)购自美国Fermentas公司;PrimeScript®RT reagent Kit (DRR037A)和SYBR®Premix Ex TaqTM (DRR041A)购自日本Takara公司;细胞增殖与活性检测试剂 (CK04)购自日本Dojindo公司;TransZol UP (ET111-01)购自北京全式金生物技术有限公司;Transwell小室购自美国BD公司;BCA蛋白浓度测定试剂盒 (P0012)购自上海碧云天生物技术有限公司;一抗稀释液 (P0023D)和二抗稀释液 (P0023D)购自上海碧云天生物技术有限公司。
敲低稳定株的构建shRNA干扰序列由上海拓然生物科技有限公司设计,序列如下:shHMG20A-1,5′-CCGGGUGAACAGACUCGAU-CGUUCTCGAGAACGAUCGAGUCUGUUCAC-TTTTTG-3′ (Oligo F),5′-AATTCAAAAAGUG-
AACAGACUCGAUCGUUCTCGAGATTGGCG-GCTAGTTCCACTGC-3′ (Oligo R);shHMG20A-2,5′-CCGGGAAAUCACAAGGAUGUUAGCTC-
GAGCUAACAUCCUUGUGAUUUCTTTTTG-3′ (Oligo F),5′-AATTCAAAAA GAAAUCACAA-
GGAUGUUAGCTCGAGCUAACAUCCUUGUG-A-UUUC-3′ (Oligo R)。在一个10 cm细胞培养皿约铺5×106个HEK293T细胞,第2天进行转染。取1.5 mL Ep管2支,其中一支加入10 μg pMK0.1、7.5 μg Gag-Pol、2 μg VSV-G待转染质粒,加500 μL Opti-MEM培养基混匀。另一支中加入25 μL PEI溶液和500 μL Opti-MEM培养基,2支Ep管的混合物混匀后室温放置20 min。将得到的DNA-PEI复合体加入到细胞培养器皿中,继续培养4~6 h后,更换为10 mL的新鲜完全培养基。培养36~48 h后收集上清,感染HCCLM3细胞 (30%~40%密度)。24 h后换用含有4 μg/μL Puromycin的培养基筛选培养1周,所得细胞即为靶基因稳定干扰细胞株。
过表达稳定株的构建转染前一天准备293T细胞,转染1 h前换为无血清的培养基,取1.5 mL离心管2支,其中一支加入4 μg pCDH-HMG20A、1 μg pSD、3 μg psPAX2待转染质粒,加500 μL Opti-MEM培养基混匀,另一支加入加500 μL Opti-MEM培养基和25 μL PEI转染试剂。将2支离心管内的混合物混匀后静置20 min,点加到培养皿中,4~6 h后换为正常的培养基。
qPCR用Trizol试剂提取总RNA,逆转录以后进行qPCR反应。HMG20A引物序列(5′-3′):上游-AGCTACACATCACTTGACACCA,下游-ATCTGCAAAAAGGGGCGGTA;Vimentin引物序列:上游-GGACAGCTAACCAACGAACGACA,下游-AAGGTCAAGACGTGCCAGAG;alpha-SMA引物序列:上游-AGAGGAACACCCCACT-CTGT,下游-GTCCAGCACAATGCCTGTTG;N-cadherin引物序列:上游-CCTGGATCGCGAGC-AGATAG,下游-TCCCTCAGGAACTGTCCCAT;E-cadherin引物序列:上游-AGGCCAAGCAGCA-TACATT,下游-GGGGGCTTCATTCACATC-CA;ERK引物序列:上游-GCCGAAGCACCATT-CAAGTT,下游-GGACCAGGGGTCAAGAACT-G;p38引物序列:上游-ATGCGTCTGACAGGA-ACACC,下游-CGCAAAGTTCATCTTCGGCA。
Western blot 待细胞长到90%的汇合度时,用SDS裂解液提取全蛋白,用BCA法测蛋白浓度,配置10%的SDS-PAGE凝胶,电泳后进行转膜,抗体孵育过夜,用ECL发光试剂孵育后使用Las 4000仪器扫膜获取蛋白条带。
Transwell检测细胞迁移 对构建成功的稳定细胞株及对照组细胞进行消化并计数,用无血清DMEM将细胞悬液稀释成1×106cells/mL,每个Transwell上室加入100 μL细胞悬液,下室加入600 μL含有30%FBS的DMEM,置于5% CO2培养箱培养12~30 h。取出Transwell小室,用棉签檫净上层细胞,多聚甲醛固定后结晶紫染色,于显微镜镜下观察,选取上、中、下、左、右5个视野计数并拍照。
细胞增殖检测 对构建成功的稳定株进行消化计数,把细胞铺到96孔板中,每组6个副孔,每孔加2 000个细胞。铺板后每24 h取出一板细胞进行检测,连续4天。每孔细胞中加入10 μL CCK-8细胞增殖与毒性检测试剂和90 μL的DMEM培养基,放至细胞培养箱内孵育2 h,用酶标仪检测,使用450 nm滤光片,以不接种细胞的空白孔加入相同体积的检测试剂和培养基为对照,保存数据,绘制增殖曲线。
统计学处理 Graphpad 5.0软件对所有的数据进行统计处理,差异显著性用双侧t检验,P<0.05为差异有统计学意义。
HMG20A过表达和敲低效率验证构建HMG20A过表达稳定株Huh7,以空质粒pCDH为阴性对照,pCDH-HMGH20A为过表达HMG20A的稳定细胞株,qPCR实验证明pCDH-HMGH20A组能够显著过表达目标基因,差异具有统计学意义 (P<0.001)。同时,为了在HCCLM3中敲低HMG20A,设计2条特异shRNA干扰序列shHMG20A-1和shHMG20A-2,在HCCLM3中构建HMG20A敲低稳定株,shNC1和shNC2为阴性对照,qPCR结果显示敲低稳定株中HMG20A的表达水平显著低于对照组,差异具有统计学意义 (P<0.01,图1)。
Pvalues were calculated using an unpairedt-test (HMG20Avs.pCDH,(1)P<0.001,shHMG20Avs.shNC,(2)P<0.01).
图1HMG20A过表达和敲低效果的验证
Fig 1The effects of HMG20A overexpression and knockdown
HMG20A促进肝癌细胞的体外增殖 在Huh7中构建HMG20A过表达的稳定株,在HCCLM3中构建敲低稳定株,分别于铺板后第1、2、3、4天检测细胞的增殖情况。结果显示过表达HMG20A后Huh7的生长速率显著高于对照组 (图2 A),而两条干扰序列敲低HMG20A后,HCCLM3的增殖能力较对照组显著降低 (图2 B),差异均具有统计学意义 (P<0.01),表明HMG20A能显著促进肝癌细胞的体外增殖。
HMG20A overexpression stable cell lines (A) or knockdown stable cell lines (B) were plated onto 96-well plates.Cell proliferation was detected by using CCK8-kit assay from the first day to the fourth day.Pvalues were calculated using an unpairedt-test (P<0.01).
图2HMG20A对肝癌细胞增殖的影响
Fig 2HMG20A promotes the proliferation of HCC cells
HMG20A促进肝癌细胞的体外迁移 通过Transwell实验观察肝癌细胞转移能力的变化,结果显示过表达HMG20A后,Huh7的迁移能力增加 (图3 A),而两条干扰序列敲低HMG20A后HCCLM3的迁移能力均显著降低 (图3 B)。选取上、中、下、左、右5个视野统计计数差异 (图3C,3D),差异均具有统计学意义 (HMG20Avs.pCDH,P<0.001,shHMG20Avs.shNC,P<0.01),证实HMG20A能够显著促进肝癌细胞的体外迁移能力。
HMG20A上调MAPK通路分裂原激活的蛋白激酶 (mitogen activated protein kinases,MAPK)家族是非常保守的丝氨酸/苏氨酸蛋白激酶,研究表明MAPK通路参与细胞的生长、发育、分化、凋亡等一系列细胞生理活动,可以促进肿瘤的发生发展和转移,几种MAPK亚家族参与的信号转导通路各有不同的功能,如ERK调控细胞生长和分化[6],JNK和p38 MAPK信号通路在炎症和细胞凋亡等应激反应中发挥重要作用[7-8]。MAPK家族分子如p38、ERK、JNK可以被生长因子、高糖、炎性细胞因子、激素等刺激磷酸化激活,激活后MAPK转移到细胞核,并磷酸化和激活许多蛋白激酶以及转录因子,参与细胞增殖与分化、细胞形态维持以及细胞凋亡和细胞骨架的构建、癌症的发生发展等多种生理过程[9]。我们在Huh7和HCCLM3中分别构建了HMG20A过表达和敲低的稳定株,分析HMG20A对肝癌细胞相关信号通路的影响。Western blot和qPCR的结果显示在过表达HMG20A的稳定株中,HMG20A能显著促进MAPK家族p38、ERK的活性和表达水平 (P<0.001,图4 A、4C);同时在HMG20A敲低的稳定株中,p38、ERK的活性和表达水平受到明显的抑制 (P<0.01,图4 B、4D)。表明HMG20A可能通过促进MAPK通路,影响肝癌的发展。
HMG20A可能促进肝癌细胞EMT进程 EMT参与了胚胎发生与器官发育、肿瘤转移等多种生理病理过程,标志EMT过程的分子标志物有很多种,主要包括细胞表面标志物 (如E-cadherin、MMP)[10]、转录因子 (如Snail、Twist)[11]、细胞外基质蛋白 (如层粘连蛋白、纤维连接蛋白)[12]、细胞支架标志物 (如Vimentin、alpha-SMA)4类[13]。在Huh7中构建HMG20A过表达的稳定株,通过检测EMT相关标记蛋白表达水平的变化,分析HMG20A对EMT乃至肝癌细胞转移能力的影响。结果表明过表达HMG20A能提高Vimentin、N-cadherin和alpha-SMA的表达水平,并抑制E-cadherin的表达 (图5A~C),差异具有统计学意义 (P<0.001)。构建HMG20A敲低稳定株HCCLM3,E-cadherin的表达水平上调 (图5 D),Vimentin、alpha-SMA和N-cadherin的表达水平下调 (图5 E),差异具有统计学意义 (P<0.01)。上述结果提示HMG20A可能促进了EMT进程。
HMG20A promotes cell migration in Transwell assays.A:HMG20A overexpression stable cell lines were constructed in Huh7 cells;B:HMG20A knockdown stable cell lines were constructed in HCCLM3 cells.Transwell inserts were displaced 12 h (A) or 30 h (B) later.At this time the microporous membrane were stained by using crystal violet,phase-contrast pictures of the membrane at different locations were taken.C&D:Counted the cell numbers of 5 visions of the membranes,Pvalues were calculated using an unpairedt-test (HMG20Avs.pCDH,(1)P<0.001,shHMG20Avs.shNC,(2)P<0.01).
图3HMG20A对肝癌细胞迁移能力的影响
Fig 3HMG20A promotes the migration of HCC cells
前期研究显示,HMG20A是一个在脑中表达水平较高的转录因子,在神经分化中有重要作用。HMG20A/iBRAF招募甲基转移酶MLL甲基化H3K4,进而调控神经分化特异性基因[3],MLL蛋白在基因调控、细胞增殖、生长分化等生理功能中发挥着重要作用,与肿瘤密切相关[14]。
还有研究表明HMG20B/BRAF35激活抑癌基因REST,HMG20B的抑制因子HMG20A能够抑制REST,从而激活被REST抑制的神经分化相关的基因[15]。REST缺失导致肿瘤的发生,REST参与细胞凋亡、可能参与细胞复制、血管形成等,对基因转录起负调控作用[16]。
Total proteins and RNA were extracted from HMG20A overexpression and knockdown stable cell lines.Levels of MAPKs such as ERK and p38 proteins were determined by Western blot (A&B),and levels of transcripts were determined by qPCR (C&D).Pvalues were calculated using an unpairedt-test (HMG20Avs.pCDH,(1)P<0.001,shHMG20Avs.shNC,(2)P<0.01).
图4HMG20A激活MAPK通路并上调MAPKs
Fig 4HMG20A activates the MAPK pathway and upregulates the expression levels of MAPKs
Rivero等[4]发现在RPE1细胞中HMG20A和LSD1对于调控间充质表型是必需的,敲减HMG20A或者LSD1会上调上皮表型标志物如CXADR、CLDN12、KRT18和CDH4。敲减HMG20A会削弱过表达Snail1导致的CXADR和CLDN12的下调,说明Snail1通过HMG20A抑制CXADR和CLDN12。
由此我们推测HMG20A在肝癌发展和转移中可能发挥潜在功能。为了验证HMG20A在肝癌中的功能,我们在肝癌细胞HCCLM3和Huh7中分别构建HMG20A敲低和过表达稳定株,发现HMG20A能显著促进肝癌细胞的体外增殖和迁移。
为了分析其功能可能的机制,我们通过qPCR和Western blot的方法,筛选了HMG20A可能影响的信号通路。发现其可上调MAPK通路中的p38、ERK的活性和表达水平。
MAPK是细胞内的一类丝氨酸/苏氨酸蛋白激酶,是细胞信号传导的重要途径之一。在未受刺激的细胞内,MAPK处于静止状态,当受到高糖、生长因子、激素和炎性细胞因子等因素刺激后,MAPK被磷酸化激活,进而定位到细胞核中,调控一系列转录因子、蛋白激酶等靶基因。研究表明MAPK是胰岛素和胰岛素样生长因子(insulin-like growth factors-1,IGF-1)信号通路的下游分子,在很多癌症,如乳腺癌、结肠癌和前列腺癌中起着促进增殖的作用[17-19]。MAPK还可以通过磷酸化一些细胞核内的转录因子,如c-Myc,c-Jun等,参与细胞增殖和分化[20-21]。我们的研究提示HMG20A可能通过促进MAPK途径中ERK和p38的活性和表达水平促进肝癌细胞的增殖。
此外,p38是MAPK一个重要的亚族,能够接受细胞外的刺激,并磷酸化下游蛋白发挥其功能。在原发性腹膜间皮细胞中,p38与Twist1的磷酸化有关,能够增加Twist1的蛋白稳定性,促进EMT进程和肿瘤的浸润[22]。在原肠胚形成中,E-钙黏素蛋白的表达受到p38 MAPK 的负调控[23]。持续活化的ERK能够促进细胞增殖以及细胞的恶性转化,已经有研究表明ERK能够直接或者间接上调Vimentin的表达,从而促进EMT的发生[24]。在胰腺癌中,Collagen I能够激活JNK1,上调N-cadherin 的表达,加速EMT进程[25]。
A-C:Overexpression of HMG20A improved the EMT associated markers including Vimentin,alpha-SMA and N-cadherin ((1)P<0.001).Futhermore,it inhibited the expression of E-cadherin ((1)P<0.001).D:E-cadherin was promoted with the knock down of HMG20A ((2)P<0.01).E:EMTassociated markersVimentin,alpha-SMA and N-cadherin mRNA expression levels were determined by qPCR.They were inhibited with the knock down of HMG20A ((2)P<0.01).Pvalues were calculated using an unpairedt-test.
图5过表达和敲低HMG20A后EMT相关标记蛋白的变化
Fig 5Overexpression and knockdown of HMG20A regulate the EMT associated markers
我们通过qPCR和Western blot的方法,发现HMG20A能上调EMT标志物Vimentin、alpha-SMA和N-cadherin的表达,并抑制E-cadherin的表达水平。结果提示HMG20A可能促进了EMT进程。
EMT在肿瘤的转移过程中起着重要作用,在EMT过程中,细胞功能发生变化,上皮细胞失去其上皮特征而获得了间充质细胞特征,使得肿瘤细胞离开原发部位,迁移到邻近组织,其主要的上皮标记物如角蛋白、E-钙黏素等表达下调,同时波形蛋白、N-钙黏素等间质标记物表达上调。癌症相关的许多通路已经成为EMT的重要调控信号,其中许多通路能够共同配合引发EMT[26]。
由此,我们发现HMG20A可能通过上调MAPK通路中的p38、ERK的活性和表达水平,提高肝癌细胞的体外增殖能力;还发现该基因能够上调EMT标志物Vimentin、alpha-SMA和N-cadherin的表达,并抑制E-cadherin的表达水平,提示其可能参与了促进细胞EMT进程,导致肝癌细胞体外迁移能力的增加。而其如何通过下游靶基因参与这一过程,尚待后续研究揭示。
[1]FERLAY J,SOERJOMATARAM I,DIKSHIT R,etal.Cancer incidence and mortality worldwide:sources,methods and major patterns in GLOBOCAN 2012[J].IntJCancer,2015,136 (5):E359-E386.
[2]JEMAL A,BRAY F,CENTER MM,etal.Global cancer statistics[J].CACancerJClin,2011,61 (2):69-90.
[3]WYNDER C,HAKIMI MA,EPSTEIN JA,etal.Recruitment of MLL by HMG-domain protein iBRAF promotes neural differentiation[J].NatCellBiol,2005,7 (11):1113-1117.
[4]RIVERO S,CEBALLOS-CHAVEZ M,BHATTACHARYA SS,etal.HMG20A is required for SNAI1-mediated epithelial to mesenchymal transition[J].Oncogene,2015,34 (41):5264-5276.
[5]NAKAYA Y,SHENG G.EMT in developmental morphogenesis[J].CancerLett,2013,341 (1):9-15.
[6]LEE SK,JANG HJ,LEE HJ,etal.p38 and ERK MAP kinase mediates iron chelator-induced apoptosis andsuppressed differentiation of immortalized and malignant human oral keratinocytes[J].LifeSci,2006,79 (15):1419-1427.
[7]ADHIKARY G,SUN Y,PEARLMAN E.C-Jun NH2 terminal kinase (JNK) is an essential mediator of Toll-like receptor 2-induced corneal inflammation[J].JLeukocBiol,2008,83 (4):991-997.
[8]NICK JA,YOUNG SK,BROWN KK,etal.Role of p38 mitogen-activated protein kinase in a murine model of pulmonary inflammation[J].JImmunol,2000,164 (4):2151-2159.
[9]PLOTNIKOV A,ZEHORAI E,PROCACCIA S,etal.The MAPK cascades:signaling components,nuclear roles and mechanisms of nuclear translocation[J].BiochimBiophysActa,2011,1813 (9):1619-1633.
[10]VEVERIS-LOWE TL,LAWRENCE MG,COLLARD RL,etal.Kallikrein 4 (hK4) and prostate-specific antigen (PSA) are associated with the loss of E-cadherin and an epithelial-mesenchymal transition (EMT)-like effect in prostate cancer cells[J].EndocrRelatCancer,2005,12 (3):631-643.
[11]ZHENG M,JIANG YP,CHEN W,etal.Snail and Slug collaborate on EMT and tumor metastasis through miR-101-mediated EZH2 axis in oral tongue squamous cell carcinoma[J].Oncotarget,2015,6 (9):6797-6810.
[12]NAKAYA Y,SUKOWATIE W,WU Y,etal.RhoA and microtubule dynamics control cell-basement membrane interaction in EMT during gastrulation[J].NatCellBiol,2008,10 (7):765-775.
[13]VUORILUOTO K,HAUGEN H,KIVILUOTO S,etal.Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer[J].Oncogene,2011,30 (12):1436-1448.
[14]VAN DER LINDEN MH,WILLEKES M,VAN ROON E,etal.MLL fusion-driven activation of CDK6 potentiates proliferation in MLL-rearranged infant ALL[J].CellCycle,2014,13 (5):834-844.
[15]ARTEGIANI B,LABBAYE C,SFERRA A,etal.The interaction with HMG20a/b proteins suggests a potential role for beta-dystrobrevin in neuronal differentiation[J].JBiolChem,2010,285 (32):24740-24750.
[16]CHO E,MOON SM,PARK BR,etal.NRSF/REST regulates the mTOR signaling pathway in oral cancer cells[J].OncolRep,2015,33 (3):1459-1464.
[17]ZHU C,QI X,CHEN Y,etal.PI3K/Akt and MAPK/ERK1/2 signaling pathways are involved in IGF-1-induced VEGF-C upregulation in breast cancer[J].JCancerResClinOncol,2011,137 (11):1587-1594.
[18]HART LS,DOLLOFF NG,DICKER DT,etal.Human colon cancer stem cells are enriched by insulin-like growth factor-1 and are sensitive to figitumumab[J].CellCycle,2011,10 (14):2331-2338.
[19]IMAMURAY,SAKAMOTOS,ENDO T,etal.FOXA1 promotes tumor progression in prostate cancer via the insulin-like growth factor binding protein 3 pathway[J].PLoSOne,2012,7 (8):e42456.
[20]STEPNIAK E,RICCI R,EFERL R,etal.c-Jun/AP-1 controls liver regeneration by repressing p53/p21 and p38 MAPK activity[J].GenesDev,2006,20 (16):2306-2314.
[21]XU W,GU J,REN Q,etal.NFATC1 promotes cell growth and tumorigenesis in ovarian cancer up-regulating c-Myc through ERK1/2/p38 MAPK signal pathway[J].TumourBiol,2016,37(4):493-500.
[22]STRIPPOLI R,BENEDICTO I,FORONDA M,etal.p38 maintains E-cadherin expression by modulating TAK1-NF-kappa B during epithelial-to-mesenchymal transition[J].JCellSci,2010,123 (Pt 24):4321-4331.
[23]ZOHN IE,LI YQ,SKOLNIK EY,etal.p38 and a p38-interacting protein are critical for downregulation of E-cadherin during mouse gastrulation[J].Cell,2006,125 (5):957-969.
[24]JAVLE MM,GIBBS JF,IWATA KK,etal.Epithelial-mesenchymal transition (EMT) and activated extracellular signal-regulated kinase (p-Erk) in surgically resected pancreatic cancer[J].AnnSurgOncol,2007,14 (12):3527-3533.
[25]SHINTANI Y,HOLLINGSWORTH MA,Wheelock MJ,etal.Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH (2)-terminal kinase 1 and up-regulating N-cadherin expression[J].CancerRes,2006,66 (24):11745-11753.
[26]LIN LC,HSU SL,WU CL,etal.TGFbeta can stimulate the p (38)/beta-catenin/PPARgamma signaling pathway to promote the EMT,invasion and migration of non-small cell lung cancer (H460 cells)[J].ClinExpMetastasis,2014,31 (8):881-895.
E-mail:crickding@163.com
Effect and mechanism of HMG20A on the proliferation and migration of hepatocellular carcinoma cells
BAI Yi-he1,QIN Zhao-yu1,HE Fu-chu1,2,4,DING Chen1,3 △
(1CenterofMedicalSystemsBiology,InstitutesofBiomedicalSciences,FudanUniversity,Shanghai200032,China;2NationalCenterforProteinScience,Beijing102206,China;3SchoolofLifeSciences,FudanUniversity,Shanghai200438;4StateKeyLaboratoryofProteomics,BeijingProteomeResearchCenter,BeijingInstituteofRadiationMedicine,Beijing102206,China)
ObjectiveTo study the mechanism of HMG20A in the development and metastasis of hepatocellular carcinoma(HCC).MethodsWe constructed HMG20A overexpression and knock-down stable cell lines in Huh7 and HCCLM3 which had different metastatic abilities and genetic backgrounds.The over expression and knock down effects of HMG20A were analyzed by real time quantitative PCR (qPCR).The effect of HMG20A on the proliferation of HCC cell lines was detected by cell counting kit-8 assay.The Transwell analysis was proceeded to assess the effect of HMG20A on metastasis of HCC cells.We investigated the mechanism of HMG20A in proliferation and metastasis of HCC cells using qPCR analysis and Western blot.ResultsTheinvitroexperiments suggested that HMG20A could promote the proliferation and metastasis of HCC.It also showed that HMG20A could upregulate the activity and expression levels of mitogen-activated protein kinases (MAPKs) such as p38 and extracellular regulated protein kinase (ERK).Futhermore,it could regulate the expression levels of the biomarkers of epithelial-mesenchymal transition (EMT) such as Vimentin,anti-smooth muscle antibody (alpha-SMA) and N-cadherin positively and E-cadherin negatively.Conclusions HMG20A may promote the proliferation and migration of HCC cellsinvitroby promoting the EMT process and MAPK pathway.
liver cancer;HMG20A;metastasis;mitogen-activated protein kinase;epithelial-mesenchymal transition
Q291,R735
Adoi: 10.3969/j.issn.1672-8467.2016.04.002
2016-03-10;编辑:王蔚)
国家重点基础研究发展计划 (2013CB910802);国家高技术发展研究计划 (2015AA020108);国家国际科技合作专项 (2014DFB30020);十二五科技部重大专项计划(2012ZX10002012-006)
* This work was supported by the National Basic Research Program of China (2013CB910802),the National High Technology Research and Development Program of China (2015AA020108),the International S&T Cooperation Program of China (2014DFB30020),and the Major Projects of the Ministry of Science and Technology in the 12thFive-Year (2012ZX10002012-006).